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 is applied for general laminated and is shown to be capable of simultaneously predicting global and local responses. The analysis of free-edge stresses of composite laminates subjected to mechanical and thermal loads is performed using this C o eight-node layer-wise finite element after a classical bending validation. Laminates with finite dimensions are considered and three-dimensional out-of-plane stresses in the interior and near the free edges are evaluated. The results obtained with this finite element modelling are compared with those available in the literature. The present calculation provides accurate stresses and can be utilised as and operational tool to predict interlaminar stresses under the loads of mechanical and thermal combined.

The recent widespread use of laminated composites in various industrial fields necessitates analysis tools which are capable of predicting their mechanical behaviour more accurately an efficiently.

For laminated composites, it is well known that at the free edges interlaminar stresses arise from the mismatch of elastic properties between layers. Hence, the stress distribution in the vicinity of the free edges is in three dimensional (3D) state even though the laminates are only subjected to in-plane loading.

The interlaminar stresses are important because they have a marked effect on the failure strengths of composite laminates. Accurate determination of interlaminar stresses near the free edge is therefore crucial to correctly describe the laminate behaviour and to prevent its early failure, notably the delamination onset.

Classical single layer theories are not able to calculate these out-of-plane stresses, notably in presence of free edges. Therefore various approaches such as finite difference [START_REF] Pipes | Interlaminar stresses in composite laminates under uniform axial extension[END_REF][START_REF] Rybichi | Approximate three-dimensional solutions for symmetric laminates under in plane loading[END_REF], 3D finite element [START_REF] Wang | Some new results on the edge effect in symmetric composite laminates[END_REF][START_REF] Raju | Interlaminar stress singularities at a straight free edge in composite laminates[END_REF][START_REF] Lessard | Three-dimensional stress analysis of free-edge effects in a simple composite cross-ply laminate[END_REF][START_REF] Icardi | An evaluation of the influence of geometry and of material properties at free edges and at corners of composite laminates[END_REF], closed-form analytical approach using mixed formulation and stress based methods [START_REF] Becker | Closed-form solution for the free-edge effect in cross-ply laminates[END_REF][START_REF] Pagano | Stress fields in composite laminates[END_REF][START_REF] Kassapoglou | Closed form solutions for the interlaminar stress field in angle-ply and cross-ply laminates[END_REF], boundary layer theories [START_REF] Tang | A boundary layer theory -part II: extension of laminated finite strip[END_REF][START_REF] Wang | Boundary-layer effects in composite laminates: part 1free-edge stress singularities[END_REF][START_REF] Wang | Boundary-layer effects in composite laminates: part 2free-edge stress singularities[END_REF][START_REF] Flanagan | An efficient stress function approximation for the free-edge stresses in laminates[END_REF] and layer-wise theories [START_REF] Reddy | A generalization of two-dimensional theories of laminated composite plates[END_REF][START_REF] Tahani | Three-dimensional interlaminar stress analysis at free edges of general cross-ply composite laminates[END_REF][START_REF] Tahani | Free edge stress analysis of general cross-ply composite laminates under extension and thermal loading[END_REF] have been used to calculate interlaminar stresses near free edges. A complete discussion of the literature on the interlaminar stress analysis can be found in [START_REF] Kant | Estimation of transverse/interlaminar stresses in laminated composites -a selective review and survey of current developments[END_REF].

Finite differences, which are the oldest in the field, have been used in: [START_REF] Pipes | Interlaminar stresses in composite laminates under uniform axial extension[END_REF][START_REF] Rybichi | Approximate three-dimensional solutions for symmetric laminates under in plane loading[END_REF] to solve the two-dimensional governing elasticity equations to determine the interlaminar stresses in a long symmetric laminate under uniform axial strain.

Although 3D FE method [START_REF] Wang | Some new results on the edge effect in symmetric composite laminates[END_REF][START_REF] Raju | Interlaminar stress singularities at a straight free edge in composite laminates[END_REF][START_REF] Lessard | Three-dimensional stress analysis of free-edge effects in a simple composite cross-ply laminate[END_REF][START_REF] Icardi | An evaluation of the influence of geometry and of material properties at free edges and at corners of composite laminates[END_REF] is the most universal method that can be applied to general stacking sequence and boundary conditions, it is quite computational expensive and presents difficulties for convergence in the vicinity of free edges (see [START_REF] Carreira | Model of multilayered materials for interface stresses estimation and validation by finite element calculations[END_REF]). Consequently, some semi-analytical approaches combining the traditional FE method with certain analytical techniques have been proposed. A state space FE method that combines the conventional FE approximation and the recursive formulation of state space equation: state space formulation is introduced to solve for through-thickness stress distributions, while the traditional FE is used to approximate in-plane variations of the state variables in [START_REF] Wang | State space approach for stress decay in laminates[END_REF][START_REF] Ye | A state space finite element for laminated composites with free edges and subjected to transverse and in-plane loads[END_REF][START_REF] Zhang | Free-edge and ply cracking effect in cross-ply laminated composites under uniform extension and thermal loading[END_REF].

In order to avoid these somewhat cumbersome 3D FE methods, several approximate analytical methods have been equally proposed. Some pioneering works involve the perturbation technique by Hsu and Herakovich [START_REF] Hsu | Edge effects in angle-ply composite laminates[END_REF], the boundary layer theory by Tang and Levy [START_REF] Tang | A boundary layer theory -part II: extension of laminated finite strip[END_REF], and the approximate elasticity solution by Pipes and Pagano [START_REF] Pipes | Interlaminar stresses in composite laminates -an approximate elasticity solution[END_REF]. Mixed variational principle has been used along with stress assumption by Pagano [START_REF] Pagano | Stress fields in composite laminates[END_REF]. Wang and Choi [START_REF] Wang | Boundary-layer effects in composite laminates: part 1free-edge stress singularities[END_REF][START_REF] Wang | Boundary-layer effects in composite laminates: part 2free-edge stress singularities[END_REF] have presented a formulation of Lekhnitskii's stress function based on complex variables. Kassapoglou and Lagace [START_REF] Kassapoglou | Closed form solutions for the interlaminar stress field in angle-ply and cross-ply laminates[END_REF] studied the edge effect using the principle of minimum complementary energy and the force balance method. A large amount of development devoted to free-edge stresses analysis have been formulated based on this procedure: using stress functions and principle of complementary energy [START_REF] Flanagan | An efficient stress function approximation for the free-edge stresses in laminates[END_REF][START_REF] Yin | Free edge effects in anisotropic laminates under extension, bending and twisting. Part I: A stress-function-based variational approach[END_REF][START_REF] Yin | Free edge effects in anisotropic laminates under extension, bending and twisting. Part II: Eigenfunction analysis and the results for symmetric laminates[END_REF][START_REF] Cho | Iterative free-edge stress analysis of composite laminates under extension, bending, twisting and thermal loadings[END_REF].

Another alternative method to study the edge effect involves models based on layer-wise theory [START_REF] Reddy | A generalization of two-dimensional theories of laminated composite plates[END_REF][START_REF] Tahani | Three-dimensional interlaminar stress analysis at free edges of general cross-ply composite laminates[END_REF][START_REF] Tahani | Free edge stress analysis of general cross-ply composite laminates under extension and thermal loading[END_REF]. Unlike the single layer theories, the layer-wise theories assume separate field expansions within each layer and thereby pro-vide a more kinematically correct representation of the strain and stress field in each discrete layer. However relatively less attention has been addressed to the development of layer-wise based FE for interlaminar free-edge stresses analysis. Most of layer-wise FEs developed for free edge analysis [START_REF] Spilker | Edge effects in symmetric composite laminates: importance of satisfying the traction free-degree condition[END_REF][START_REF] Liou | A three-dimensional hybrid stress isoparametric element for the analysis of lamianted composite plates[END_REF][START_REF] Tian | Straight free-edge effects in laminated composites[END_REF] are based on the hybrid stress concept using the variational principle of Pian [START_REF] Pian | Derivation of stiffness matrices by assumed stress distributions[END_REF].

Recently, Kimpara and coauthor have developed a layer-wise FE based on assumed higher order displacement in each ply [START_REF] Kimpara | Finite element stress analysis of interlayer based on selective layerwise higher-order theory[END_REF]. Imaginary springs attached at the interlayers have been used to ensure interfacial continuity.

Based on a typical layer-wise model, called the M4-5n (M ulti-particle M odel of M ultilayered M aterials with 5 kinematic fields per layer for an n-layer laminate [START_REF] Carreira | Model of multilayered materials for interface stresses estimation and validation by finite element calculations[END_REF][START_REF] Caron | Modelling the kinetics of transverse cracking in composite laminates[END_REF][START_REF] Naciri | Interlaminar stress analysis with a new multiparticle modelization of multilayered materials (M4)[END_REF][START_REF] Diaz | Software application for evaluating interfacial stresses in inelastic symmetrical laminates with free edges[END_REF]) a new layer-wise finite element has been developed in [START_REF] Nguyen | A new finite element for free edge effect analysis in laminated composites[END_REF]. The potential of this finite element for the analysis of free-edge composites under mechanical loading has been revealed. In the present work, detail investigation of free-edge stress fields under mechanical and thermal loadings is performed with this finite element. Firstly, a rectangular simply supported laminate subjected to a sinusoidal transverse load is examined using this multi-particle FE and the results will be compared with Pagano's three-dimensional elasticity solution [START_REF] Pagano | Exact solutions for rectangular bidirectional composites and sandwich plates[END_REF]. Agreement between the results will show the validity and accuracy of the proposed finite element. Then, after the reliability of the FE model would successfully be validated, straight free edge problem will be considered in comparison with existed solution in the literature. Discussion of solution's sensibility again the number of modelled sub-layers is also presented. It is assumed that the layers are perfectly bonded together so that slip between two adjacent layers may not occur. The thickness of each layer k 

(k = 1, n) is denoted e k = h + k -h - k , where h - k , h + k are
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Generalised displacements

The in-plane displacement and rotation fields of layer k of the M4-5n model are defined in the following way:

U k α (x, y) = 1 e k h + k h - k U α (x, y, z)dz, φ k α (x, y) = 12 e k 2 h + k h - k z -h k e k U α (x, y, z)dz, (1) 
where h k are the mid-plane z coordinate of the layer k.

The transverse displacement of layer k, U k 3 is defined such that

U k 3 (x, y) = 1 e k h + k h - k U 3 (x, y, z)dz. (2) 
Thus each layer presents 5n kinematic fields. The multi-layered plate (3D object) becomes a superposition of n Reissner plates (2D object).

The generalised strains are deduced from the generalised displacements as follows (see [START_REF] Carreira | Model of multilayered materials for interface stresses estimation and validation by finite element calculations[END_REF][START_REF] Caron | Multiparticle modelling for the prediction of delamination in multi-layered materials[END_REF] for more details):

ε k αβ = 1 2 U k α,β + U k β,α , χ k αβ = 1 2 φ k α,β + φ k β,α , γ k α = φ k α + U k 3,α , D j,j+1 α = U j+1 α -U j α - e j 2 φ j α - e j+1 2 φ j+1 α , D j,j+1 ν = U j+1 3 -U j 3 . (3) 
In each layer k, one can find the conventional membranar strain ε k αβ , bending curvatures χ k αβ and shear strains γ k α . At each interface Γ j,j+1 , the interlaminar strains D j,j+1 α , D j,j+1 ν are defined associated to interlaminar transverse shear stresses σ α3 (x, y, h + j ) and normal stress σ 33 (x, y, h + j ), respectively.

Generalised stresses and equilibrium equations

In layer k (1 ≤ k ≤ n), the generalised in-plane stress resultants N k , the generalised in-plane moment resultants M k and the generalised out-of-plane
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shear stress resultants Q k are defined as follows:

N k αβ (x, y) = h + k h - k σ αβ (x, y, z) dz, M k αβ (x, y) = h + k h - k (z -h k ) σ αβ (x, y, z) dz, Q k α (x, y) = h + k h - k σ α3 (x, y, z) dz. (4) 
The interlaminar shear and normal stresses at interface j, j +1 (1

≤ j ≤ n-1)
are defined as

τ j,j+1 α (x, y) = σ α3 (x, y, h + j ), ν j,j+1 (x, y) = σ 33 (x, y, h + j ).
(

) 5 
The equilibrium equations of the M4-5n model can be written as

N k αβ,β + τ k,k+1 α -τ k-1,k α = 0, Q k β,β + ν k,k+1 -ν k-1,k = 0, M k αβ,β + e k 2 τ k,k+1 α + τ k-1,k α -Q k α = 0. ( 6 
)

Generalised constitutive equations

The M4-5n generalised constitutive equations are obtained in compliance terms, related to:

• The membranar stress resultants in layer k (1 ≤ k ≤ n)               ε k 11 ε k 22 2ε k 12               = 1 e k S k               N k 11 N k 22 N k 12               , (7) 
where the second-order tensor S k represents the in-plane compliances of layer k defined by

S k αβ = S ααββ (z), S k 16 = S k 61 = 2S 1112 (z), S k 26 = S k 62 = 2S 2212 (z), S k 66 = 4S 1212 (z); • the in-plane moment resultants in layer k (1 ≤ k ≤ n)               χ k 11 χ k 22 2χ k 12               = 12 e k 3 S k               M k 11 M k 22 M k 12               , (8) 
• the out-of-plane shear stress resultants in layer k

(1 ≤ k ≤ n)         γ k 1 γ k 2         = 6 5e k S k Q         Q k 1 Q k 2         - 1 10 S k Q         τ k-1,k 1 + τ k,k+1 1 τ k-1,k 2 + τ k,k+1 2         (9) 
where the second-order tensor S k Q represents the shearing compliances of layer k defined by S k Qαβ = 4S α3β3 (z);

• the transverse shear stresses at interface Γ j,j+1 (1

≤ j ≤ n -1)         D j,j+1 1 D j,j+1 2         = - 1 10 S j Q         Q j 1 Q j 2         - 1 10 S j+1 Q         Q j+1 1 Q j+1 2         + 2 15 e j S j Q + e j+1 S j+1 Q         τ j,j+1 1 τ j,j+1 2         - e j 30 S j Q         τ j-1,j 1 τ j-1,j 2         - e j+1 30 S j+1 Q         τ j+1,j+2 1 τ j+1,j+2 2         (10) 
• the normal stresses at interface Γ j,j+1 (1 ≤ j ≤ n -1) 

D j,j+1
where the scalar S j ν denotes the normal compliance of layer j defined by

S j ν = S 33 (z) = S 3333 (z).
3 Finite element modelling of M4-5n equations

Finite element discretisation

The standard finite element formulation with C o continuous plate element has been used in this investigation. In this approach, the entire domain is
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subdivided in NE number of sub-domains or elements such that

Π(δ) = N E el=1 Π e (δ) (12) 
where Π and Π e are the total potential of the system and the element, respectively. For a n-layer plate, the 5n vector of unknown nodal displacement variables are defined as

δ = {U 1 V 1 W 1 φ x 1 φ y 1 , • • • , U n V n W n φ x n φ y n } T , (13) 
where the conventional engineering notations

U=U 1 , V =U 2 , W =U 3 , φ x =φ 1
and φ y =φ 2 are used. Note that to study the through-the-thickness stresses distribution, each physical layer can be subdivided in to a large number of numerical (or mathematical) layers by introducing more interfaces and therefore more unknown displacement variables.

In this study, eight-node two-dimensional shape functions N i (i=1, 8) are adopted for interpolating both the geometry and generalised displacement such that:

(x, y) = 8 i=1 N i (x i , y i ), ( 14 
) δ = 8 i=1 N i δ i , (15) 
where x i , y i and δ i are the nodal values. The interpolation functions matrix for the node i are N i = N i I 5n . The explicit expressions of N i can be found in [START_REF] Hinton | Finite element programming[END_REF].

The (11n -3) complete generalised strain vector ǫ is defined as follows:

ǫ = {ǫ c , ǫ ν , ǫ Q } T . ( 16 
)
ǫ c = {ε 1 xx ε 1 yy 2ε 1 xy χ 1 xx χ 1 yy χ 1 xy . . . ε n xx ε n yy 2ε n xy χ n xx χ n yy χ n xy } T . ( 17 
)
is the 6n membranar strain vector,

ǫ ν = {D 1,2 3 D 2,3 3 . . . D n-1,n 3 } T . ( 18 
)
is the (n -1) normal strain vector and

ǫ Q = {γ 1 x γ 1 y D 1,2 x D 1,2 y γ 2 x γ 2 y . . . γ n-1 x γ n-1 y D n-1,n x D n-1,n y γ n x γ n y } T . ( 19 
)
is the (4n -2) shear strain vector.

The associated generalised stress vector can be written as follows:

σ = {σ c , σ ν , σ Q } T , (20) 
where

σ c = {N 1 xx N 1 yy N 1 xy M 1 xx M 1 yy M 1 xy . . . N n xx N n yy N n xy M n xx M n yy M n xy } T , σ ν = {ν 1,2 ν 2,3 . . . ν n-1,n } T , ( 21 
) σ Q = {Q 1 x Q 1 y τ 1,2 x τ 1,2 y Q 2 x Q 2 y . . . Q n-1 x Q n-1 y τ n-1,n x τ n-1,n y Q n x Q n y } T .
The membranar, normal ans shear strains ǫ c , ǫ ν , ǫ Q can be written in terms of the nodal displacements δ by referring to Eq. ( 3). With the generalised displacement vector δ known at all points within the element, the generalised strain vectors at any point are determined with the aid of Eq. ( 14), as follows:

ǫ = 8 i=1 B i δ i = [B 1 , . . . , B 8 ] δ. ( 22 
)
The strain energy stored in the element can be computed using stress-strain relation equations ( 7) - [START_REF] Tang | A boundary layer theory -part II: extension of laminated finite strip[END_REF]:

π e = 1 2 ω δ T B T DBδdω = 1 2 δ T K e δ. (23) 
Detail expression of operator matrix B and elasticity matrix D can be found in [START_REF] Nguyen | A new finite element for free edge effect analysis in laminated composites[END_REF]. By assembling the element stiffness matrices and taking into account the boundary conditions, the nodal d.o.f. can be solved.

Layer-wise temperature variation

A layer-wise uniform temperature variation can be taken in to account using the procedure proposed in [START_REF] Diaz | Software application for evaluating interfacial stresses in inelastic symmetrical laminates with free edges[END_REF]. The tensor of inelastic strain due to a uniform temperature variation T i in the k layer is identified as

ε k a (x) = T k α k L e L ⊗ e L + α k T e T ⊗ e T + α k N e z ⊗ e z (24) 
where

α k L , α k T et α k N represent thermal coefficient in material direction.
In the global x, y, z coordinate this inelastic strain tensor can be written as 

ε k a (x) = T k α k 11 e x ⊗
where

α k 11 = cos 2 θ k α k L + sin 2 θ k α k T α k 22 = sin 2 θ k α k L + cos 2 θ k α k T α k 12 = cosθ k sinθ k (α k L -α k T ) α k 33 = α k N .
with θ k is the orientation of the i layer.
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Finally, according to [START_REF] Diaz | Software application for evaluating interfacial stresses in inelastic symmetrical laminates with free edges[END_REF] the inelastic strain can be expressed as

ε k a αβ (x, y) = α k αβ T i χ k a αβ (x, y) = 0 γ k a α (x, y) = 0 (26) D j,j+1 a α (x, y) = 0 D j,j+1 a ν (x, y) = α j 33 T j e j 2 + α j+1 33 T j+1 e j+1 2 
The inelastic strain vector according to the multi-particle finite element formulation are:

ǫ a = {ǫ c a , ǫ ν a , ǫ Q a } T (27) 
with

ǫ c a = {ε 1 a xx ε 1 a yy 2ε 1 a xy 0 0 0, . . . , ε n a xx ε n a yy 2ε n a xy 0 0 0 } T (28) 
6n

ǫ ν a = {D 1,2 a ν D 2,3 a ν . . . D n-1,n a ν } T (29) 
n -1 ǫ Q a = {0 0 0 0 0 0, . . . , 0 0 0 0 0 0 } T

4n -2

Numerical results

In this section, the developed finite element is initially applied to study the bidirectional bending problem of laminated plates. This case of simply supported boundary conditions is evidently used to test the reliability of the FE model, by comparing its results with existing exact elasticity solution [START_REF] Pagano | Exact solutions for rectangular bidirectional composites and sandwich plates[END_REF]. Hence, after the reliability of the proposed FE model has been successfully validated, stress analysis of free-edge problem under mechanical and thermal loads are investigated. ). For the purpose of validating the multi-particle finite element, the following Pagano's choice of material [START_REF] Pagano | Exact solutions for rectangular bidirectional composites and sandwich plates[END_REF] has been used:

E 1 /E 2 = 25, E 2 = E 3 = 7 GPa G 12 = G 13 = 0.5E 2 , G 23 = 0.2E 2 ν LT = ν T N = ν LN = 0.25
where the subscripts 1, 2, 3 signify the direction parallel to the fibres, the transverse direction perpendicular to the fibres, and the out-of-plane direction, respectively. The results of the multi-particle FE calculation will be compared with Pagano's exact three-dimensional elasticity solutions for thick laminate (a = 4h).

Due to the symmetry of the problem, only one quadrant of the plate is modelled (0 < x < a/2, 0 < y < a/2) by a 5 × 5 mesh. The numerical results

shown here are presented by means of the following normalised stresses as the same form of Pagano [START_REF] Pagano | Exact solutions for rectangular bidirectional composites and sandwich plates[END_REF]:

σ z = σ z q o , (σ xz , σ yz ) = (σ xz , σ yz ) h q o a
As previously mentioned, in the multi-particle modelling, each actual physical layer in a laminate can be treated as if it is made of as many layers as it is wished with, of course, the same fibre direction as the actual layer. The present FE model provide only direct access to the interfacial stresses by constitutive equations. Hence, one must use this sublayer modelling to study through-the-thickness stresses distributions. In Figs. 2-4 out-of-plane stresses distributions by six and one sub-layers FE modelling are plotted. The result of three-dimensional elasticity solution [START_REF] Pagano | Exact solutions for rectangular bidirectional composites and sandwich plates[END_REF] is also reported for comparison.

Excellent agreement between the multi-particle FE solution and the exact three-dimensional elasticity solution is found. This close agreement verifies the accuracy of the present finite element. It is shown in this case that regardless of the used sublayer number, interfacial stresses values do not change. Increasing the numerical layer number only helps to reproduce the stress distribution shape and does not affect the result's precision.

Free-edge laminate under uniform axial extension

In what follows, the classical straight free-edge problem are considered. This problem have been studied by several investigators. Certain similarities are observed in these results, however there are also numerous discrepancies, notably in the prediction of interlaminar stresses near free edges. It is reminded here that no exact elasticity solution to this free-edge problem has been yet founded. All the results obtained are merely based on approximate analytical and numerical analyses. For most of these investigations, the longitudinal degrees of freedom in the displacement field is neglected and the stress analysis is then restricted to a generic two-dimensional cross-section of the laminates.
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In this investigation, general finite dimension laminates with the ply configuration [0 o /90 o ] s , [90 o /0 o ] s are assumed to have the length 2a, width 2b, and thickness h = 4e, with b = 8e and a = 2b (see Fig. 5). The laminate is subjected to a prescribed uniform axial strain ε x = ∆ a . The material properties are taken to be those of a high-modulus graphite/epoxy. The elasticity constants with respect to principal material axis of each ply are:

E 1 = 137, 90 GPa E 2 = E 3 = 14, 48 GPa G 12 = G 13 = G 23 = 5, 86 GPa ν 12 = ν 13 = ν 23 = 0, 21
Due to the symmetry of the problem, only one quadrant of the plate is modelled (0 < x < a, 0 < y < b). Convergence (influence of the mesh pattern) study has been performed in [START_REF] Nguyen | A new finite element for free edge effect analysis in laminated composites[END_REF] and is not presented here. As opposed to 3D FE analysis [START_REF] Wang | Some new results on the edge effect in symmetric composite laminates[END_REF][START_REF] Raju | Interlaminar stress singularities at a straight free edge in composite laminates[END_REF][START_REF] Lessard | Three-dimensional stress analysis of free-edge effects in a simple composite cross-ply laminate[END_REF][START_REF] Icardi | An evaluation of the influence of geometry and of material properties at free edges and at corners of composite laminates[END_REF] the multi-particle FE presents converge finite stresses at free edges. Even a coarse mesh (5 × 5 elements) as shown in Fig. 5 assures a very good convergence. The following results are evaluated with this 5 × 5 mesh. [START_REF] Wang | Some new results on the edge effect in symmetric composite laminates[END_REF] and by Carreira [START_REF] Carreira | Model of multilayered materials for interface stresses estimation and validation by finite element calculations[END_REF], and Pagano's local model [START_REF] Pagano | Stress fields in composite laminates[END_REF] are also plotted for comparison. It can be seen that for y/b < 0.8 the interlaminar stress σ yz obtained by all the calculations are very close, however for 0.8 ≤ y/b ≤ 1.0 as the free edge is approached, these distributions exhibit obvious differences. The results obtained by the use of a special 3D FE procedure [START_REF] Carreira | Model of multilayered materials for interface stresses estimation and validation by finite element calculations[END_REF] for better convergence than classical one are in good agreement with present method. Note that Wang & Crossman's results have been obtained using an arbitrate mesh where convergence is not assured due to the stress singularity at the edge.

The shear stress fields σ yz in Pagano's model verify the free edge conditions (vanish of shear stress at free edge). For the present FE model, this boundary condition is only energetically taken in to account. Nevertheless the evaluation of the shear stress shape is very accurate. Except at the 0 o /90 o interface, the value of σ yz is quite close to zero (see Fig. 7). The steepness of stress gradient at the ply interface, particularly near the free edge is often attributed to a singularity at the 0 o /90 o interface in conventional 3D FE investigations [START_REF] Wang | Some new results on the edge effect in symmetric composite laminates[END_REF][START_REF] Raju | Interlaminar stress singularities at a straight free edge in composite laminates[END_REF][START_REF] Lessard | Three-dimensional stress analysis of free-edge effects in a simple composite cross-ply laminate[END_REF][START_REF] Icardi | An evaluation of the influence of geometry and of material properties at free edges and at corners of composite laminates[END_REF].

Due to the mesh dependency of these models, the stress values on the edge are meaningless and prevent the use of a direct strength of materials approach to predicting delamination onset. As mention above the present model provides useful finite stress on the edge which can be used directly in a limit stress criterion as shown in [START_REF] Caron | Multiparticle modelling for the prediction of delamination in multi-layered materials[END_REF]. The present finite interfacial stresses are in this sense equivalent to the averages of the 3D FE's stresses over a characteristic distance from the edge as used in several delamination onset investigations [START_REF] Brewer | Quadratic stress criterion for initiation of delamination[END_REF][START_REF] Leguillon | The onset of delamination at stress free-edges in angle-ply laminates -analysis of two criteria[END_REF].

The distribution of σ yz through thee thickness at the free edge (y = 0.98b) of the [0 o /90 o ] s laminate is presented in Fig. 7. Each physical ply is modelled by the same N sublayer. Note that the inconvenient of all the models based on layer-wise theory is that the calculation's volume depends on the number of numerical layers and becomes very large with the increasing of the former.

Moreover, in many layer-wise models [START_REF] Tahani | Three-dimensional interlaminar stress analysis at free edges of general cross-ply composite laminates[END_REF][START_REF] Tahani | Free edge stress analysis of general cross-ply composite laminates under extension and thermal loading[END_REF], free-edge stresses are noticeably dependent on the sublayer division N and one has to incriease N to assure the convergence (N must be larger than 6 in [START_REF] Tahani | Three-dimensional interlaminar stress analysis at free edges of general cross-ply composite laminates[END_REF]). It is seen in Fig. 7 that the stress fields obtained by the present model are not affected by the sublayer ACCEPTED MANUSCRIPT division number. The multi-particle model employed here is very general in that the subdivision number can be greater, equal or less than the number of material layers n. Also the number of sublayer division can vary from layer to layer. Hence one can use a large number of sublayers in the interested material layer and a small number of numerical layers elsewhere which is very useful in the investigation of a multilayer laminate with a very large number of material layers. Fig. 8 shows an illustrated case where the 0 o ply of a [0 o /90 o ] s is modelled by 9 and 17 numerical layers and one numerical layer is used for other plies. Again a very good convergence is obtained that confirms the non existence of singularity in our model. 10 in comparison with some results found in the literature. Except a similarity of overall shape, all the considered models provide a dispersion both in magnitude and in local shape gradient. Results of Flanagan [START_REF] Flanagan | An efficient stress function approximation for the free-edge stresses in laminates[END_REF] and Cho & Kim [START_REF] Cho | Iterative free-edge stress analysis of composite laminates under extension, bending, twisting and thermal loadings[END_REF] have been obtained using stress functions and principle of complementary energy. Their results shows a pronounced singularity of stress fields in the edge that explains the large values of σ z in Fig. 10. In the work of Tian et al. [START_REF] Tian | Straight free-edge effects in laminated composites[END_REF], a 3D hybrid stress element has been used to investigate free-edge stress distribution. The values of interfacial stresses of the present model and those of [START_REF] Tian | Straight free-edge effects in laminated composites[END_REF] are quite close and both models confirm no existence of stress singularity at the interface.

The through-the-thickness distribution of σ z the free edge in a [90 o /0 o ] s lam-inate is plotted in Fig. 11. Excellent agreement between the present solutions and those of Tahani & Nosier [START_REF] Tahani | Three-dimensional interlaminar stress analysis at free edges of general cross-ply composite laminates[END_REF] and Wang & Crossman [START_REF] Wang | Some new results on the edge effect in symmetric composite laminates[END_REF] is found for this case.

Free-edge laminate under thermal loading

In this section, [0 o /90 o ] s , [90 o /0 o ] s and [45 o / -45 o ] s free-edge laminates subjected to thermal loading (residual stress due to the curing process) are considered. The results are compared with 3D FE results [START_REF] Carreira | Model of multilayered materials for interface stresses estimation and validation by finite element calculations[END_REF][START_REF] Wang | Edge effects on thermally-induced stresses in composite laminates[END_REF] and those of stress function based method [START_REF] Cho | Iterative free-edge stress analysis of composite laminates under extension, bending, twisting and thermal loadings[END_REF][START_REF] Yin | The effect of temperature gradient on the free-edge interlaminar stresses in multi-layered structures[END_REF]. The following material is used for this investigation: Once again, the present model and 3D FE [START_REF] Wang | Edge effects on thermally-induced stresses in composite laminates[END_REF] provide almost the same results.

E 1 = 137, 90 GPa E 2 = E 3 = 14, 48 GPa

Conclusions

In this study, free-edge laminates subjected to uniaxial extension and uniform temperature variation are investigated using multi-particle finite element. This two-dimensional finite element approach with very coarse mesh, provides very accurate three-dimensional free-edge stress field. Moreover the present model allows a flexible choice of sublayer scheme in order to investigate through thickness local variation of stress fields. Detail investigation of the solution's sensibility again the number of sublayer division is also given. Regardless of the used sublayer's number, the results stay practically identical. Increasing the subdivisions number is useful to reproduce shape distribution and does not affect the precision. This study confirms no existence of stress singularity at the interface. 
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 21 Laminated plate geometry, preliminariesConsider a composite laminated plate (Fig.1) consisting of n linearly elastic orthotropic layers, each of them exhibiting individual mechanical properties.

  the bottom and the top z coordinates of the layer, respectively. The occupied volume is then Ω = ω × h - 1 , h + n . The interface between layer j and j + 1 is denoted Γ j,j+1 (1 ≤ j ≤ n -1). For the sake of convenience, throughout this paper the indicial notations are used. Greek indices α, β, γ and δ indicate the components on the (x, y) plane and and run over the range 1,2. Latin indices o, p, q and r indicate the components in the (x, y, z) space and run over the range 1,2,3. Superscript k attached on any quantity identifies affiliation to the k layer. Bold face characters are used to represent tensors, matrices and vectors.
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 1 Bending of [0 o /90 o /0 o ] laminate under sinusoidal transverse loading Consider a rectangular simply supported cross-ply laminate of dimension a = b an thickness h with equal thickness for each layer. subjected to a double sinusoidal transverse load q = q o sin( πx a )sin( πy b

Fig. 6

 6 Fig. 6 shows the σ yz distribution at the 0 o /90 o interface of a [0 o /90 o ] s laminate under uniform axial extension. Each physical ply is modelled by one numerical layer. Results of 3D FE by Wang & Crossman[START_REF] Wang | Some new results on the edge effect in symmetric composite laminates[END_REF] and by Carreira[START_REF] Carreira | Model of multilayered materials for interface stresses estimation and validation by finite element calculations[END_REF], and

Fig. 9

 9 Fig. 9 shows the σ z distribution at the 0 o /90 o interfaces of [0 o /90 o ] s and [90 o /0 o ] s laminates. It is noted here that the same quality of convergence has been found and an uniform sublayer division N = 5 is used to reproduce the stress shape. The results of the present model and those of Wang & Crossman [4] are in excellent agreement. The through-the-thickness distribution of σ z at the free edge in a [0 o /90 o ] s laminate is shown in Fig. 10 in comparison with

G 12 =

 12 G 13 = G 23 = 5, 86 GPa ν 12 = ν 13 = ν 23 = 0, 21 α 1 = 0.36 × 10 -6 o C -1 , α 2 = α 3 = 28.8 × 10 -6 o C -1 Cross-ply laminates: Figs. 12 and 13 show the distribution of interlaminar stresses at the 0 o /90 o interface of laminate[0 o /90 o ] s laminate under uniform temperature variation ∆T = 1 o C. The 5 × 5 mesh as in the later example that provides a very good quality of convergence has been used. A very good agreement between all the models considered has been obtained. All of these calculations predict a compression at free edge interface for a 1 o C temperature variation (see Fig. 12). Through-the-thickness distribution of σ z at the free edge of [90 o /0 o ] s laminate for a 1 o C temperature variation is plotted in Fig 14 using a sublayer division of Cho & Kim [27]. At the 0 o /0 o interface the present model provides a larger stress value. Angle-ply laminate: In this example, a rectangular [-45 o /45 o ] s of dimension b = 8e and a = 10b is investigated. The symmetry of the problem is no longer verified in this case. Hence the whole laminate is modelled by the present FE model. A typical 20 × 10 mesh is presented in Fig 15.

Figs. 16

 16 Figs.[START_REF] Tahani | Three-dimensional interlaminar stress analysis at free edges of general cross-ply composite laminates[END_REF] and 17 show interlaminar stresses distributions at different interfaces.
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 34 Fig. 3. Distribution of shear stress σ yz through the thickness of a simply supported rectangular laminate under sinusoidal transverse loading.

Fig. 5 .Fig. 8 .Fig. 9 .Fig. 10 .Fig. 11 .Fig. 12 .Fig. 13 .Fig. 14 .

 5891011121314 Fig. 5. Laminate subjected to uniform axial extension -typical mesh pattern.
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 1516 Fig. 15. typical mesh for the angle-ply laminate
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	Fig. 2. Distribution of shear stress σ xz through the thickness of a simply supported
	rectangular laminate under sinusoidal transverse loading.

sublayers

Carreira [START_REF] Carreira | Model of multilayered materials for interface stresses estimation and validation by finite element calculations[END_REF] Wang & Crossman [START_REF] Wang | Some new results on the edge effect in symmetric composite laminates[END_REF] Pagano [START_REF] Pagano | Stress fields in composite laminates[END_REF]