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A semi-analytical model for the simulation of delamination in laminated composites
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A semi-analytical model for the simulation of delamination in laminated composite components is presented. Two well established approaches are combined in a way to use their specific advantages. The Griffith crack growth criterion is used in order to predict the load required to propagate the delamination, the delamination growth direction, and the growth stability. The compliance functions used in the criterion are evaluated numerically, the Finite Element Method is applied for this purpose.

The proposed model allows to treat non-linear structural behavior, including snapthrough and snap-back behavior, in a computational efficient way. Furthermore,

Introduction

Fiber reinforced laminated composites have become more and more important over the past years due to their great potential in weight saving. They are successfully used in applications where high strength, high stiffness, and low weight are required, such as aircraft structures, sports equipment, ship hulls, etc. Even if widely used their potential is not yet fully exploited due to a lack of predictive simulation tools for the non-linear behavior. More precise and more reliable tools are required to handle progressive damage and to predict the ultimate load of laminated composites.

One of the critical failure modes in laminated composites is delamination, as it can change the structural stiffness significantly and is difficult to detect during inspection. Delamination causes a non-linear structural response and can lead to snap-through or snap-back behavior. It is caused by overloading of the interface due to out-of-plane shear and normal stresses attributed to, e.g. transverse loading, free edge effect, ply drop offs, or local load introduction. An overview about delamination and its effects is given in [1,[START_REF] Bolotin | Delamination in composite structures: its origin, buckling, growth and stability[END_REF]. In the following, delamination is considered as the growth of an existing flaw in the interface between two plies. The formation of a first flaw in an initially flawless interface is not considered to be part of the delamination process.

In order to treat the discontinuity at the delamination front fracture mechanics can be used. It is widely accepted that conventional Carbon Fiber Reinforced Polymers (CFRP) show a brittle fracture behavior. Consequently, local material non-linearities in the vicinity of the delamination front are neglected and Linear Elastic Fracture Mechanics (LEFM) is used [START_REF] Hild | Discrete versus continuum damage mechanics: a probabilistic perspective[END_REF]. For the prediction of delamination growth the Griffith crack growth criterion is widely utilized [START_REF] Krueger | Virtual crack closure technique: History, approach, and applications[END_REF].

It states that the released energy at delamination growth has to be equal or larger than the energy required to create new delaminated area. The energy released can be computed from the load applied and the change of the structural compliance caused by the delamination progression [START_REF] Anderson | Fracture Mechanics, Fundamentals and Applications[END_REF].

Within the framework of the Finite Element Method (FEM) methods such as the J-integral [START_REF] Rice | A path independent integral and the approximate analysis of strain concentration by notches and cracks[END_REF], the Virtual Crack Extension Technique [START_REF] Hellen | On the method of the virtual crack closure extension[END_REF], and the Virtual Crack Closure Technique (VCCT) [START_REF] Krueger | Virtual crack closure technique: History, approach, and applications[END_REF][START_REF] Raju | Calculation of strain-energy release rates with higher order and singular finite elements[END_REF][START_REF] Rybicki | A finite element calculation of stress intensity factors by a modified crack closure integral[END_REF] are used successfully for the simulation of delamination. Another approach to treat delamination progression was developed in [START_REF] Dugdale | Yielding of steel sheets containing slits[END_REF][START_REF] Barenblatt | The mathematical theory of equilibrium cracks in brittle fracture[END_REF] where the concept of a cohesive zone was introduced.

Based on this idea interface elements have been developed within the FEM that are used successfully for the simulation of delamination [START_REF] Alfano | Finite elemente interface models for the delamination analysis of laminated composites: mechanical and computational issues[END_REF][START_REF] Camanho | Numerical simulation of delamination growth in composite materials[END_REF]. These approaches, however, are numerically expensive and the achievement of convergence can be tricky.

In the present paper two well established approaches, the Griffith criterion and the FEM, are combined to use their specific advantages and to circumvent their shortcomings. Both approaches are widely used for the simulation of delamination. Their experimental verification is treated in depth in the literature, e.g. [START_REF] Krueger | Virtual crack closure technique: History, approach, and applications[END_REF][START_REF] Camanho | Numerical simulation of delamination growth in composite materials[END_REF]. To apply the Griffith criterion the structural compliance is required as function of the parameters describing the delamination. Since this function cannot be given analytically for general cases, it is computed by a numerical parameter study employing the FEM. A particular consideration of the actual mode mix at the delamination front is also required, the VCCT is used for this purpose. The numerical parameter study may be costly in terms of CPU-time but can be done in an fully automated procedure. Once the compliance and the mode mix are evaluated the delamination behavior of the considered structure is at hand and further steps are very inexpensive in terms of computational effort. All further conclusions concerning delamination growth and its stability are directly deduced from existing data. Any delamination which is described by the parameters considered in the numerical study can be assessed in terms of the direction of the delamination growth, the load required to propagate the delamination, and the growth stability. Stable and unstable delamination growth and the corresponding nonlinear structural response, including snap-through and snap-back behavior, can be handled in a computational efficient way. If conventional FEM tools are used, every particular configuration of the delamination has to be investigated separately. For each delamination a non-linear analysis is required for the simulation of delamination growth. This way, only information about particular chosen delaminations is obtained and the achievement of convergence might be tricky. The proposed semi-analytical approach, however, is set up in a way to gain a complete picture of the delamination problem and the corresponding non-linear structural response. It offers a systematic understanding of the influence of the delamination size and position on the growth, the growth stability, and the structural response. Critical configurations where delamination growth changes from stable to unstable, or vice versa, are determined.

In order to show the application and the capabilities of the proposed semi-

The semi-analytical model

The Griffith criterion is adapted in order to treat delamination in laminated composite components. The compliance functions used in the criterion are evaluated numerically; in the present study the FEM is used for this purpose.

Only plane problems with through-width delaminations are considered here, allowing a two dimensional description of the structures analyzed.

The Griffith energy criterion

Crack growth is a irreversible process that is accompanied by the formation of new crack surfaces. According to Griffith, the total energy, Π * , of an elastic body containing a crack does not change during equilibrium crack growth (see e.g. [START_REF] Anderson | Fracture Mechanics, Fundamentals and Applications[END_REF]). The energy balance for an increase in crack area, ∂A, reads,

∂Π * ∂A = ∂Π ∂A + ∂Γ ∂A = 0 . ( 1 
)
The potential energy, Π, is the sum of the the strain energy and the potential of the external forces. 

-
G G c = 1 . ( 2 
)
Growth is stable if the total energy is a minimum. The stability condition reads,

∂ 2 Π * ∂A 2 > 0 . ( 3 
)
From Eqs. ( 1) and (3) growth and stability conditions for a structure loaded by a single concentrated force, P , or a prescribed displacement, u, are derived.

The structure is assumed to have unit thickness, thus, an increase in crack length, ∂a, is equal to an increase in crack area, ∂A. In the linear elastic range the relation between the force and the displacement of the load introduction point in load direction is described by the compliance, C, as,

C = u P . (4) 
In the case of displacement controlled loading, the variation of the potential of the external forces is zero and the potential energy of the structure is equal to the strain energy,

Π u = u 2 2C . ( 5 
)
An increase in crack length leads to an increase of the compliance and to a decrease of the potential energy of the structure. From Eqs. ( 1) and ( 5) the displacement required to propagate the crack, u 0 , is computed as,

u 0 = 2G c C 2 ∂C ∂a . ( 6 
)
Using Eq. ( 3) the stability condition for stable crack growth for displacement controlled loading reads,

- G c ∂C ∂a ⎛ ⎝ ∂ 2 C ∂a 2 - 2 C ∂C ∂a 2 ⎞ ⎠ + ∂G c ∂a > 0 . ( 7 
)
In the case of force controlled loading the external and the internal forces contribute to the potential energy of the structure, which reads [START_REF] Anderson | Fracture Mechanics, Fundamentals and Applications[END_REF],

Π P = - P 2 C 2 . ( 8 
)
The force required to propagate the crack, P 0 , is computed from Eqs. ( 2) and ( 8) as,

P 0 = 2G c ∂C ∂a , ( 9 
)
and the stability condition for force controlled loading reads,

- G c ∂C ∂a ∂ 2 C ∂a 2 + ∂G c ∂a > 0 . ( 10 
)
Above equations are based on the assumption of linear elasticity, this means that the structural compliance is load independent. In the case of closed cracks this assumption is violated as friction and contact take place. However, many delamination problems of practical relevance have open crack fronts and can be treated with the proposed semi-analytical model.

Mode mix

In general plane problems crack growth is caused by a combination of mode I and mode II loading, see e.g. [START_REF] Krueger | Virtual crack closure technique: History, approach, and applications[END_REF][START_REF] Turon | An interface damage model for the simulation of delamination under variable-mode ratio in composite materials[END_REF]. From experimental material tests the critical energy release rate for pure mode I and pure mode II loading, G Ic and G IIc , and a criterion for mixed mode cases are known. Here, a quadratic crack growth criterion [16] is used and Eq. ( 2) extends to,

G I G Ic 2 + G II G IIc 2 = 1 , ( 11 
)
with individual contributions of fracture mode I and fracture mode II. From the Griffith energy balance, Eq. ( 1), only the total energy release rate, G I +G II ,
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can be assessed and, thus, Eq. ( 11) cannot be applied directly. A mode mix variable is introduced as,

m = G II G I + G II . ( 12 
)
In the linear elastic range the mode mix depends on the crack geometry and the loading scenario but is independent of the actual load magnitude. Equation ( 11) together with Eq. ( 12) allows to define a critical energy release rate for mixed mode loading,

G c = 1 1-m G Ic 2 + m G IIc 2 . ( 13 
)
Substituting this equation into Eqs. ( 6) to [START_REF] Dugdale | Yielding of steel sheets containing slits[END_REF] yields crack growth and stability conditions for mixed mode loading. Note that the same results concerning delamination growth are obtained if the mode mix is used to derive the individual mode I and mode II energy release rates and Eq. ( 11) is applied.

However, for the computation of the stability the critical energy release rate for mixed mode cases needs to be defined.

Delamination growth

In a laminate build up by plies of a unidirectional CFRP, the fracture toughness of the plies is much greater than the fracture toughness of the interfaces between the plies. Thus, it can be assumed that delaminations only grow along the interface between the plies. In Fig. 1 a laminate containing a throughwidth delamination in one of the interfaces is sketched. The delamination can grow in both directions individually. For plane problems a delamination is entirely described by two parameters. In the present paper the distances between the edges of the structure and the delamination fronts, a 1 and a 2 , are used as parameters, see Fig. 1. Note that a decrease in the parameter a 1 or a 2 is equal to an increase of the delaminated area. For general three dimensional problems some assumptions concerning the shape of the delamination have to be made in order to keep the number of parameters required to describe the delamination low. Such problems are beyond the scope of the present paper, but the semi-analytical approach can handle such problems too. As the mode mix at each delamination front, m a 1 and m a 2 , does not need to be equal, the individual values of the critical energy release rate at each front, G c,a 1 and G c,a 2 , have to be considered. From Eq. ( 6) and ( 9) the load (force or displacement) required to propagate the delamination can be computed for each delamination front. The delamination will grow at the higher loaded delamination front, printed symbolically as,

∂C -∂a i G c,a i > ∂C -∂a j G c,a j ⇒ Delamination growth in direction a i ; i, j = 1, 2 . ( 14 
)

Numerical evaluation of the compliance and the mode mix

The analytical equations presented above allow to determine the delamination growth direction, to compute the load required to propagate the delamination, and to predict the growth stability. In order to perform these computations the compliance and the mode mix at each delamination front, m a 1 and m a 2 , need to be provided for the current loading scenario as functions of a 1 and a 2 .

For general cases an analytical solution for these functions cannot be given, thus, an approximation is used. Discrete values of a 1 and a 2 are chosen in a range that covers all delamination configurations of interest. For each combination of a 1 and a 2 the compliance and the mode mix at each delamination front are evaluated numerically. The results of the numerical evaluation allow
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for a pointwise description of the compliance and the mode mix as functions of a 1 and a 2 . From these results the difference quotients are computed instead of the derivatives (e.g. ∂C ∂a ⇒ ΔC Δa ). Due to this approximation only incremental delamination growth can be simulated, the size of the increment being equal to the incrementation in a 1 or a 2 .

The compliance is a monotonic and continuous function of the parameters a 1 and a 2 . Their discretization has to be chosen fine enough to allow for a proper approximation of the compliance as well as its first and second derivatives.

Visual inspection of the functions shows whether or not the approximation is proper in the entire range of a 1 and a 2 . If not, a finer discretization has to be used around the corresponding values.

In the present study the FEM package ABAQUS/Standard/V6.6 (ABAQUS Inc., RI, USA) is used for the numerical evaluation. An FEM analysis procedure is set up, parameterised in a 1 and a 2 . All combination of a 1 and a 2 are analysed in a fully automated procedure. The structure is loaded with a unit load and the compliance as well as the mode mix at each delamination front are computed within a linear elastic analysis. For the computation of the mode mix the VCCT is employed. An implementation is provided by ABAQUS as an add on tool [START_REF]ABAQUS/VCCT for ABAQUS, User's Manual[END_REF]. The VCCT is based on the assumption that the energy released during the delamination growth of Δa is equal to the energy required to close the delamination over the length of -Δa. According to [START_REF] Raju | Calculation of strain-energy release rates with higher order and singular finite elements[END_REF] the energy released at delamination growth can be computed within the FEM from the nodal forces at the delamination front and the relative nodal displacement behind the delamination front. This assumption hold true if the stress and displacements fields with respect to the delamination front change only slightly during delamination growth, i.e. self similar delamination growth takes place.

This means that the increase in the delaminated area needs to be small com-pared to the total delaminated area and that the shape of the delamination does not change during delamination growth (i.e. no crack kinking) [START_REF] Krueger | Virtual crack closure technique: History, approach, and applications[END_REF]. From the consideration of the relative normal and shear forces and displacements, contributions of mode I and mode II energy release rates as well as the mode mix are computed for both delamination fronts.

From the results of the FEM procedure the compliance and its difference quotients up to the second order are computed. Furthermore, the critical energy release rate and its difference quotient are evaluated at each delamination front. Based on these data growth of any delamination can be treated which is described by the considered range of a 1 and a 2 .

Capabilities of the proposed approach

Once the functions of the compliance and the mode mix are obtained, the further computational effort for the prediction of delamination growth is extremely low. The load required to propagate the delamination and the corresponding delamination growth (Δa 1 or Δa 2 ) are accessible. The latter leads to an increase in the delaminated area and a change in the compliance. For the new delamination size, again, the load required to propagate it and the change in a 1 or a 2 are computed. Repeating these considerations allows a pointwise description of the delamination growth process and the corresponding forcedisplacement curve.

In Fig. 2 generic force-displacement curves are shown that can be handled with the proposed approach. Curves a and b show stable delamination growth for force and displacement controlled loading, respectively. The corresponding load has to be increased monotonously in order to propagate the delamina-
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tion. Delamination growth is, therefore, entirely controlled by the applied load.

Curve c shows unstable equilibrium delamination growth. Once the growth load is reached the load required to propagate the delamination decreases as the delamination size increases, which characterizes a snap-back response.

Note that such non-monotonous loading conditions cannot be realized in structural tests, consequently curve c is only a "fictitious" force-displacement curve. Curve d shows the structural response for the same delamination but monotonously increasing force. Curve e shows the results for monotonously increasing displacement. Such loading conditions lead to a energy release rate that is greater than the critical energy release rate and dynamic effects take place during delamination growth. Dynamic effects are not considered in the present paper, indicated by the dashed lines.

As additional capability the critical load, force or displacement, of a structure containing a delamination of a certain size but unknown location can be estimated, allowing for a fast interpretation of the results from non-destructive testing. The load required to propagate a delamination of a certain size is evaluated for all possible locations of the delamination. The smallest load obtained is a conservative estimate of the critical load of the structure, the corresponding location is the most detrimental.

Example: L-shaped component

The application of the semi-analytical model is demonstrated in an example.

Delamination in an L-shaped laminated structure is analyzed. Input data for the fracture mechanics based part of the model is evaluated numerically, employing the FEM. Based on this data delamination growth and its stability are treated.

Details concerning the geometry of the structure are given in Fig. 3. The structure is built up by 15 plies of a unidirectional fiber reinforced carbon/epoxy material. The plies are oriented in alternating 0 • and 90 • orientation, where the angle is measured from the xy-plane. The inner and the outer ply are oriented in 0 • direction. The load (displacement or force) is prescribed in horizontal direction at the vertical leg of the structure. The displacements in xand y-direction are locked along the bottom of the horizontal leg. Ply material data and interface properties are taken from the literature [16], see Table 1.

The structure has a considerable length in z-direction, thus, generalized plane strain conditions are used. An FEM model of the structure, parameterised in a 1 and a 2 , is set up, using two dimensional solid continuum elements with linear shape functions and full integration. Each ply is represented by three elements over the ply thickness, all element aspects ratios are close to one.

Delamination of the interface between ply five and six is analyzed. This interface is chosen because it faces the highest normal traction in the flawless case and, therefore, is the one most critically loaded. The delaminations investigated are described by two parameters a 1 and a 2 . Ninety discrete values of each parameter in the range from 1.0 mm to 9.0 mm are considered. The incrementation of the parameters is equal to the length of 3 elements along the interface (about 0.1 mm). The length of delaminations described by the chosen parameters ranges from 0.5 mm to 12 mm. For each combination of a 1 and a 2 the parameterised FEM model is used to compute the compliance and the mode mix at each delamination front. In total 4700 combinations of a 1 and a 2 are analyzed within a fully automated procedure.

The compliance is shown in Fig. 4 as function of size and location of the delamination expressed in terms of a 1 and a 2 . Note that delaminations of the
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same length but different position lie on straight lines with a slope of minus one in the a 1 -a 2 plane. Similar plots can be given for the mode mix at each delamination front.

Based on the pointwise approximations of the compliance and the mode mix growth of any delamination which is described by a 1 and a 2 can be predicted.

Selected results for delaminations with an initial size of 0.6 mm and different initial positions are given in Fig. 5. It shows the incremental change in a 1 and a 2 due to delamination growth caused by a force load. Depending on the initial position of the delamination it starts growing either in direction a 1 or a 2 . As soon as a certain size is reached, simultanous growth in both directions takes place. Independent of the initial position all delaminations converge to the same final size and position.

The delamination growth stability for displacement controlled loading is shown in Fig. 6 as function of a 1 and a 2 . The figure shows that small delaminations will grow in an unstable manner while larger delaminations grow in a stable manner. Note that here "small" and "large" are used in a qualitative sense and refer to the size of the delamination compared to the entire range of delamination sizes considered. From Fig. 6 two delaminations are picked, one (a 1 = 5.3 mm, a 2 = 4.6 mm) that will grow in a stable manner and one (a 1 = 3.9 mm, a 2 = 3.8 mm) that will grow in an unstable manner. For these delaminations growth under displacement controlled loading is predicted and the corresponding force-displacement curves are shown in Fig. 7. The curves show linear elastic response until the load required to propagate the delamination is reached. Then the small delamination grows in an unstable manner while the large one grows stable. The difference of the initial slope of the force-displacement curves corresponds to the difference in the size of the delaminations.
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The delamination growth stability under force controlled loading is shown in Fig. 8. Comparison to displacement controlled loading (Fig. 6) shows that the range of delaminations that grow in a stable manner is smaller under force controlled loading. From Fig. 8, again, two delaminations are picked, one (a 1 = 5.5 mm, a 2 = 4.4 mm) that will grow in an unstable manner and one (a 1 = 3.6 mm, a 2 = 2.4 mm) that will grow in a stable manner. Force-displacement curves for force controlled loading are shown for both delaminations in Fig. 9.

Again the small delamination grows in an unstable manner, indicated by the dashed line. The large delamination grows in a stable manner and the entire growth process is controlled by the force applied.

In Fig. 10 a force-displacement behavior for non-monotonous loading is shown.

A structure containing a small initial delamination (a 1 = 2.4 mm, a 2 = 7.6 mm) is analyzed and a pronounced snap-back behavior is found. This structural response confirms the finding that small delaminations grow in an unstable manner, while large delaminations grow in a stable manner.

Finally, the most detrimental position of a delamination with respect to the load required to propagate it is analysed. In Fig. 11 the minimum load (force or displacement) required to propagate delaminations of different sizes is shown.

The figure points out that the larger the delamination is, the lower is the load required to propagate it. As example a delamination length of 2 mm is assessed and the load required to propagate it, if it lies in its most detrimental position, is predicted to be 0.215 mm or 14.2 N, respectively.

To highlight the advantage of the proposed semi-analytical model a comparison to FEM simulations, using the delamination propagation capability of the ABAQUS/VCCT tool is done. The same FEM model as set up before for the computation of the compliance and the mode mix is used. Growth of the large delamination discussed in Fig. 7 is simulated and, of course, the results are identical with those obtained from the semi-analytical model. However, unstable delamination growth and the stability of the delamination growth process can only be analysed with the proposed semi-analytical model.

Summary

A semi-analytical model for the simulation of delamination in laminated composite components is presented. The model is based on the Griffith crack growth criterion and is able to predict equilibrium delamination growth and its stability. Compliance and mode mix functions used in the analytical part of the model are evaluated numerically by means of a fully automated FEM procedure. Plane problems with concentrated loads (force or displacement) are considered. The proposed semi-analytical approach allows to predict delamination growth and the corresponding non-linear structural response, including snap-through and snap-back behavior. On the one hand, a systematic and general understanding of the influence of size and position of a delamination on the growth stability and the structural response is gained. On the other hand, growth of delaminations of specific size and location is fully contained in the results. The load required to propagate and the growth stability are predicted. Critical configurations where growth changes from stable to unstable, or vice versa, are determined. Furthermore, for each delamination size its most detrimental position, concerning the load required to propagate it, is determined. This allows for a conservative estimation of the critical load for a structure with a delamination of a certain size but unknown location. To conclude, the proposed semi-analytical approach provides deeper understanding on delamination growth and its stability. It can be applied to laminated
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structures as well as to other problems where the crack path is known.

As an example delamination in an L-shaped structure is analyzed. The results

show that small delaminations grow in an unstable manner while large delaminations grow in a stable manner. Equilibrium delamination growth is predicted for different delamination sizes. For small delaminations a pronounced snap-back behavior is found. Table 1 Material and interface data of carbon/epoxy UD-layer, T300/976, taken from [16] Elastic constants 
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2 Fig. 1 .

 21 Fig. 1. Delamination in a laminated composite component under generalized plane strain conditions, the delamination is entirely described by two parameters a 1 and a 2 .

Fig. 2 .Fig. 3 .

 23 Fig. 2. Generic examples for the force-displacement behavior caused by delamination growth; a) stable growth under force controlled loading; b) stable growth under displacement controlled loading; c) unstable growth under non-monotonous loading; d) and e) unstable growth under monotonous loading;

Fig. 4 .

 4 Fig. 4. Compliance of the laminated component as function of size and location of a delamination expressed in terms of a 1 and a 2 .

Fig. 5 .Fig. 6 .

 56 Fig. 5. Equilibrium delamination growth in the laminated component for different initial configurations; all converging to the same final configuration.

Fig. 7 .

 7 Fig. 7. Structural response of the laminated component under displacement controlled loading for two different sizes of initial delaminations as marked in Fig 6.

Fig. 8 .Fig. 9 .

 89 Fig. 8. Delamination growth stability in the laminated component under force controlled loading as function of size and location of the delamination; large delaminations grow in a stable manner while small delaminations grow in an unstable manner.

Fig. 10 .

 10 Fig. 10. Structural response of the laminated component under non-monotonous loading conditions for a delamination that grow in an unstable manner.

Fig. 11 .

 11 Fig. 11. Minimum load required to propagate a delamination of a certain size in its most detrimental position.
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