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Π0
1 SETS AND TILINGS

EMMANUEL JEANDEL AND PASCAL VANIER

Abstract. In this paper, we prove that given any Π0

1
subset P of {0, 1}N

there is a tileset τ with a set of configurations C such that P×Z
2 is recursively

homeomorphic to C \ U where U is a computable set of configurations. As a
consequence, if P is countable, this tileset has the exact same set of Turing
degrees.

Introduction

Wang tiles have been introduced by Wang [17] to study fragments of first order
logic. Knowing whether a tileset can tile the plane with a given tile at the origin
(also known as the origin constrained domino problem) was proved undecidable
also by Wang [18]. Knowing whether a tileset can tile the plane in the general case
was proved undecidable by Berger [2, 3].

Understanding how complex, in the sense of recursion theory, the tilings of a
given tileset can be is a question that was first studied by Myers [13] in 1974.
Building on the work of Hanf [10], he gave a tileset with no recursive tilings. Du-
rand/Levin/Shen [9] showed, 40 years later, how to build a tileset for which all
tilings have high Kolmogorov complexity.

A Π0
1-set is an effectively closed subset of {0, 1}N, or equivalently the set of

oracles on which a given Turing machine halts. Π0
1-sets occur naturally in vari-

ous areas in computer science and recursive mathematics, see e.g. [6, 15] and the
upcoming book [7]. It is easy to see that the set of tilings of a given tileset is

a Π0
1-set (up to a recursive coding of QZ

2

into {0, 1}N). This has various conse-
quences. As an example, every non-empty tileset contains a tiling which is not
Turing-hard (see Durand/Levin/Shen [9] for a self-contained proof). The main
question is how different the sets of tilings are from Π0

1-sets. In the context of
one-dimensional symbolic dynamics, some answers to these questions were given by
Cenzer/Dashti/King/Tosca/Wyman [4, 5, 8].

The main result in this direction was obtained by Simpson [16], building on the
work of Hanf and Myers: for every Π0

1-set S, there exists a tileset whose set of
tilings have the same Medvedev degree as S. The Medvedev degree roughly relates
to the “easiest” Turing degree of S. What we are interested in is a stronger result:
can we find for every Π0

1-set S a tileset whose set of tilings have the same Turing
degrees ? We prove in this article that this is true if S contains a recursive point.
More exactly we build (theorem 4.1) for every Π0

1-set S a set of tilings for which
the set of Turing degrees is exactly the same as for S, possibly with the additional
Turing degree of recursive points. In particular, as every countable Π0

1-set contains
a recursive point, the question is completely solved for countable sets: the sets of
Turing degrees of countable Π0

1-sets are the same as the sets of Turing degrees of
1
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countable sets of tilings. In particular, there exist countable sets of tilings with non-
recursive points. This can be thought as a two-dimensional version of theorem 8
in [5].

This paper is organized as follows. After some preliminary definitions, we start
with a quick proof of a generalization of Hanf, already implicit in Simpson [16].
We then build a very specific tileset, which forms a grid-like structure while having
only countably many tilings. This tileset will then serve as the main ingredient in
the theorem in the last section.

1. Preliminaries

1.1. Π0
1 sets and degrees. A Π0

1 set P ⊆ {0, 1}N is a set for which there exists

a Turing machine that given x ∈ {0, 1}
N
as an oracle halts if and only if x 6∈ P .

Equivalently, a subset S ⊆ {0, 1}N is Π0
1 if there exists a recursive set L so that

w ∈ S if no prefix of w is in L.
We say that two sets S, S′ are recursively homeomorphic if there exists a bijective

recursive function f : S → S′.

A point x of a set S ⊆ {0, 1}
N
is isolated if it has a prefix that no other point of

S has. The Cantor-Bendixson derivative D(S) of S is the set S without its isolated
points. We define inductively S(λ) for any ordinal λ:

• S(0) = S
• S(λ+1) = D

(

S(λ))
)

• S(λ) =
⋂

γ<λ S
(γ) when λ is limit.

The Cantor-Bendixson rank of S, noted CB(S), is defined as the first ordinal λ
such that S(λ) = S(λ+1). An element x is of rank λ in S if λ is the least ordinal
such that x 6∈ S(λ).

See Cenzer/Remmel [6] for Π0
1 sets and Kechris [11] for Cantor-Bendixson rank

and derivative.
For x, y ∈ {0, 1}N we say that x is Turing-reducible to y if y is computable by a

Turing machine using x as an oracle and we write y ≤T x. If x ≤T y and y ≤T x,
we say that x and y are Turing-equivalent and we write x ≡T y. The Turing degree
of x ∈ {0, 1}N is its equivalence class under the relation ≡T .
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1.2. Tilings and SFTs. Wang tiles are unit squares with colored edges which may
not be flipped or rotated. A tileset T is a finite set of Wang tiles. A configuration
is a mapping c : Z2 → T assigning a Wang tile to each point of the plane. If all
adjacent tiles of a configuration have matching edges, the configuration is called a
tiling. The set of all tilings of T is noted T (T ). We say a tileset is origin constrained
when the tile at position (0, 0) is forced, that is to say, we only look at the valid
tilings having a given tile t at the origin.

A Shift of Finite Type (SFT) X ⊆ ΣZ
2

is defined by (Σ, F ) where Σ is a finite
alphabet and F a finite set of forbidden patterns. A pattern is a coloring of a finite
portion P ⊂ Z

2 of the plane. A point x is in X if and only if it does not contain any
forbidden pattern of F anywhere. In particular, the set of tilings of a Wang tileset is
a SFT. Conversely, any SFT is recursively homeomorphic to a Wang tileset. More
information on SFTs may be found in Lind and Markus’ book [12].

A set of configurations X ⊆ ΣZ
2

X is a sofic shift iff there exists a SFT Y ⊆ ΣZ
2

Y

and a local map f : ΣY → ΣX such that for any point x ∈ X , there exists a point
y ∈ Y such that for all z ∈ Z

2, x(z) = f(y(z)).
The notion of Cantor-Bendixson derivative is defined on configurations in a simi-

lar way as with Π0
1 sets. This notion was introduced for tilings by Ballier/Durand/Jeandel

[1]. A configuration c is said to be isolated in a set of configurations C if there exists
a pattern P such that c is the only configuration of C containing P . The Cantor-
Bendixson derivative of C is noted D(C) and consists of all configurations of C
except the isolated ones. We define C(λ) inductively for any ordinal λ as above.

2. Π0
1 sets and origin constrained tilings

A straighforward corollary of Hanf [10] is that Π0
1 subsets of {0, 1}N and origin

constrained tilings are recursively isomorphic. This is stated explicitely in Simpson
[16].

Theorem 2.1. Given any Π0
1 subset P of {0, 1}N, there exists a tileset and a tile t

such that each origin constrained tiling with this tileset describes an element of P .

Proof. We take the basic encoding of Turing machines as stated in Robinson [14]
for instance. We modify the bottom tiles, ie the tiles containing the initial tape,
such that instead of being able to contain only the blank symbol, they can contain
only 0s or 1s on the right of the starting head. The Turing machine we encode is
the one that given x ∈ {0, 1}N as an input halts if and only if x 6∈ P . Then the
constrained tilings, having at the origin the tile with the starting head of the Turing
machine, are exactly the runs of the Turing machine on the members of P . �

Corollary 2.2. Any Π0
1 subset P of {0, 1}N is recursively homeomorphic to an

origin constrained tileset.

3. The tileset

The main problem in the construction of Hanf is that tilings which do not have
the given tile at the origin can be very wild : they may correspond to configu-
rations with no computation (no head of the Turing Machine) or computations
starting from an arbitrary (not initial) configuration. A way to solve this problem
is described in [13] but is unsuitable for our purposes.
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(a) (b) (c) (d)

Figure 1. The tiling in which to encode the Turing machines

Our idea is as follows: We build a tileset which will contain, among others, the
sparse grid of figure 1c. The main point is that all others tilings of the tileset will
have at most one intersection point of two black lines. This means that if we put
computation cells of a given Turing machine in the intersection points, every tiling
which is not of the form of figure 1c will contain at most one cell of the Turing
machine, thus will contain no computation.

1 2 3 4 5 6 7

8 9 10 11 12 13 14

15 16 17 18 19 20 21

22 23 24 25 26 27 28

29 30 31 32 33 34 35

36 37 38 39 40

Figure 2. Our set of Wang tiles T .
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To do this construction, we will first draw increasingly big and distant columns as
in figure 1a and then superimposing the same construction for rows as in figure 1b,
leading to the grid of figure 1c.

It is then fairly straightforward to see how we can encode a Turing machine
inside a configuration having the skeleton of figure 1c by looking at it diagonally:
time increases going to the north-east and the tape is written on the north west -
south east diagonals1.

Our set of tiles T of figure 2 gives the skeleton of figure 1a when forgetting
everything but the black vertical borders. We will prove in this section that it is
countable. We set here the vocabulary:

• a vertical line is formed of a vertical succession of tiles containing a vertical
black line (tiles 5, 6, 17, 21, 24, 25, 26, 27, 31, 35, 36, 37).

• a horizontal line is formed of a horizontal succession of tiles containing a
horizontal black line (tiles 13, 14, 15, 16, 22, 23, 38) or a bottom signal,

• the bottom signal is formed by a connected path of tiles among (30, 31,
27, 14, 7, 36, 38)

• the red signal is formed by a connected path of tiles containing a red line
(tiles among 3 ,7, 10, 12, 14, 19, 22, 32, 33, 38).

• tile 30 is the corner tile
• tiles 30, 32, 33, 34 are the bottom tiles

Lemma 3.1. The tileset T admits at most one tiling with two or more vertical
lines.

Proof. The idea of the construction is to force that whenever there are two vertical
lines, then the only possible tiling is the one of figure 3. Note that whenever the
corner tile appears in a tiling, it is necessarily a shifted version of the tiling on
figure 3.

Suppose that we have a tiling in which two vertical lines appear. Suppose they are
at distance k+1. Necessarily there must be horizontal lines between them forming
squares. Inside these squares there must be a red signal: inside each square, this red
signal is vertical, it is shifted to the right each time it crosses a horizontal line. This
ensures that there are exactly k squares in this column. Furthermore, the bottom
square has necessarily a bottom signal going through its top horizontal line. The
bottom signal forces the square of the column before to be of size k − 1 and the
square of the column after to be of size exactly k + 1.

�

Lemma 3.2. The tileset T admits a countable number of tilings.

Proof. Lemma 3.1 states that there is only one tiling that has more than 2 vertical
lines. This means that the other tilings have at most one such line.

• If a tiling has exactly one vertical line, then it can have at most two hori-
zontal lines: one on the left of the vertical one and one on the right. A red
signal can then appear on the left or the right of the vertical line arbitrary
far from it. There is a countable number of such tilings.

• If a tiling has no vertical line, then it has at most one horizontal line. A red
signal can then appear only once. There is a finite number of such tilings.

1Note that we will have to skip one diagonal out of two in our construction, in order for the
tape to increase at the same rate as the time.
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Figure 3. Tiling α: the unique valid tiling of T in which there
are 2 or more vertical lines.

There is a countable number of tilings that can be obtained with the tileset T . All
obtainable tilings are shown in figure 4 and 3.

�

By taking our tileset T = {1, . . . , 40} and mirroring all the tiles along the
south west-north east diagonal, we obtain a tileset T ′ = {1′, . . . , 40′} with the
exact same properties, except it enforces the squeleton of figure 1b. Remember
that whenever the corner tile appeared in a tiling, then necessarily this tiling was
α. The same goes for T ′ and its corner tile. We hence construct a third tileset
τ = (T \ {30} × T ′ \ {30′})∪{(30, 30′)}. The corner tile (30, 30′) of τ has the prop-
erty that whenever it appears, the tiling is the superimposition of the skeletons of
figures 1a and 1b with the corner tiles at the same place: there is only one such
tiling, call it β.

The skeleton of figure 1c is obtained if we forget about the parts of the lines of
the T layer (resp. T ′) that are superimposed to white tiles, 29’ (resp. 29), of T ′

(resp. T ).
As a consequence of lemma 3.2, τ is countable. And as a consequence of

lemma 3.1, the only tiling by τ in which computation can be embedded is β. The
shape of β is the one of figure 1c, the coordinates of the points of the grid are the
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A B C D E F

G H I J K L

M N O P Q R

S T U V W X

Y ZZ Z ai bi ci

dk,i ek fk,j gi hi lk,i

mi,j ni,j oi pi qk rk,i,j

si ti,j ui vi wi xi,j

Figure 4. The other configurations: the A − ZZ configurations
are unique (up to shift), and the configurations with subscripts
i, j ∈ N, k ∈ Z

2 represent the fact that distances between some of
the lines can vary. Note that configuration ZZ cannot have a red
signal on its left, because it would force another vertical line.
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following (supposing tile (30, 30′) is at the center of the grid):

{(f(n), f(m)) | f(m)/4 ≤ f(n) ≤ 4f(m)}

{(f(n), f(m)) | m/2 ≤ n ≤ 2m}

where f(n) = (n+ 1)(n+ 2)/2− 1.

Lemma 3.3. The Cantor-Bendixson rank of T (τ) is 12.

Proof. The Cantor-Bendixson rank of T (T ) \ {α} is 6, see figure 4, thus the rank
of T (T ) \ {α}×T (T ′) \ {α′} is 11. Adding the configurations corresponding to the
superimposition of α and α′, τ is of rank 12.

�

4. Π0
1 sets and tilings

Theorem 4.1. For any Π0
1 subset S of {0, 1}N there exists a tileset τS such that

S × Z
2 is recursively homeomorphic to T (τS) \ O where O is a computable set of

configurations.

Proof. This proof uses the construction of section 3. Let M be a Turing machine
such that M halts with x as an oracle iff x 6∈ S. Take the tileset τ of section 3
and encode in it the Turing machine M having as an oracle x on an unmodifiable
second tape. This gives us τM , O is the set all tilings except the β ones. To each
(x, p) ∈ S × Z

2 we associate the β tiling having a corner at position p and having
x on its oracle tape. It follows from lemma 3.2 that O is clearly computable.

�

Corollary 4.2. For any countable Π0
1 subset S of {0, 1}

N
, there exists a tileset τ

having exactly the same Turing degrees.

Proof. We know, from Cenzer/Remmel [6], that countable Π0
1 sets have 0 (com-

putable elements) in their set of Turing degrees, thus the tileset τM described in
the proof of theorem 4.1 has exactly the same Turing degrees as S.

�

Theorem 4.3. For any countable Π0
1 subset S of {0, 1}

N
there exists a tileset τS

such that CB(T (τS)) = CB(S) + 11.

Proof. Lemma 3.3 states that T (τ) is of Cantor-Bendixson rank 12, 11 without α.
In the tileset τM of the previous proof, the Cantor-Bendixson rank of the contents
of the tape is exactly CB(S), hence CB(T (τS)) = CB(S) + 11.

�

From Ballier/Durand/Jeandel [1] we know that for any tilesetX , if CB(T (X)) ≥
2, then X has only recursive points. Thus an optimal construction improves the
Cantor-Bendixson rank by at least 2.

Corollary 4.4. For any countable Π0
1 subset S of {0, 1}N there exists a sofic subshift

X such that CB(X) = CB(S) + 2.

Proof. Take a projection that just keeps the symbols of the Turing machine tape τM
of the proof of theorem 4.1 and maps everything else to a blank symbol. Recall the
Turing machine tape cells are the intersections of the vertical lines and horizontal
lines. This projection leads to 3 possible configurations :
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• a completely blank configuration,
• a completely blank configuration with only one symbol somewhere,
• a configuration with a white background and points corresponding to the
intersections in the sparse grid of figure 1c.

�
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