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Abstract. In this paper, we prove that given any Π0

1 subset P of {0, 1}N

there is a tileset τ with a countable set of configurations C such that P
is recursively homeomorphic to C \ U where U is a computable set of
configurations. As a consequence, if P is countable, this tileset has the
exact same set of Turing degrees.

Introduction

Wang tiles have been introduced by Wang [17] to study fragments of first order
logic. Knowing whether a tileset can tile the plane with a given tile at the origin
(also known as the origin constrained domino problem) was proved undecidable
also by Wang [18]. Knowing whether a tileset can tile the plane in the general
case was proved undecidable by Berger [2, 3].

Understanding how complex, in the sense of recursion theory, the tilings of
a given tileset can be is a question that was first studied by Myers [14] in 1974.
Building on the work of Hanf [10], he gave a tileset with no recursive tilings.
Durand/Levin/Shen [9], 40 years later showed how to build a tileset for which
all tilings have high Kolmogorov complexity.

A Π0
1 -set is an effectively closed subset of {0, 1}N, or equivalently the set

of oracles on which a given Turing machine halts. Π0
1 -sets occur naturally in

various areas in computer science and recursive mathematics, see e.g. [6,15] and
the upcoming book [7]. It is easy to see that the set of tilings of a given tileset

is a Π0
1 -set (up to a recursive coding of QZ

2

into {0, 1}N). This has various
consequences. As an example, every non-empty tileset contains a tiling which
is not Turing-hard (see Durand/Levin/Shen [9] for a self-contained proof). The
main question is how different the sets of tilings are from Π0

1 -sets. In the context
of one-dimensional symbolic dynamics, some answers to these questions were
given by Cenzer/Dashti/King/Tosca/Wyman [4, 5, 8].

The main result in this direction was obtained by Simpson [16], building on
the work of Hanf and Myers: for every Π0

1 -set S, there exists a tileset whose set
of tilings have the same Medvedev degree as S. The Medvedev degree roughly
relates to the “easiest” Turing degree of S. What we are interested in is a stronger
result: can we find for every Π0

1 -set S a tileset whose set of tilings have the
same Turing degrees ? We prove in this article that this is true if S contains a
recursive point. More exactly we build (theorem 2) for every Π0

1 -set S a set of
tilings for which the set of Turing degrees is exactly the same as for S, possibly



with the additional Turing degree of recursive points. In particular, as every
countable Π0

1 -set contains a recursive point, the question is completely solved
for countable sets: the sets of Turing degrees of countable Π0

1 -sets are the same
as the sets of Turing degrees of countable sets of tilings. In particular, there exist
countable sets of tilings with a non-recursive point. This can be thought as a
two-dimensional version of theorem 8 in [5].

This paper is organized as follows. After some preliminary definitions, we
start with a quick proof of a generalization of Hanf, already implicit in Simpson
[16]. We then build a very specific tileset, which forms a grid-like structure while
having only countably many tilings. This tileset will then serve as the main
ingredient in the theorem in the last section.

1 Preliminaries

1.1 Π
0

1
sets and degrees

A Π0
1 set P ⊆ {0, 1}N is a set for which there exists a Turing machine that

given x ∈ {0, 1}
N
as an oracle halts if and only if x 6∈ P . Equivalently, a subset

S ⊆ {0, 1}N is Π0
1 if there exists a recursive set L so that w ∈ S if no prefix of

w is in L.

We say that two sets S, S′ are recursively homeomorphic if there exists a
bijective recursive function f : S → S′.

A point x of a set S ⊆ {0, 1}
N
is isolated if it has a prefix that no other point

of S has. The Cantor-Bendixson derivative D(S) of S is the set S without its
isolated points. We define inductively S{(λ)} for any ordinal λ:

– S(0) = S

– S(λ+1) = D
(

S(λ))
)

– S(λ) =
⋂

γ<λ S
(γ) when λ is limit.

The Cantor-Bendixson rank of S, noted CB(S), is defined as the first ordinal
λ such that S(λ) = S(λ+1). An element x is of rank λ in S if λ is the least ordinal
such that x 6∈ S(λ).

Remark 1. If S is countable, the Cantor-Bendixson rank always exists. If it is
not, the ranks is ∞.

See Cenzer/Remmel [6] for Π0
1 sets and Kechris [12] for Cantor-Bendixson

rank and derivative.

For x, y ∈ {0, 1}N we say that x is Turing-reducible to y if y is computable
by a Turing machine using x as an oracle and we write y ≤T x. If x ≤T y and
y ≤T x, we say that x and y are Turing-equivalent and we write x ≡T y. The
Turing degree of x ∈ {0, 1}N is its equivalence class under the relation ≡T .



1.2 Tilings and SFTs

Wang tiles are unit squares with colored edges which may not be flipped or
rotated. A tileset T is a finite set of Wang tiles. A configuration is a mapping
c : Z2 → T assigning a Wang tile to each point of the plane. If all adjacent tiles
of a configuration have matching edges, the configuration is called a tiling. The
set of all tilings of T is noted T (T ). We say a tileset is origin constrained when
we force the tile at (0, 0).

A Shift of Finite Type (SFT) X ⊆ ΣZ
2

is defined by (Σ,F ) where Σ is a
finite alphabet and F a finite set of forbidden patterns. A pattern is a coloring of
a finite portion P ⊂ Z

2 of the plane. A point x is in X if and only if it does not
contain any forbidden pattern of F anywhere. In particular, the set of tilings of
a Wang tileset is a SFT. Conversely, any SFT is recursively homeomorphic to
a Wang tileset. More information on SFTs may be found in Lind and Markus’
book [13].

A set of configurationsX ⊆ ΣZ
2

X is a sofic shift iff there exists a SFT Y ⊆ ΣZ
2

Y ,

a finite neighborhood N = {v1, . . . , v|N |} ⊂ Z
2 and a local map f : Σ

|N |
Y → ΣX

such that for any point x ∈ X , there exists a point y ∈ Y such that ∀z ∈
Z
2, x(z) = f(y(z + v1), . . . , y(z + v|N |)).
The notion of Cantor-Bendixson derivative is defined on configurations in a

similar way as with Π0
1 sets. This notion was introduced (as far as the authors

know) by Ballier/Durand/Jeandel [1]. A configuration c is said to be isolated
in a set of configurations C if there exists a pattern P such that c is the only
configuration of C containing P . The Cantor-Bendixson derivative of C is noted
D(C) and consists of all configurations of C except the isolated ones. We define
C(λ) inductively for any ordinal λ as before.

The Cantor-Bendixson rank of C, noted CB(C), is defined as the first ordinal
λ such that C(λ) = C(λ+1). An element c is of rank λ in C if λ is the least ordinal
such that c 6∈ C(λ).

A lemma that will prove useful later is the following:

Fact 1 Given two countable sets of configurations X and Y , CB(X × Y ) =
CB(X) + CB(Y ).

2 Π
0

1
sets and origin constrained tilings

A straighforward corollary of Hanf [10] is that Π0
1 subsets of {0, 1}N and ori-

gin constrained tilings are recursively isomorphic. This is stated explicitely in
Simpson [16].

Theorem 1. Given any Π0
1 subset P of {0, 1}N, there exists a tileset such that

each origin constrained tiling with this tileset describes an element of P .

Proof. We take the basic encoding of Turing machines as stated in Kari [11] for
instance. We modify the bottom tiles, ie the tiles containing the initial tape, such
that instead of being able to contain only the blank symbol, they can contain



only 0s or 1s on the right of the starting head. The Turing machine we encode is
the one that given x ∈ {0, 1}N as an input halts if and only if x 6∈ P . Then the
tilings having at the origin tile with the starting head of the Turing machine are
exactly the runs of the Turing machine on the members of P . ⊓⊔

Corollary 1. Any Π0
1 subset P of {0, 1}N is recursively homeomorphic to an

origin constrained tileset.

3 The tileset

The main problem in the construction of Hanf is that tilings which do not have
the given tile at the origin can be very wild: They may correspond to configura-
tions with no computation (no head of the Turing Machine) or from an arbitrary
(not initial) configuration. A way to solve this problem is described in [14] but
is unsuitable for our purposes.

(a) (b) (c) (d)

Fig. 1. The tiling in which to encode the Turing machines

Our idea is as follows: We build a tileset which will contain, among others,
the sparse grid of figure 1c. The main point is that all others tilings of the tileset
will have at most one intersection point of two black lines. This means that if
we put computation cells of a given Turing machine in the intersection points,
every tiling which is not of the form of figure 1c will contain at most one cell of
the Turing machine, thus will contain no computation.

To do this construction, we will first draw increasingly big and distant columns
as in figure 1a and then superimposing the same construction for rows as in fig-
ure 1b, leading to the grid of figure 1c.

It is then fairly straightforward to see how we can encode a Turing machine
inside a configuration having the skeleton of figure 1c by looking at it diagonally:
time increases going to the north-east and the tape is written on the north west
- south east diagonals1.

1 Note that we will have to skip one diagonal out of two in our construction, in order
for the tape to increase at the same rate as the time.



Our set of tiles T of figure 2 gives the skeleton of figure 1a when forgetting
everything but the black vertical borders. We will prove in this section that it is
countable. We set here the vocabulary:

– a vertical line is formed of a vertical succession of tiles containing a vertical
black line (tiles 5, 6, 17, 21, 24, 25, 26, 27, 31, 35, 36, 37).

– a horizontal line is formed of a horizontal succession of tiles containing a
horizontal black line (tiles 13, 14, 15, 16, 22, 23, 38) or a bottom signal,

– the bottom signal is formed by a connected path of tiles among (30, 31,
27, 14, 7, 36, 38)

– the red signal is formed by a connected path of tiles containing a red line
(tiles among 3 ,7 ,10 ,12 ,14, 19, 22, 32, 33, 38).

– tile 30 is the corner tile
– tiles 30, 32, 33, 34 are the bottom tiles

1 2 3 4 5 6 7

8 9 10 11 12 13 14

15 16 17 18 19 20 21

22 23 24 25 26 27 28

29 30 31 32 33 34 35

36 37 38 39 40

Fig. 2. Our set of Wang tiles T .



Lemma 1. The tileset T admits at most one tiling with two vertical lines or
more.

Proof. The idea of the construction is to force that whenever there are two
vertical lines, then the only possible tiling is the one of figure 3. Note that
whenever the corner tile appears in a tiling, it is necessarily the one on figure 3.

Suppose that we have a tiling in which two vertical lines appear. Suppose
they are at distance k + 1. Necessarily there must be horizontal lines between
them forming squares. Inside these squares there must be a red signal: inside each
square, this red signal is vertical, it is shifted to the right each time it crosses
a horizontal line. This ensures that there are exactly k squares in this column.
Furthermore, the bottom square has necessarily a bottom signal going through
its top horizontal line. The bottom signal forces the square of the column before
to be of size k− 1 and the square of the column after to be of size exactly k+1.

⊓⊔

Lemma 2. The tileset T admits a countable number of tilings.

Proof. Lemma 1 states that there is only one tiling that has more than 2 vertical
lines. This means that the other tilings have at most one such line.

– If a tiling has exactly one vertical line, then it can have at most two horizontal
lines: one on the left of the vertical one and one on the right. A red signal
can then appear on the left or the right of the vertical line arbitrary far from
it. There is a countable number of such tilings.

– If a tiling has no vertical line, then it has at most one horizontal line. A red
signal can then appear only once. There is a finite number of such tilings.

There is a countable number of tilings that can be obtained with the tileset T .
All obtainable tilings are shown in figure 4 and 3. ⊓⊔

By taking our tileset T = {1, . . . , 40} and mirroring all the tiles along the
south west-north east diagonal, we obtain a tileset T ′ = {1′, . . . , 40′} with the
exact same properties, except it enforces the squeleton of figure 1b. Remember
that whenever the corner tile appeared in a tiling, then necessarily this tiling
was α. The same goes for T ′ and its corner tile. We hence construct a third
tileset τ = (T \ {30} × T ′ \ {30′})∪{(30, 30′)}. The corner tile (30, 30′) of τ has
the property that whenever it appears, the tiling is the superimposition of the
skeletons of figures 1a and 1b with the corner tiles at the same place: there is
only one such tiling, call it β.

The skeleton of figure 1c is obtained if we forget about the parts of the lines
of the T layer (resp. T ′) that are superimposed to white tiles, 29’ (resp. 29), of
T ′ (resp. T ).

As a consequence of lemma 2, τ is countable. And as a consequence of
lemma 1, the only tiling by τ in which computation can be embedded is β.
The shape of β is the one of figure 1c, the coordinates of the points of the grid
are the following (supposing tile (30, 30′) is at the center of the grid):

{(f(n), f(m)) | f(m)/4 ≤ f(n) ≤ 4f(m)}



Fig. 3. Tiling α: the unique valid tiling of T in which there are 2 or more vertical
lines.



A B C D E F

G H I J K L

M N O P Q R

S T U V W X

Y ZZ Z ai bi ci

dk,i ek fk,j gi hi lk,i

mi,j ni,j oi pi qk rk,i,j

si ti,j ui vi wi xi,j

Fig. 4. The other configurations: the A − ZZ configurations are unique (up to
shift), and the configurations with subscripts i, j ∈ N, k ∈ Z

2 represent the fact
that distances between some of the lines can vary. Note that configuration ZZ
cannot have a red signal on its left, because it would force another vertical line.



{(f(n), f(m)) | m/2 ≤ n ≤ 2m}

where f(n) = (n+ 1)(n+ 2)/2− 1.

Lemma 3. The Cantor-Bendixson rank of T (τ) is 13.

Proof. The Cantor-Bendixson rank of T (T )\{α} is 6, see figure 4, thus the rank
of T (T ) \ {α} × T (T ′) \ {α′} is 12. Adding the configurations corresponding to
the superimposition of α and α′, τ is of rank 13. ⊓⊔

4 Π
0

1
sets and tilings

Theorem 2. For any Π0
1 subset S of {0, 1}

N
there exists a tileset τS such that

S × Z
2 is recursively homeomorphic to T (τS) \ O where O is a computable set

of configurations.

Proof. This proof uses the construction of section 3. Let M be a Turing machine
such that M halts with x as an oracle iff x 6∈ S. Take the tileset τ of section 3
and encode in it the Turing machine M having as an oracle x on an unmodifiable
second tape. This gives us τM , O is the set all tilings except the β ones. To each
(x, p) ∈ S×Z

2 we associate the β tiling having a corner at position p and having
x on its oracle tape. It follows from lemma 2 that O is clearly computable. ⊓⊔

Corollary 2. For any countable Π0
1 subset S of {0, 1}

N
, there exists a tileset τ

having exactly the same Turing degrees.

Proof. We know, from Cenzer/Remmel [6], that countable Π0
1 sets have 0 (com-

putable elements) in their set of Turing degrees, thus the tileset τM described in
the proof of theorem 2 has exactly the same Turing degrees as S.

Theorem 3. For any countable Π0
1 subset S of {0, 1}

N
there exists a tileset τS

such that CB(T (τS)) = CB(S) + 12.

Proof. Lemma 3 states that T (τ) is of Cantor-Bendixson rank 13, 12 without
α. In the tileset τM of the previous proof, the Cantor-Bendixson rank of the
contents of the tape is exactly CB(S), hence CB(T (τS)) = CB(S) + 12. ⊓⊔

From Ballier/Durand/Jeandel [1] we know that CB(T (τS)) ≥ CB(S) + 2,
which makes the following corollary for sofic subshifts optimal:

Corollary 3. For any countable Π0
1 subset S of {0, 1}

N
there exists a sofic sub-

shift X such that CB(X) = CB(S) + 2.

Proof. Take a projection that just keeps the symbols of the Turing machine
tape τM of the proof of theorem 2 and maps everything else to a blank symbol.
Recall the Turing machine tape cells are the intersections of the vertical lines
and horizontal lines. This projection leads to 3 possible configurations :

– a completely blank configuration,
– a completely blank configuration with only one symbol somewhere,
– a configuration with a white background and points corresponding to the

intersections in the sparse grid of figure 1c.
⊓⊔
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