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In this work we present a new methodology to study the structure of the configuration spaces of hard combinatorial problems. It consists in building the network that has as nodes the locally optimal configurations and as edges the weighted oriented transitions between their basins of attraction. We apply the approach to the detection of communities in the optima networks produced by two different classes of instances of a hard combinatorial optimization problem: the quadratic assignment problem (QAP).

We provide evidence indicating that the two problem instance classes give rise to very different configuration spaces. For the so-called real-like class, the networks possess a clear modular structure, while the optima networks belonging to the class of random uniform instances are less well partitionable into clusters. This is convincingly supported by using several statistical tests. Finally, we shortly discuss the consequences of the findings for heuristically searching the corresponding problem spaces.

Introduction

In the last decade some researchers have proposed a network view of energy landscapes in chemical physics for small atomic clusters and macromolecules [START_REF] Scala | Small-world networks and the conformation space of a lattice polymer chain[END_REF][START_REF] Doye | The network topology of a potential energy landscape: a static scale-free network[END_REF][START_REF] Rao | The protein folding network[END_REF].

The idea is simple: if one can identify both the minima of these energy landscapes and the possible transitions between them, then one can build a graph in which the nodes are the minima and the transitions are represented by edges joining the corresponding minima [START_REF] Doye | The network topology of a potential energy landscape: a static scale-free network[END_REF]. The number of minima usually increases exponentially with system size but significant samples can be obtained either by experiment or, much more often, by sampling the landscape using molecular dynamics and Monte Carlo methods (see [START_REF] Wales | Energy Landscapes[END_REF] and references therein). Doye has called this graph the Inherent Structure Network; here we prefer to use the term Local Optima Network (LON).

Inspired by this approach, in our own work [START_REF] Tomassini | Complex-network analysis of combinatorial spaces: The NK landscape case[END_REF][START_REF] Vérel | Local optima networks of NK landscapes with neutrality[END_REF] we have applied similar ideas to the case of the configuration spaces of difficult combinatorial optimization problems.

Although the problems look superficially similar, hard combinatorial spaces pose additional challenges due to their discrete nature, e.g. no derivatives and gradient information is available. Moreover, the landscapes are rugged, may show frustration, i.e. not all local constraints can be satisfied together in order to improve the objective function value, and often contain neutrality which means that there are sizable regions where the objective function values are identical or very close to each other. The typical physical models that show most of these features are spin glasses [START_REF] Mézard | Spin Glass Theory and Beyond[END_REF] but the phenomenon is ubiquitous in combinatorial spaces of computationally hard problems [START_REF] Garey | Computers and Intractability[END_REF].

Assuming that the LON of the given combinatorial landscape is known, or at least a significant sample has been obtained, several questions are of great interest, both theoretical and practical. First and foremost, the distribution over the search space of the optima and their connectivity, as well as the associated basins of attraction and their sizes, are fundamental information that may help to understand the difficulty of the corresponding problem and may guide local search methods through the problem configuration space. Second, the number and strength of possible transitions between basins, and thus between optima, are also extremely important to gauge the stability of local optima configurations and the possibility of jumping out of a suboptimal configuration to reach a better one, or even the globally optimal one. Several other purely topological features of such a landscape representation are also very useful. For example, the mean path length between any local optimum to the global one contains information about the computational difficulty of the problem. The clustering coefficient of the optima network is also interesting as it gives information about the topological transitivity between related optima.

In the present study we focus on a particular fundamental characteristic of the optima networks using the Quadratic Assignement Problem (QAP), which is a typical member of the class of computationally hard problems [START_REF] Garey | Computers and Intractability[END_REF]. The feature we are interested in, is related to the way in which local optima are distributed in the configuration space. Then, several questions can be raised. Are they uniformly distributed as some theoretical analyses of fitness landscapes seem to assume for mathematical simplicity [START_REF] Garnier | Efficiency of local search with multiple local optima[END_REF], or do they cluster in some non-homogeneous way? If the latter, what is the relation between objective function values within and among different clusters and how easy is it to go from one cluster to another? Knowing even approximate answers to some of these questions would be very useful to further characterize the difficulty of a class of problems and also, potentially, to devise new search heuristics or variation to known heuristics that take advantage of this information.

There exist some measures that are used to characterize numerically distributions of landscape features such as average solution distance and average distance between optima, where the distance is seldom the usual Euclidean one but rather another kind of distance such as Hamming distance for problems defined on binary string configurations, or the distance between two permutations in a permutation space [START_REF] Talbi | Metaheuristics: From Design to Implementation[END_REF]. However, a purely topological vision may offer several advantages with respect to such "metric" approaches since in the former only information about the vertices of the graph and their connections is needed. In complex network theory language, the above corresponds to the detection of communities in the relevant LON networks. Community detection is a difficult task, but today several good approximate algorithms are available and the approach is feasible, especially for the small networks studied here [START_REF] Fortunato | Community detection in graphs[END_REF].

A similar investigation has been performed by Massen and Doye [START_REF] Massen | Identifying "communities" within energy landscapes[END_REF] for the graphs of energy landscapes of small atomic clusters and by Gfeller at al. for continuous free-energy landscapes in biomolecular studies [START_REF] Gfeller | Complex network analysis of freeenergy landscapes[END_REF].

The present study is structured as follows. In order to make the article sufficiently self-contained, we first briefly describe the QAP problem and introduce our concepts and methods to define and find the LONs. We next describe in detail the community search approach and we discuss the results obtained on two different classes of QAP problem instances and their significance. Finally, we give our conclusions.

The QAP Problem

The QAP deals with the relative location of units that interact with one another in some manner. The objective is to minimize the total cost of interactions. The problem can be stated in this way: there are n units or facilities to be assigned to n predefined locations, where each location can accommodate any one unit. Location i and location j are separated by a distance a ij , generically representing the per unit cost of interaction between the two locations. A flow of value b ij has to go from unit i to unit j; the objective is to find and assignment, i.e. a bijection from the set of facilities onto the set of locations, which minimizes the sum of products flow × distance.

This bijection can naturally be encoded as a permutation π and the problem of cost assignment minimization can mathematically be formulated as:

min π∈P (n) C(π) = n i=1 n j=1 a ij b πiπj (1) 
where C(π) is the cost function, A = {a ij } and B = {b ij } are the two n × n distance and flow matrixes, π i gives the location of facility i in permutation π ∈ Σ n , and Σ n is the set of all permutations of {1, 2, ..., n}, i.e. the QAP search space. The structures of the distance and flow matrices characterize the class of instances of the QAP problem.

Later in the article it is explained which are the classes of instances used in the present work.

Local Optima Networks

Given a fitness landscape for an instance of a combinatorial optimization problem like the QAP, we have to define the associated optima network by providing definitions for the nodes and the edges of the network. The vertexes of the graph can be straightforwardly defined as the local minima of the landscape. In this work, we select small QAP instances such that it is feasible to obtain the nodes of the graph exhaustively by running a best-improvement local search algorithm from every configuration of the search space as described below. Before explaining how the edges of the network are obtained, a number of relevant definitions are summarized.

A Fitness landscape [START_REF] Stadler | Fitness landscapes[END_REF] is a triplet (S, V, f ) where S is a set of potential solutions, i.e. a search space, V : S -→ 2 S , a neighborhood structure, is a function that assigns to every s ∈ S a set of neighbors V (s), and f : S -→ R is a fitness function, also called cost function or objective function, that can be pictured as the height of the corresponding solutions. In our study, a search space configuration s is a permutation π of the n facility locations, therefore the search space size is n!. The neighborhood of a configuration is defined by the pairwise exchange operation, which is the most basic operation used by many meta-heuristics for QAP. This operator simply exchanges any two positions in a permutation π, thus transforming it into another permutation. The neighborhood size is thus |V (s)| = n(n -1)/2. Finally, the fitness for this problem is defined by equation 1 as f (s) = -C(s).

The Best Improvement (BI) algorithm to determine the local optima and therefore define the basins of attraction starts from an arbitrary configuration s and systematically tries to improve the solution by looking at all neighbor solutions V (s), choosing the best one. It stops when no improvement is possible, i.e. when the current solution s * is a local optimum: ∀s ∈ V (s * ), f (s) < f (s * ).

The basin of attraction of a local optimum

i ∈ S is the set b i = {s ∈ S | BI(s) =
i}. The size of the basin of attraction of a local optimum i is the cardinality of b i . The basins of attraction as defined above produce a partition of the configuration space S.

Therefore, S = b 1 ∪ b 2 ∪ . . . ∪ b n and ∀i = j, b i ∩ b j = ∅.
We can now define the weight of an edge that connects two feasible solutions in the fitness landscape. For each pair of solutions s and s , p(s → s ) is the probability to go from s to s with the given neighborhood structure. For the search space of permutations of n elements, and the pairwise exchange operation, there are n(n -1)/2 neighbors for each solution, therefore:

if s ∈ V (s) , p(s → s ) = 1 n(n-1)/2 and if s ∈ V (s) , p(s → s ) = 0.
The probability of going from a solution s ∈ S to a solution belonging to the basin b j , is defined as:

p(s → b j ) = s ∈bj p(s → s ).
Notice that p(s → b j ) ≤ 1. Thus, the total probability of going from basin b i to basin b j is the average over all s ∈ b i of the transition probabilities to solutions s ∈ b j : According to our definition of edge weights, w ij = p(b i → b j ) may be different than

p(b i → b j ) = 1 |b i | s∈bi p(s → b j ),
w ji = p(b j → b i ).
Thus, two weights are needed in general, and we have an oriented transition graph.

Structure of the QAP LONs

Problem Instance Generation

In order to perform a statistical analysis, several problem instances of at least two different problem classes have to be considered. To this purpose, the two instance generators proposed by Knowles and Corne [START_REF] Knowles | Instance generators and test suites for the multiobjective quadratic assignment problem[END_REF] for the multi-objective QAP have been adapted and used here for the single-objective QAP. The first generator produces uniformly random instances where all flows and distances are integers sampled from uniform distributions. This leads to the kind of problem known in literature as Tainna, being nn the problem dimension [START_REF] Taillard | Comparison of iterative searches for the quadratic assignment problem[END_REF]. Distance matrix entries are, in both cases, the Euclidean distances between points in the plane. The second generator permits to obtain flow entries that are non-uniform random values. This procedure, detailed in [START_REF] Knowles | Instance generators and test suites for the multiobjective quadratic assignment problem[END_REF] produces random instances of type Tainnb which have the so called "real-like" structure since they resemble to the structure of QAP problems found in practical applications. For a general network analysis, 30 random uniform and 30 random real-like instances have been generated for each problem dimension in {5, ..., 10}. To the specific purpose of community detection, 200 additional instances have been produced and analyzed with size 9 for the random uniform class, and size 11 for the real-like instances class. Problem size 11 is the largest one for which an exhaustive sample of the configuration space is computationally feasible. Beyond that, sampling must be used.

However, in this work we prefer to stick with exact results in order to give as accurate as possible answers to the minima clustering problem posed at the beginning.

Network Analysis

The results of the statistical analysis of the above QAP landscapes, up to size 10, appear in [START_REF] Daolio | Local optima networks of the quadratic assignment problem[END_REF] to which the reader is referred for further information. In that work it is shown that LONs for the QAP are dense, as one can see from Tables 1 and2 which give, respectively, the mean number of vertices and the mean number of edges for the two classes of instances and for instance sizes going from 5 to 10. ). This is inconvenient for community analysis as it is difficult for any cluster detection algorithm to split-up the networks into separate communities when the graphs are so dense. However, looking at Fig. 1 which gives the average values of the transition probabilities to stay in the same basin and to jump to another basin, it is apparent that most of the probability distribution is placed in p(i → i), i.e. it is more likely for a solution to stay in the same basin rather than to jump to a neighboring one for both instance classes. When a local stochastic heuristic is used to search the landscape, only transitions to another basin that have higher probability of occurring are important. Ac-tually, a search heuristic like simulated annealing also accepts moves that worsen the objective function with low probability, but the acceptance rate decays quickly as the temperature is lowered and, in the end, only the most likely transitions play a role. In fact, the important role that "weak ties" may have in a social network context [START_REF] Granovetter | The strength of weak ties[END_REF] is almost absent in combinatorial landscapes where the more probable search paths are associated with the highest transition probabilities when these landscapes are searched with a local stochastic heuristic. These considerations give us a clue as to how to filter out the network edges in such a way that only the more likely transitions are kept and, as a consequence, the graph becomes much less dense and gives a coarser but clearer view of the fitness landscape backbone. Such a network can be used for community analysis. On the other hand, it is also possible to keep the original dense weighted directed networks and to use a specialized community detection algorithm that was originally designed to work in such cases, which is called the Markov Clustering Algorithm (MCL) [START_REF] Enright | An efficient algorithm for large-scale detection of protein families[END_REF]. We first explain our filtering procedure in the following and then we will compare the results with those obtained through the MCL algorithm. Nevertheless, we point out that, even in the MCL case, the algorithm itself does some preprocessing of the network weights.

The filtering procedure is very simple. First, we transform the weighted directed graph G into a weighted undirected one G u by taking each pair of edges ij and ji and replacing them with a single undirected link ij whose weight is the average:

w ij = w ij + w ji 2 .
Indeed, the values of w ij and w ji are different in general and thus taking a single edge is an approximation. However, a local heuristic walking the landscape would still be able to traverse a link in both directions, whereas filtering the directed edges could cause some transitions to disappear. Now, on G u we establish a probability threshold Π for the weights w ij associated to each edge in G u = (S * , E) and suppress all edges that have w ij smaller than the value marking the Π-quantile in the weights distribution. We call the resulting network G u = (S * , E ); it has the same number of vertices as G u and a number of edges

|E | ≤ |E|.
The following Figures 2 and3 show an example of the results of such a filtering process, starting from the LON of a particular instance and for four values of the threshold Π. How to choose the threshold Π is essentially a matter of trial and error. Too low a value does not allow a crisp picture of the network to emerge; but if Π is too high the network finally falls apart into separated components as in Fig. 3 which is not acceptable since, by definition of fitness landscape, the whole graph must be connected.

Likewise, if some node becomes isolated during filtering, it cannot be simply removed since it could, at least in principle, be the configuration corresponding to the global optimum. Thus, each analyzed network has been filtered up to the maximum value of Π that still preserves its connectivity.

Communities of Optima in LONs

Communities or clusters in networks can be loosely defined as being groups of nodes that are strongly connected between them and poorly connected with the rest of the graph. Several methods have been proposed to uncover the clusters present in a network (for an excellent recent review see [START_REF] Fortunato | Community detection in graphs[END_REF]). Community detection belongs to the class of graph partitioning problems, which are hard in the sense that there is no known algorithm bounded by a polynomial function of the size of the input to exactly solve the problem [START_REF] Garey | Computers and Intractability[END_REF]. Community detection has the added difficulty that there is not a single accepted rigorous measure of a cluster or a partition of the nodes of a given graph into meaningful clusters. One commonly used measure is Modularity. The modularity Q of a partition has been defined as a merit function measuring the fraction of within community edges minus the expected value of such fraction for a randomized network with the same vertex degree distribution [START_REF] Newman | Finding and evaluating community structure in networks[END_REF].

Several heuristics have been proposed [START_REF] Fortunato | Community detection in graphs[END_REF]; after a preliminary analysis, we have chosen two of them: Clauset et al's. method based on greedy modularity optimization [START_REF] Clauset | Finding community structure in very large networks[END_REF], and Reichardt's and Bornholdt's spin glass ground state-based algorithm [START_REF] Reichardt | Statistical mechanics of community detection[END_REF] 1 .

Both methods gave consistent results on our networks and, in addition, they also work with undirected weighted networks which was required in our case. The reason for using two methods is that we can assess statistical significance independent of the algorithm and we can double check the community partition results.

For the sake of the community analysis we shall use only the results on newly generated problems of size 11 for the real-like instances and of size 9 for the uniform random ones. This is suggested by the consideration that the LONs for these two cases have comparable sizes in terms of number of vertices and can still be obtained exactly by an exhaustive search. The resulting networks are still relatively small: the average size is 60 for real-like instances and 127 for random uniform ones but already sufficient for a meaningful cluster analysis. For example, they have sizes larger than the famous "Zachary's Karate Club Network" [START_REF] Zachary | An information flow model for conflict and fission in small groups[END_REF], which has 34 nodes and is routinely mentioned as a standard benchmark in community detection work [START_REF] Fortunato | Community detection in graphs[END_REF].

Before examining the actual community structures found, we present the results of some tests in order to evaluate the statistical significance of the clustering in terms of modularity.

In general, the higher the value of Q of a partition, the crisper the community structure. Figure 4 is a plot of the modularity score Q distribution empirically determined from the data for each algorithm/problem class pair. The boxes "hinges" represent the 25, 50 (thick lines), and 75% quantiles. The plot indicates that the two problem classes are well separated in terms of Q, and that the community detection algorithm does not seem to have any influence on such a result. To further show that these results are statistically significant, we have performed a permutation test [START_REF] Manly | Randomization, bootstrap and Monte Carlo methods in biology[END_REF] for a factorial ANOVA design, modeling the modularity scores as a response variable to the problem class and algorithm choice. The p-values thus obtained are 2 × 10 -4 , 0.179, and 0.6414 for the factor "problem class", factor "algorithm", and the interaction between the two, respectively. Only the first one is below the significativity threshold of 0.05.

It is thus safe to conclude that the data show no significant effect of the community detection method used on the variability observed in modularity score, while the problem class only seems to explain that variability: real-like instances can be clustered in more modular partitionings than random uniform ones. However, modularity scores alone can be misleading. This has been shown by Guimerà et al. in [27] where they pointed out that many random networks with no clear community structure may nevertheless have rather high values of Q due to statistical fluctuations. Thus, to test for the statistical significance of Q we used a Monte Carlo procedure in which a randomized version of the data is produced. For each problem instance, 1000 random networks have been generated using Viger's and Latapy's algorithm [START_REF] Viger | Efficient and simple generation of random simple connected graphs with prescribed degree sequence[END_REF], i.e. starting with the original graph's degree sequence and rewiring the links randomly without altering the sequence. Next, both community detection algorithms have been applied to each generated network to obtain the modularities Q of their partitions. Finally, a p-value has been computed by comparing the expected value of Q from the randomized networks with the Q measured for the actual original net-work. Among the 200 considered real-like instances, those p-values are not significant in 14 and 22 cases when using the two community finding algorithms. Among the 200 random uniform instances, the non-significant cases are 16 and 36, respectively. These figures are slightly higher than "5-out-of-100" ratio one could expect from the significance threshold, but not by a margin high enough to invalidate the results of the whole analysis. In conclusion, a separation between the two problem classes, with respect to minima clustering in the search space, has been significatively highlighted.

Once the significance of a community structure has been assessed, in order to have an insight into its strength, one can also measure for each instance how distant the obtained modularity score is from the expected value estimated on the respective null model. Networks observed in nature and society present a modularity structure not only significantly different but markedly higher than random networks [START_REF] Guimerà | Classes of complex networks defined by role-to-role connectivity profiles[END_REF]. In this respect, Figures 5 and6 depict for each instance the difference in number of standard deviations (with respect to the 0 horizontal line) between the measured modularity scores and the expected ones for the null model (a population of 1000 randomized networks having the same degree sequence, as explained above). It is worth stressing that the absolute value of such a distance depends on the variability observed within the null models.

Nonetheless, there is difference between the two problem classes, with real-like ones displaying a stronger and more instance-dependent community structure than random uniform ones, disregarding the algorithm chosen to discover such a structure.

To end this section, we now briefly present the results obtained through the use of the MCL algorithm, as explained in sect. 4.2. In Fig. 7 we report the modularity scores for the two algorithms we used on the weighted undirected filtered networks (greedy modularity optimization and spin-glass model), and for MCL on the complete weighted and directed LONs.

To be able to compare modularity scores in a consistent way, we took each algorithm's best found community subdivision and we computed the weighted variant of its Q value on the original unfiltered networks. From the figure, we observe that the results are qualitatively the same, i.e. real-like instances give rise to optima networks with a more modular structure than uniform ones, even if MCL's results have higher Weighted Modularity Q variance and for uniform instances sometimes no community is found at all. Indeed, MCL faces very dense networks and, to get useful results, the algorithm rescales link weight values in a preprocessing phase. In the end, we feel that both methods give comparable results but filtering out the networks and then searching for clusters gives rise to more stable partitions.

Discussion

From all the previous statistical tests it is apparent that real-like instances have significantly more cluster structure than the class of random uniform instances of the QAP problem. This can be appreciated visually by looking at Figs. 8 and9 where the community structures of the LON of two particular instances are depicted. Although these are the two particular cases with the highest Q values of their respective classes, the trends observed are general. Fig. 8 shows the minima community structure of an instance of the real-like class.

One can see that groups of minima are rather recognizable and form well separated clusters (encircled with dotted lines), which is also reflected in the high corresponding modularity value Q = 0.79. Contrastingly, Fig. 9 represents a case drawn from the class of random uniform instances. The network has communities, with a Q = 0.53, although they are hard to represent graphically, and thus are not shown in the picture.

In the figures, the diameter of the nodes is drawn proportional to the size of the corresponding basin of attraction in the fitness landscape. As for the fitness values, the lower (better) the value, the darker the node is. In [START_REF] Daolio | Local optima networks of the quadratic assignment problem[END_REF] it was found that there is a positive correlation between fitness values and the corresponding basin size, especially for the random uniform problem instances. This effect is qualitatively easy to spot on the figures. The results of this community study, together with [START_REF] Daolio | Local optima networks of the quadratic assignment problem[END_REF], sheds light on an open problem in the structure of difficult combinatorial landscapes. The basin sizes of these problems have been often taken either constant or uniformly distributed at random for mathematical reasons of simplicity [START_REF] Garnier | Efficiency of local search with multiple local optima[END_REF]. However, this is far from being the case for the QAP problem [START_REF] Daolio | Local optima networks of the quadratic assignment problem[END_REF] and the NK landscapes [START_REF] Kauffman | The Origins of Order[END_REF][START_REF] Tomassini | Complex-network analysis of combinatorial spaces: The NK landscape case[END_REF] at least. While this conclusion cannot be generalized easily, it could also hold for other families of difficult combinatorial problems based, as the QAP, on permutation neighborhood such as the Traveling Salesman Problem (TSP) for example.

From the point of view of the clustering of solutions in the problem fitness landscapes, it has been conjectured that QAP landscapes fall essentially into two classes: non-structured, with local optima randomly scattered through the search space, and "massif central", with the optima clustered into few localized regions [START_REF] Merz | Advanced fitness landscape analysis and the performance of memetic algorithms[END_REF]. The suggestion was based on sampling the fitness landscapes with random walks and measuring entropy and mean distances among local optima. Our community analysis supports and goes beyond this intuition providing a richer and fitness-independent global view of the full mesoscopic structure of the solutions network.

To complement the previous purely topological view, it is useful to investigate the correlation of fitness values between neighboring vertices in the unfiltered LONs. assortative with respect to fitness in the real-like case and slightly so in the uniform case. Indeed, regression lines show that the correlation is positive in both cases but it is higher in the real-like one, which also has a lower variance. Although we show results for two particular networks here, we have computed averages over all networks and the trend is the same: in the unfiltered case we get a Spearman correlation coefficient r = 0.7677 for the real-like instance class and r = 0.3992 for the uniform one.

The regression-line slopes are, respectively, 0.249 and only 0.055. Interestingly, for the filtered backbone networks, fitness becomes disassortative for uniform instances (r = -0.3459) whereas it is still assortative for the real-like case (r = 0.2286) . Although it is outside the scope of the present study, we should like to mention that the above results may have deep consequences on the heuristics used to search combinatorial spaces such as those described here. For example, in the case of random uniform instances, the landscape has little structure with a small range of fitness values, so that a standard local search heuristic such as best improvement or first improvement will quickly find a satisfactory solution. In contrast, in the landscapes generated by real-like instances, there will be almost separated groups of minima and thus a parallelsearch heuristic that simultaneously explores several regions of the search space, or a restart strategy like iterated local search, could be more effective. Also, in this case the use of a non-local move operator would perhaps be beneficial.

Summary and Conclusions

In this work, we have presented a new methodology to study the structure of the configuration spaces of hard combinatorial problems. It essentially consists in building the network which has as nodes the locally optimal configurations and as edges the weighted oriented transitions between optima. In particular, here we applied the approach to the detection of communities in the optima networks produced by two different classes of instances of the QAP, which is a hard combinatorial optimization problem. We provided evidence for the fact that the two problem instance classes give rise to very different configuration spaces and thus their optima networks are also distinct. These results are consistent for both the filtered and unfiltered networks analyzed.

For the so-called real-like class of instances the networks possess a clear modular structure, while the optima networks belonging to the class of random uniform instances are less well partitionable into clusters. This has been convincingly supported by using several statistical tests.

The purely topological view of the distribution of local optima in the two problem instances classes, was complemented by a study indicating a higher correlation between the fitness values of neighboring vertices in the real-like case. The consequences for heuristically searching the corresponding problem spaces are at least twofold. First, in the case of random uniform configuration spaces a simple local heuristic search, such as hill-climbing, should be sufficient to quickly find satisfactory solutions since they are homogeneously distributed. In contrast, in the real-like case they are much more clustered in regions of the search space. This leads to more modular optima networks and using multiple parallel searches would probably be a good strategy. These ideas clearly deserve further investigation. Also, in this paper we have used exhaustive search of the configuration spaces in order to build the LONs. This is adequate but it can be done only for relatively small instances, as the space size increases super-exponentially. Thus, our next step will be to develop efficient sampling techniques for larger problem sizes.

  where |b i | is the size of the basin b i . Now we can define a Local Optima Network (LON) as being the graph G = (S * , E) where the set of vertices S * contains all the local optima, and there is an edge e ij ∈ E with weight w ij = p(b i → b j ) between two nodes i and j iff p(b i → b j ) > 0. Notice that since each maximum has its associated basin, G also describes the interconnection of basins.

Figure 1 :

 1 Figure 1: Average weights w ii for self-loops (circular points) and w ij for out-going links (triangular points). Left image: real-like instances. Right image: uniform instances. Bars depict 95% confidence intervals on the means (standard errors). Averages from 30 independent and randomly generated instances are shown.

Figure 2 :

 2 Figure 2: Left image, edge pruning threshold Π = 0.50, right image Π = 0.75.

Figure 3 :

 3 Figure 3: Left image, Threshold Π = 0.91, right image Π = 0.95; in this case the graph becomes disconnected.

Figure 4 :

 4 Figure 4: Boxplots of the modularity score Q on the y-axis with respect to class problem (rl stands for real-like and uni stands for random uniform) and community detection algorithm (1 stands for fast greedy modularity optimization and 2 stands for spin glass search algorithm).

Figure 5 :

 5 Figure 5: Modularity Q for the best clustering into communities by means of greedy optimization algorithm.For each instance (x-axis: 200 real-like ones on the left, 200 random uniform ones on the right), Q is plotted in number of standard deviations (y-axis) away from the average of 1000 randomised networks with the same degree sequence.

Figure 6 :

 6 Figure 6: Modularity Q for the best clustering into communities by means of spin glass model algorithm. For each instance (x-axis: 200 real-like ones on the left, 200 random uniform ones on the right), Q is plotted in number of standard deviations (y-axis) away from the average of 1000 randomised networks with the same degree sequence.

Figure 7 :

 7 Figure 7: Weighted modularity scores Q for the best community clusterings found by the greedy optimization algorithm (left), by the spin-glass ground-state algorithm (center), and by the MCL algorithm (right). The first two are applied to the filtered and undirected but weighted graphs, whereas MCL applies to the original unfiltered weighted and directed ones.

Figure 8 :

 8 Figure 8: Community structure of the LON of a real-like instance. The cluster partition found is highlighted. Node sizes are proportional to the corresponding basin size. Darker colors mean better fitness (lower).

Figure 9 :

 9 Figure 9: Cluster structure of the LON of a random uniform instance. Clusters are less well separated (see text) and cannot be clearly highlighted. Node sizes are proportional to the corresponding basin size. Darker colors mean better fitness.

  Figure 10 shows scatterplots of the correlation between the fitness of a given node and the average fitness of its first neighbors in the graph. The plots correspond to the two particular cases shown in Figs. 8 and Fig. 9. It is apparent that the network is definitely

Fitness

  of the local optimum Weighted average of neighbors' fitness

Figure 10 :

 10 Figure 10: Scatterplots and regression lines of the mean fitness of the nearest neighbors of a vertex having fitness f . Left image: real-like instance corresponding to Fig. 8. Right image: uniform instance corresponding to Fig. 9. Mean neighbor fitness is weighted with the transition probabilities of the corresponding outgoing links.

Table 1 :

 1 Average values of the number of vertices for each instance size.

		5	6	7	8	9	10
	real-like	1.667	2.767	3.900	6.133	12.567	25.700
	uniform	3.333	6.800 19.100 51.300 137.300 414.133

Table 2 :

 2 Average value of the number of edges for each instance size.

	5	6	7	8	9	10
	real-like 3.400	9.433	19.900	46.0667	187.433	818.700
	uniform 12.600 50.733 399.767 2798.233 19225.370 169118.800

Table 3

 3 shows that the LONs of both the uniform and real-like instances up to size 10 are complete or almost complete since |E| = O(|V | 2

Table 3 :

 3 Average of the ratio of the number of edges to squared number of vertices

					5	6	7	8		9	10	
			real-like 1.000 0.993 0.994 0.999 0.992 0.988	
			uniform 0.998 0.993 0.969 0.940 0.9087 0.874	
		1.0						1.0				
						Wii						Wii
						Wij						Wij
	Average Transition Probability	0.2 0.4 0.6 0.8					Average Transition Probability	0.2 0.4 0.6 0.8				
		0.0						0.0				
		5	6	7	8	9	10	5	6	7	8	9	10
				Problem Dimension					Problem Dimension	

For the actual computations and data treatment, the "igraph" complex network analysis package[START_REF] Csárdi | The igraph software package for complex network research[END_REF],along with the R statistical environment[START_REF] Ihaka | R: A language for data analysis and graphics[END_REF], has been used.
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