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Abstract. In this paper, we conduct a fitness landscape analysis for
multiobjective combinatorial optimization, based on the local optima
of multiobjective NK-landscapes with objective correlation. In single-
objective optimization, it has become clear that local optima have a
strong impact on the performance of metaheuristics. Here, we propose
an extension to the multiobjective case, based on the Pareto dominance.
We study the co-influence of the problem dimension, the degree of non-
linearity, the number of objectives and the correlation degree between
objective functions on the number of Pareto local optima.

1 Motivations

The aim of fitness landscape analysis is to understand the properties of a given
combinatorial optimization problem in order to design efficient search algo-
rithms. One of the main feature is related to the number of local optima, to
their distribution over the search space and to the shape of their basins of at-
traction. For instance, in single-objective optimization, it has been shown that
local optima tend to be clustered in a ‘central massif’ for numerous combina-
torial problems, such as the family of NK-landscapes [1]. A lot of methods are
designed to ‘escape’ from such local optima. However, very little is known in
the frame of multiobjective combinatorial optimization (MoCO), where one of
the most challenging question relies on the identification of the set of Pareto
optimal solutions. A Pareto Local Optima (PLO) [2] is a solution that is not
dominated by any of its neighbors. The description of PLO is one of the first
fundamental step towards the description of the structural properties of a MoCO
problem. Surprisingly, up to now, there is a lack of study on the number and on
the distribution of PLO in MoCO.

Like in single-objective optimization, the PLO-related properties clearly have
a strong impact on the landscape of the problem, and then on the efficiency of
search algorithms. In particular, local search algorithms are designed in order to
take them into account. For instance, the family of Pareto Local Search (PLS) [2]
iteratively improves a set of solutions with respect to a given neighborhood



operator and to the Pareto dominance relation. The aim of PLS, like a number
of other search algorithms, is to find a set of mutually non-dominated PLO.
PLS has been proved to terminate on such a set, called a Pareto local optimum

set [2]. Notice that a Pareto optimal solution is a PLO, and that the whole
set of Pareto optimal solutions is a Pareto local optimum set. The behavior of
multiobjective algorithms clearly depends on the properties related to the PLO.
First, a Pareto local optimum set is always a subset of the whole set of PLO.
Second, the dynamics of a PLS-like algorithm depends of the number of PLO
found along the search process. The probability to improve an approximation
set that contains a majority of PLO should be smaller than the probability to
improve an approximation set with few PLO.

There exists a small amount of literature related to fitness landscape for
MoCO. Borges and Hansen [3] study the distribution of local optima, in terms
of scalarized functions, for the multiobjective traveling salesman problem (TSP).
Another analysis of neighborhood-related properties for biobjective TSP in-
stances of different structures is given in [4]. Knowles and Corne [5] lead a land-
scape analysis on the multiobjective quadratic assignment problem with a rough
objective correlation. Next, the transposition of standard tools from fitness land-
scape analysis to MoCO are discussed by Garrett [6], and an experimental study
is conducted with fitness distance correlation. But this measure requires the true
Pareto optimal set to be known. In another study, the landscape of a MoCO
problem is regarded as a neutral landscape, and divided into different fronts
with the same dominance rank [7]. In such a case, a small search space needs to
be enumerated. In previous works on multiobjective NK-landscapes by Aguirre
and Tanaka [8], small enumerable fitness landscapes are studied according to the
number of fronts, the number of solutions on each front, the probability to pass
from one front to another, and the hypervolume of the Pareto front. However,
the study of fronts simply allows to analyze small search spaces, and from the
point of view of dominance rank only.

In this work, our attempt is to analyze the structure of large search space
using the central notion of local optimum. For the design of a local search
algorithm for MoCO, the following questions are under study in this paper:
(i) What is the number of PLO in the whole search space? (ii) Is the number of
PLO related to the number of Pareto optimal solutions? In particular we want
to study such properties according to the correlation degree between objective
functions. In order to study the problem structure, and in particular the PLO,
we use the multiobjective NK-landscapes with objective correlation, ρMNK-

landscapes for short, recently proposed in [9]. The contributions of this work can
be summarized as follows. First, we show the co-influence of objective correla-
tion, objective space dimension and epistasis on the number of PLO. Next, we
propose a method based on the length of a Pareto adaptive walk to estimate
this number. At last, we study the number of PLO for large-size instances.

The paper is organized as follows. Section 2 deals with MoCO and local
search algorithms. Section 3 is devoted to the definition of multiobjective NK-
landscapes with objective correlation. In Section 4, we study the number of PLO



for enumerable instances and we propose a method to estimate it. Moreover,
we analyze the correlation between the number of PLO and Pareto optimal
solutions. In Section 5, the co-influence of objective space dimension, objective
correlation and epistasis is studied for the PLO of large-size instances. The last
section concludes the paper.

2 Local Search for Multiobjective Combinatorial

Optimization

2.1 Multiobjective Combinatorial Optimization

A multiobjective combinatorial optimization (MoCO) problem can be defined
by a set of M ≥ 2 objective functions (f1, f2, . . . , fM ), and a (discrete) set X

of feasible solutions in the decision space. Let Z = f(X) ⊆ IRM be the set of
feasible outcome vectors in the objective space. In a maximization context, a
solution x′ ∈ X is dominated by a solution x ∈ X , denoted by x′ ≺ x, iff ∀i ∈
{1, 2, . . . ,M}, fi(x′) ≤ fi(x) and ∃j ∈ {1, 2, . . . ,M} such that fj(x

′) < fj(x).
A solution x ∈ X is said to be Pareto optimal (or efficient, non-dominated), if
there does not exist any other solution x′ ∈ X such that x′ dominates x. The set
of all Pareto optimal solutions is called the Pareto optimal set (or the efficient

set), denoted by XE , and its mapping in the objective space is called the Pareto
front. A possible approach in MoCO is to identify the minimal complete Pareto
optimal set, i.e. one solution mapping to each point of the Pareto front. However,
the overall goal is often to identify a good Pareto set approximation. To this
end, metaheuristics in general, and evolutionary algorithms in particular, have
received a growing interest since the late eighties. Multiobjective metaheuristics
still constitute an active research area [10].

2.2 Local Search

A neighborhood structure is a function N : X → 2X that assigns a set of solutions
N (x) ⊂ X to any solution x ∈ X . The set N (x) is called the neighborhood of x,
and a solution x′ ∈ N (x) is called a neighbor of x. In single-objective combina-
torial optimization, a fitness landscape can be defined by the triplet (X,N , h),
where h : X −→ IR represents the fitness function, that can be pictured as the
height of the corresponding solutions. Each peak of the landscape corresponds
to a local optimum. In a single-objective maximization context, a local optimum

is a solution x⋆ such that ∀x ∈ N (x⋆), f(x) ≤ f(x⋆). The ability of local search
algorithms has been shown to be related to the number of local optima for the
problem under study, and to their distribution over the landscapes [11].

In MoCO, given that Pareto optimal solutions are to be found, the notion of
local optimum has to be defined in terms of Pareto optimality. Let us define the
concepts of Pareto local optimum and of Pareto local optimum set. For more de-
tails, refer to [2]. A solution x ∈ X is a Pareto local optimum (PLO) with respect
to a neighborhood structure N if there does not exist any neighboring solution



x′ ∈ N (x) such that x ≺ x′. A Pareto local optimum set XPLO ∈ X with respect
to a neighborhood structure N is a set of mutually non-dominated solutions such
that ∀x ∈ XPLO, there does not exist any solution x′ ∈ N (XPLO) such that
x ≺ x′. In other words, a locally Pareto optimal set cannot be improved, in terms
of Pareto optimality, by adding solutions from its neighborhood.

Recently, local search algorithms have been successfully applied to MoCO
problems. Such methods seem to take advantage of some properties of the land-
scape in order to explore the search space in an effective way. Two main classes of
local search for MoCO can be distinguished. The first ones, known as scalar ap-

proaches, are based on multiple scalarized aggregations of the objective functions.
The second ones, known as Pareto-based approaches, directly or indirectly focus
the search on the Pareto dominance relation (or a slight modification of it). One
of them is the Pareto Local Search (PLS) [2]. It combines the use of a neighbor-
hood structure with the management of an archive (or population) of mutually
non-dominated solutions found so far. The basic idea is to iteratively improve
this archive by exploring the neighborhood of its own content until no further
improvement is possible, i.e. the archive falls in a Pareto local optimum set [2].

3 ρMNK-Landscapes: Multiobjective NK-Landscapes

with Objective Correlation

In single-objective optimization, the family of NK-landscapes constitutes an
interesting model to study the influence of non-linearity on the number of lo-
cal optima. In this section, we present the ρMNK-landscapes proposed in [9].
They are based on the MNK-landscapes [8]. In this multiobjective model, the
correlation between objective functions can be precisely tuned by a correlation
parameter value.

3.1 NK- and MNK-Landscapes

The family of NK-landscapes [1] is a problem-independent model used for con-
structing multimodal landscapes. N refers to the number of (binary) genes in
the genotype (i.e. the string length) and K to the number of genes that influ-
ence a particular gene from the string (the epistatic interactions). By increasing
the value of K from 0 to (N − 1), NK-landscapes can be gradually tuned from
smooth to rugged. The fitness function (to be maximized) of a NK-landscape
fNK : {0, 1}N → [0, 1) is defined on binary strings of size N . An ‘atom’ with
fixed epistasis level is represented by a fitness component fi : {0, 1}K+1 → [0, 1)
associated to each bit i ∈ N . Its value depends on the allele at bit i and also
on the alleles at K other epistatic positions (K must fall between 0 and N − 1).
The fitness fNK(x) of a solution x ∈ {0, 1}N corresponds to the mean value

of its N fitness components fi: fNK(x) = 1

N

∑N

i=1
fi(xi, xi1 , . . . , xiK ), where

{i1, . . . , iK} ⊂ {1, . . . , i − 1, i + 1, . . . , N}. In this work, we set the K bits ran-
domly on the bit string of size N . Each fitness component fi is specified by
extension, i.e. a number yixi,xi1

,...,xiK
from [0, 1) is associated with each element



(xi, xi1 , . . . , xiK ) from {0, 1}K+1. Those numbers are uniformly distributed in
the range [0, 1).

More recently, a multiobjective variant of NK-landscapes (namely MNK-
landscapes) [8] has been defined with a set of M fitness functions:

∀m ∈ [1,M ], fNKm
(x) =

1

N

N∑

i=1

fm,i(xi, xim,1
, . . . , xim,Km

)

The numbers of epistasis links Km can theoretically be different for each fitness
function. But in practice, the same epistasis degree Km = K for all m ∈ [1,M ]
is used. Each fitness component fm,i is specified by extension with the numbers
ym,i
xi,xim,1

,...,xim,Km

. In the original MNK-landscapes [8], these numbers are ran-

domly and independently drawn from [0, 1). As a consequence, it is very unlikely
that two different solutions map to the same point in the objective space.

3.2 ρMNK-Landscapes

In [9], CMNK-landscapes have been proposed. The epistasis structure is iden-
tical for all the objectives: ∀m ∈ [1,M ], Km = K and ∀m ∈ [1,M ], ∀j ∈ [1,K],
im,j = ij . The fitness components are not defined independently. The num-
bers (y1,ixi,xi1

,...,xiK
, . . . , yM,i

xi,xi1
,...,xiK

) follow a multivariate uniform law of dimen-

sion M , defined by a correlation matrix C. Thus, the y’s follow a multidimen-
sional law with uniform marginals and the correlations between ym,i

... s are defined
by the matrix C. So, the four parameters of the family of CMNK-landscapes
are (i) the number of objective functions M , (ii) the length of the bit string N ,
(iii) the number of epistatic links K, and (iv) the correlation matrix C.

In the ρMNK-landscapes, a matrix Cρ = (cnp) is considered, with the same
correlation between all the objectives: cnn = 1 for all n, and cnp = ρ for all
n 6= p. However, it is not possible to have the matrix Cρ for all ρ between
[−1, 1]: ρ must be greater than −1

M−1
, see [9]. To generate random variables with

uniform marginals and a specified correlation matrix C, we follow the work
of Hotelling and Pabst [12]. The construction of CMNK-landscapes defines
correlation between the y’s but not directly between the objectives. In [9], it is
proven by algebra that the correlation between objectives is tuned by the matrix
C: E(cor(fn, fp)) = cnp. In ρMNK-landscape, the parameter ρ allows to tune
very precisely the correlation between all pairs of objectives.

4 Study of Pareto Local Optima

In this section, we first study the number of Pareto local optima (PLO) accord-
ing to the objective correlation, the number of objectives and the epistasis of
ρMNK-landscapes. Then, we analyze its relation with the size of the Pareto
optimal set. At last, we propose an adaptive walk that is able to estimate the
number of PLO very precisely. We conduct an empirical study for N = 18 so that
we can enumerate all the PLO exhaustively. In order to minimize the influence of



Table 1. Parameters used in the paper for the experimental analysis.

Parameter Values

N {18} (Section 4) , {18, 32, 64, 128} (Section 5)
M {2, 3, 5}
K {2, 4, 6, 8, 10}
ρ {−0.9,−0.7,−0.4,−0.2, 0.0, 0.2, 0.4, 0.7, 0.9} such that ρ ≥ −1

M−1

the random creation of landscapes, we considered 30 different and independent
instances for each parameter combinations: ρ, M , and K. The measures reported
are the average over these 30 landscapes. The parameters under investigation in
this study are given in Table 1.

4.1 Number of Pareto Local Optima

Fig. 1 shows the average number of PLO to the size of the search space (|X | =
218) for different ρMNK-landscapes parameter settings. As the well-known result
from single-objective NK-landscapes [1], the number of PLO increases with the
epistasis degree. For instance, with an objective space dimension M = 2 and an
objective correlation ρ = 0.9, the average number of PLO increases more than
30 times: from 192 for K = 2 to 6048 for K = 10. However, the range of PLO
is larger with respect to objective correlation. For the same epistatic degree and
number of objectives, the number of PLO decreases exponentially (Fig. 1, top).
Indeed, for an objective space dimension M = 2 and an epistasis degree K = 4,
the average number of PLO decreases more than 120 times: from 82, 093 for
negative correlation (ρ = −0.9) to 672 for positive correlation (ρ = 0.9).

This result can be interpreted as follows. Let us consider an arbitrary so-
lution x, and two different objective functions fi and fj . When the objective
correlation is high, there is a high probability that fi(x) is close to fj(x). In
the same way, the fitness values fi(x

′) and fj(x
′) of a given neighbor x′ ∈ N (x)

are probably close. So, for a given solution x such that it exists a neighbor
x′ ∈ N (x) with a better fi-value, the probability is high that fj(x

′) is better
than fj(x). More formally, the probability IP(fj(x

′) > fj(x) | fi(x′) > fi(x)),
with x′ ∈ N (x), increases with the objective correlation. Then, a solution x has
a higher probability of being dominated when the objective correlation is high.
Under this hypothesis, the probability that a solution dominates all its neigh-
bors decreases with the number of objectives. Fig. 1 (bottom) corroborates this
hypothesis. When the objective correlation is negative (ρ = −0.2), the number
of PLO changes in an order of magnitude from M = 2 to M = 3, and from
M = 3 to M = 5. This range is smaller when the correlation is positive. When
the number of objective is large and the objective correlation is negative, almost
all solutions are PLO.

Assuming that the difficulty for Pareto-based search approaches gets higher
when the number of PLO is large, the difficulty of ρMNK-landscapes increases
when: (i) the epistasis increases, (ii) the number of objective functions increases,
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Fig. 1. Average number of PLO to the size of the search space (|X| = 218) according to
parameter ρ (top left M = 2, right M = 5), and to parameter K (bottom left ρ = −0.2,
right ρ = 0.9). The problem size is N = 18.

(iii) the objective correlation is negative, and its absolute value increases. Sec-
tion 5 will precise the relative difficulty related to those parameters for large-size
problem instances.

4.2 Estimating the Cardinality of the Pareto Optimal Set?

When the number of Pareto optimal solutions is too large, it becomes impossible
to enumerate them all. A metaheuristic should then manipulate a limited-size
solution set during the search. In this case, we have to design specific strategies to
limit the size of the approximation set [13]. Hence, the cardinality of the Pareto
optimal set also plays a major role in the design of multiobjective metaheuristics.

In order to design such an approach, it would be convenient to approxi-
mate the size of the Pareto optimal set from the number of PLO. Fig. 2 shows
the scatter plot of the average size of the Pareto optimal set vs. the average
number of PLO in log-scales. Points are scattered over the regression line with
the Spearson correlation coefficient of 0.82, and the regression line equation is
log(y) = a log(x) + b with a = 1.059 and b = −6.536. For such a log-log scale,
the correlation is low. It is only possible to estimate the cardinality of the Pareto
optimal set from the number of PLO with a factor 10. Nevertheless, the number
of Pareto optimal solutions clearly increases when the number of PLO increases.
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Fig. 2. Scatter plot of the average size of the Pareto optimal set (to the size of the
search) vs. the average number of PLO (to the size of the search) for the 110 possible
combinations of parameters. The problem size is N = 18. The correlation coefficient
is 0.82. Notice the log-scales.

4.3 Adaptive Walk

In single-objective optimization, the length of adaptive walks, performed with
a hill-climber, allows to estimate the diameter of the local optima basins of
attraction. Then, the number of local optima can be estimated when the whole
search space cannot be enumerated exhaustively. In this section, we define a
multiobjective hill-climber, and we show that the length of the corresponding
adaptive walk is correlated to the number of PLO. We define a very basic single
solution-based Pareto Hill-Climbing (PHC) for multiobjective optimization. A
pseudo-code is given in Algorithm 1. At each iteration of the PHC algorithm, the
current solution is replaced by one random neighbor solution which dominates
it. So, the PHC stops on a PLO. The number of iterations, or steps, of the PHC
algorithm is the length of the Pareto adaptive walk.

We performed 103 independent PHC executions for each problem instance.
Fig. 3 shows the average length of the Pareto adaptive walks for different land-
scapes according to the set of parameters given in Table 1. The variation of the
average length follows the opposite variation of the number of PLO. In order to

Algorithm 1 Pareto Hill-Climbing (PHC)

start with a random solution x ∈ X

step ← 0
while x is not a Pareto Local optimum do

randomly choose x
′

from {y ∈ N (x)|x ≺ y}

x← x
′

step ← step +1
end while
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Fig. 3. Average length of the Pareto adaptive walk according to parameter ρ (top left
M = 2, right M = 5), and according to parameter K (bottom left ρ = −0.2, right
ρ = 0.9). The problem size is N = 18.

show the link with the number of PLO more clearly, Fig. 4 gives the scatter-plot
of the average Pareto adaptive length vs. the logarithm of the average number
of PLO. The correlation is strong (r = 0.997), and the regression line equation
is: log(y) = ax + b , with a = −1.095 and b = 12.443. For bit-string of length
N = 18, the average length of the Pareto adaptive walks can then give a precise
estimation of the average number of PLO. When the adaptive length is short, the
diameter of the basin of attraction associated with a PLO is short. This means
that the distance between PLO decreases. Moreover, assuming that the volume
of this basin is proportional to a power of its diameter, the number of PLO
increases exponentially when the adaptive length decreases. This corroborates
known results from single-objective optimization. Of course, for larger bit-string
length, the coefficients are probably different.

5 Properties vs. Multi-modality for Large-size Problems

In this section, we study the number of PLO for large-size ρMNK-landscapes
using the length of the adaptive walk proposed in the previous section. First, we
analyze this number according to the problem dimension (N). Then, we precise
the difficulty, in terms of PLO, with respect to objective space dimension (M)
and objective correlation (ρ).
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We performed 103 independent PHC executions for each problem instance.
Fig. 5 shows the average length of the Pareto adaptive walks for different land-
scapes according to the set of parameters given in Table 1. Whatever the objec-
tive space dimension and correlation, the length of the adaptive walks increases
linearly with the search space dimension N . According to the results from the
previous section, the number of PLO increases exponentially. We can then rea-
sonably conclude that the size of the Pareto optimal set grows exponentially as
well, to an order of magnitude (Section 4.2). However, the slope of the Pareto
adaptive length increase is related to the objective space dimension (M) and
correlation (ρ). The higher the number of objective functions, the smaller the
slope. As well, the higher the objective correlation, the smaller the slope.

Fig. 5 (bottom) allows us to give a qualitative comparison for given problem
sizes (N = 64 and N = 128). Indeed, let us consider an arbitrary adaptive
walk of length 10. For ρMNK-landscapes with N = 64 and K = 4, this length
corresponds approximately to parameters (ρ = −0.4,M = 2), (ρ = 0.3,M =
3), and (ρ = 0.7,M = 5) at the same time. For N = 128, we have (ρ =
−0.9,M = 2), (ρ = −0.1,M = 3), and (ρ = 0.3,M = 5). Still assuming that
a problem difficulty is closely related to the number of PLO, an instance with
a small objective space dimension and a negative objective correlation can be
more difficult to solve than with many correlated objectives.

6 Discussion

This paper gives a fitness landscape analysis for multiobjective combinatorial
optimization based on the local optima of multiobjective NK-landscapes with
objective correlation. We first focused on small-size problems with a study of the
number of local optima by complete enumeration. Like in single-objective opti-
mization, the number of local optima increases with the degree of non-linearity
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Fig. 5. Average length of the Pareto adaptive walk according to problem size (N)
for K = 4 and ρ = −0.2 (top-left) and for K = 4 and M = 2 (top-right). Average
length of the Pareto adaptive walk according to objective correlation (ρ) for K = 4
and N = 64 (bottom-left) and for K = 4 and N = 128 (bottom-right).

of the problem (epistasis). However, the number of objective functions and the
objective correlation have a stronger influence. Futhermore, our results show
that the cardinality of the Pareto optimal set clearly increases with the number
of local optima. We proposed a Pareto adaptive walk, associated with a Pareto
hill-climber, to estimate the number of local optima for a given problem size.
Next, for large-size instances, the length of such Pareto adaptive walk can give a
measure related to the difficulty of a multiobjective combinatorial optimization
problem. We show that this measure increases exponentially with the problem
size. A problem with a small number of negatively correlated objectives gives
the same degree of multi-modality, in terms of Pareto dominance, than another
problem with a high objective space dimension and a positive correlation.

A similar analysis would allow to better understand the structure of the land-
scape for other multiobjective combinatorial optimization problems. However, an
appropriate model to estimate the number of local optima for any problem size
still needs to be properly defined. A possible path is to generalize the approach
from [14] for the multiobjective case. For a more practical purpose, our results
should also be put in relation with the type of the problem under study, in par-
ticular on how to compute or estimate the problem-related measures reported in
this paper. Moreover, we mainly focused our work on the number of local optima.
The next step is to analyze their distribution by means of a local optima net-



work [15]. At last, we already know that the number and the distribution of local
optima have a strong impact on the performance of multiobjective metaheuris-
tics, but it is not yet clear how they exactly affect the search. This open issue
constitutes one of the main challenge in the field of fitness landscape analysis
for multiobjective combinatorial optimization.
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