

CEP290, a gene with many faces: mutation overview and presentation of CEP290base

Frauke Coppieters, Steve Lefever, Bart P. Leroy, Elfride Bw de Baere

▶ To cite this version:

Frauke Coppieters, Steve Lefever, Bart P. Leroy, Elfride Bw de Baere. CEP290, a gene with many faces: mutation overview and presentation of CEP290base. Human Mutation, 2010, 31 (10), pp.1097. 10.1002/humu.21337 . hal-00563445

HAL Id: hal-00563445 https://hal.science/hal-00563445

Submitted on 5 Feb 2011

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Human Mutation

CEP290, a gene with many faces: mutation overview and presentation of CEP290*base*

Journal:	Human Mutation
Manuscript ID:	humu-2010-0040.R1
Wiley - Manuscript type:	Mutation Update
Date Submitted by the Author:	18-Jun-2010
Complete List of Authors:	Coppieters, Frauke; Ghent University Hospital, Center for Medical Genetics Lefever, Steve; Ghent University Hospital, Center for Medical Genetics Leroy, Bart; Ghent University Hospital, Department of Ophthalmology; Ghent University Hospital, Center for Medical Genetics De Baere, Elfride; Ghent University Hospital, Center for Medical Genetics
Key Words:	CEP290, locus-specific database, genotype-phenotype correlations, modifiers, ciliary proteome

Deleted: Jo Vandesompele¹,

Frauke Coppieters^{1*}, Steve Lefever^{1*}, Bart P. Leroy^{1,2}, Elfride De Baere¹

¹Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium

²Department of Ophthalmology, Ghent University Hospital, Ghent, Belgium

^{*}These two authors contributed equally to this work.

Address for Correspondence: Elfride De Baere, MD, PhD, Elfride.DeBaere@UGent.be, Center for Medical Genetics, Ghent University Hospital, De Pintelaan 185, B- 9000 Ghent, Belgium,

Phone: 32-9-332.5186 Fax: 32-9-332.6549.

Abstract

Ciliopathies are an emerging group of disorders, caused by mutations in ciliary genes. One of the most intriguing disease genes associated with ciliopathies is *CEP290*, mutations <u>in which cause a</u> wide variety of distinct phenotypes, ranging from isolated blindness over Senior-Loken syndrome (SLS), nephronophthisis (NPHP), Joubert syndrome (related disorders) (JS[RD]), Bardet-Biedl syndrome (BBS) to the lethal Meckel-Grüber syndrome (MKS). Despite the identification of over 100 unique *CEP290* mutations, no clear genotype-phenotype correlations could yet be established and <u>consequently</u> the predictive power of a *CEP290*-related genotype remains limited. One of the challenges is a better understanding of second-site modifiers. In this respect, there is a growing interest in the potential modifying effects of variations in genes encoding other <u>members of the ciliary proteome which interact with CEP290</u>.

Here, we provide an overview of all *CEP290* mutations identified so far, with their associated phenotypes. <u>To this end</u>, we developed CEP290*base*, a locus-specific mutation database that links mutations with patients and their phenotypes (medgen.ugent.be/cep290base).

Key words: CEP290, locus-specific database, genotype-phenotype correlations, modifiers, ciliary

proteome

Deleted: n
Deleted: emerging
Deleted: other components of the ciliary proteome, possibly modifying phenotypes caused by mutations in interacting proteins
Deleted:

Deleted: For this purpose

Deleted: of

Background

Cilia are highly conserved organelles that are essential for many cell types. Apart from their obvious role in motility and transport of fluids and particles over epithelial surfaces, they <u>have</u> numerous other functions such as signal <u>transduction</u> (Berbari et al., 2009). The extensive presence of cilia throughout the whole body might explain the wide range of phenotypes associated with mutations in genes encoding ciliary proteins (Gerdes et al., 2009; Nigg and Raff, 2009).

One of the most intriguing disease genes associated with ciliopathies is *CEP290* (MIM[610142]), as the phenotypic spectrum of its mutations ranges from isolated blindness to the lethal Meckel-Grüber syndrome (MKS). The gene was initially identified as disease gene for Joubert syndrome (related disorders) (JS[RD]) and Senior-Loken syndrome (SLS) (Sayer et al., 2006; Valente et al., 2006). Within a few years, Leber Congenital Amaurosis (LCA), MKS and Bardet-Biedl syndrome (BBS) expanded the list of partially overlapping yet distinct disorders caused by *CEP290* mutations (den Hollander et al., 2006; Baala et al., 2007a; Leitch et al., 2008). Although these are essentially autosomal recessive (AR) monogenic diseases, epistatic effects of modifier alleles in <u>additional_ciliary genes should not be underestimated in the development of their</u> phenotypes.

The first clone corresponding with *CEP290*, *KIAA0373*, was identified through sequencing of 100 new cDNA clones from human brain cDNA libraries (Nagase et al., 1997). Three years later, Chen and Shou independently cloned *CEP290* as *3H11Ag*, encoding an antigen for the monoclonal antibody 3H11 which specifically recognizes cancer cells from various tissues (Chen and Shou, 2001). It was predicted that about 60% of the residues form coiled-coil (CC) structures

Deleted: exert

Deleted: reception and

Deleted: other

and that the protein has four potential dimeric CC regions. In addition, the protein displays high similarity to myosin among different species and was predicted to have a partial structural maintenance of chromosomes (SMC) conserved domain, Several predicted motifs suggested potential modifications such as N-glycosylation, tyrosine sulfation and phosphorylation (Guo et al., 2004). In 2003, Andersen and colleagues detected the KIAA0373 gene product in human centrosomes following mass-spectrometry-based proteomic analysis. The protein was called Cep290 according to its centrosomal location and approximate relative molecular mass, and was predicted to contain nine CCs (Andersen et al., 2003). Upon the identification of CEP290 as a novel disease gene for JS, CEP290 was further characterized. Analysis of the deduced amino acid (AA) sequence revealed 13 putative CC domains, a region with homology to SMC chromosomal segregation ATPases, a bipartite nuclear localization signal, six RepA/Rep+ protein KID motifs, three tropomyosin homology domains and an ATP/GTP binding site motif A (Sayer et al., 2006). The CEP290 gene as currently annotated, spans 54 exons with the coding region starting in exon 2_(NM_025114.3). Given the broad allelic spectrum, the complexity of associated phenotypes and the presumed influence of modifier genes, the establishment of genotype-phenotype correlations poses a major challenge.

Variants in *CEP290*

Mutations

So far, <u>112</u> distinct mutations have been identified (<u>Figure 1, Supp. Table S1, NM 025114.3</u>). The vast majority of *CEP290* mutations are truncating, with <u>40_nonsense and 48 frameshift</u>_ mutations reported so far. All frameshifts are caused by small deletions or insertions, with the exception of two indels (c.381_382delinsT and c.5865_5867delinsGG). Three deletions and one duplication directly lead to a premature termination codon (PTC) without the incorporation of Deleted: and a myosin-like domain

Deleted: the
 Deleted: protein
 Deleted: CEP290

Deleted: 111 Deleted: Table 1 Deleted: 39

Human Mutation

novel AAs (c.1550del, <u>c.2906dup</u>, c.3175del and c.5046del). Taking into account the position of the PTC relative to the <u>ultimate 3'</u> exon–exon junction, <u>85</u> truncating mutations are assumed to undergo nonsense mediated decay (NMD) (Nagy and Maquat, 1998). However, the p.Arg151X mutation was shown to result in alternative transcripts, lacking exon 7 or both exon 7 and 8, leaving the open reading frame intact (Littink et al., 2010). Three truncating mutations located in the last exon are expected to escape NMD and render a protein product (c.7318_7321dup, c.7341dup and c.7366_7369del).

In addition to the <u>88</u> truncating mutations caused by small variations, a large heterozygous deletion was recently identified in a patient with cerebello-oculo-renal syndrome (CORS), The deleted region spanned 76,844 bp at the genomic level, encompassing the last 13 coding exons of *CEP290*, the entire *C12orf29* gene and part of the *C12orf50* gene (CEP290:c.5709+2352 54 C12orf50:c.290–1375 77del) (Travaglini et al., 2009).

The remaining 23 mutations comprise <u>3 missense mutations and 20 mutations predicted to</u> influence splicing. Of the latter, 12 mutations affect consensus donor or acceptor splice sites, whereas three mutations are located within 20 nucleotides surrounding the exon. The first two, c.103-13_103-18del and c.6271-8T>G, were considered to be likely pathogenic because they decreased the scores of the normal splice sites and because they are absent in more than 115 control individuals (Tory et al., 2007). The third one, c.1711+5A>G, was presumed to result in both abnormally and normally spliced transcripts (Perrault et al., 2007). Splice site prediction scores, however, remain unchanged for this variant (Alamut v.1.5, data not shown). In addition, an aberrant splicing pattern was predicted for the c.1824G>A mutation affecting the last nucleotide of exon 18 (Coppieters et al., 2010). Surprisingly, the most recurrent mutation, c.2991+1655A>G, represents a deep intronic mutation. It creates a strong splice donor site that

Deleted: ,
Deleted: and c.2906dup
Deleted: -most
Deleted: 84
Deleted: be

Deleted: In contrast, three

Deleted: to

Deleted: 87

Deleted: following copy number profiling of the *CEP290* gene in nine patients carrying a single *CEP290* mutated allele (4 CORS, 1 MKS and 4 LCA)

Deleted: three

Deleted: (Table 1)

Deleted: reported
Deleted: probably

results in the insertion of a 128-bp cryptic exon between exons 26 and 27, thereby leading to a PTC immediately downstream of exon 26 (p.Cys998X) (den Hollander et al., 2006). Apart from these 17 substitutions, two deletions and one indel overspan an intron-exon boundary (c.2218-4_2222del, c.2218-15_2220del and c.3310-1_3310delinsAA).

So far, only three missense variants have been described with a probable pathogenic effect (see "Polymorphisms and unclassified variants" for other missense variants). Two affect the start codon (c.1A>G and c.2T>A) whereas the third, p.Trp7Cys, affects a highly conserved AA and is predicted to <u>disrupt protein function according to SIFT</u>, PolyPhen and Grantham matrix. However, the mutant protein was correctly localized at centrosomes in mouse jnner medullary collecting duct (IMCD-3) cells, suggesting a pathogenic mechanism different <u>from</u> mislocalization (Valente et al., 2006).

1	Deleted: at the N-terminus of the protein. This change
{	Deleted: affect
{	Deleted: , but
-{	Deleted: murine
1	Deleted: than

Interestingly, some mutations cluster in the same region or even codon, suggesting the existence of mutation hotspots. In nine coding regions, two or more mutations arose either with a different effect on protein level (start codon; c.381<u>-387</u>; c.1859<u>-1862</u>; c.3175<u>-3176</u>; c.4965<u>-4966</u>; c.5515<u>-</u>5537; c.5865<u>-5867</u>; c.6869<u>-6870</u>) or with an identical predicted protein effect (c.4114<u>-</u>4116; c.4962<u>-</u>4966). In addition, one donor and three acceptor splice sites displayed more than one mutation (c.180+1G>T and c.180+2T>A; c.2218-2A>C, c.2218-4_2222del and c.2218-15_2220del; c.3104-1G>A and c.3104-2A>G; c.3310-1_3310delinsAA and c.3310-1G>C). In general, mutations are scattered throughout the protein, with some clustering in CCs III, XI and XII<u>(Figure 1)</u>. Coiled-coils might be involved in the overall conformation of CEP290. Therefore, mutations in them might affect the accessibility of interacting proteins (Schafer et al., 2008).

Deleted: _382delinsT, c.384_385del and c.384_387del
Deleted: _
Deleted: del and c.1860_1861del
Deleted: dup, c.3175del and c.
Deleted: del
Deleted: _4966del and c.4966G>T
Deleted: _5518del and c.5519_
Deleted: del
Deleted: _
Deleted: delinsGG and c.5866G>T
Deleted: del and c.
Deleted: del
Deleted: _4115del and c.4115_
Deleted: del
Deleted: _4963del and c.4965_
Deleted: del
Deleted: Mutations located in the SMC1-like domain might influence intraflagellar protein trafficking (Chang et al., 2006).

2

Human Mutation

60

al., 2006).

A total of 83 mutations are unique whereas 26 mutations have been reported in less than 10 families (Supp. Table S1). A few other mutations occurred multiple times and might even represent founder mutations. The most recurrent one is c.2991+1655A>G. In northwestern Europe, this mutation occurs in up to 26% of all LCA cases (den Hollander et al., 2006; Perrault et al., 2007; Coppieters et al., 2010). In Southern Europe, Korea, Southern India and Saudi-Arabia, however, <u>c.2991+1655A>G</u> has a significantly lower prevalence (Simonelli et al., 2007; Vallespin et al., 2007; Seong et al., 2008; Li et al., 2009; Sundaresan et al., 2009). The secondmost frequent mutation, p.Lys1575X, was so far only reported in probands originating from France (Lille) and northern Belgium (Brancati et al., 2007; Perrault et al., 2007; Coppieters et al., 2010). Haplotype analysis in seven non-consanguineous families revealed a common intragenic allele but distinct extragenic haplotypes, suggesting an ancient mutation (Perrault et al., 2007). For p.Ala1832ProfsX19, allele sharing analysis in two families with MKS originating from Kosovo and Kosovo-Albania was in favor of a common founder haplotype encompassing approximately 3 Mb (Frank et al., 2008). In contrast, different haplotypes in two MKS families of Tunisian and French origin point to a mutation hotspot for p.Asp128GlufsX34 (Baala et al., 2007a). All mutations segregated in the parents (as far as this could be assessed), with the exception of p.Gln2111X, which was reported to arise *de novo* in a patient with CORS (Sayer et

In 18 patients, only one mutation was identified. This might be due to an inability of standard PCR-based techniques to identify mutations such as deep intronic variants, large genomic rearrangements or regulatory mutations located in promoter or enhancer/silencer elements. On the other hand, the heterozygous *CEP290* mutation might represent a modifying allele, potentially influencing the clinical expression of two <u>AR</u> mutations in another ciliary gene. Deleted: 79 Deleted: 29 Deleted: Table 1

Deleted: mutation

Deleted: this mutation Deleted: been described to have Deleted: in LCA Deleted: Contrary to the third-most frequent mutation p.Gly1890X that was found in 11 families worldwide, t Deleted: North

Deleted: of the latter

Deleted: recurrent
Deleted: rather than a founder effect

Deleted: could be

Deleted: recessive

<u>Similar arguments could also apply for five families with isolated NPHP in which no mutations</u> could be identified at all, despite linkage to a region containing *CEP290* (Helou et al., 2007). <u>Alternatively</u>, another as yet unidentified NPHP gene could segregate in linkage disequilibrium

Polymorphisms and unclassified variants

Several polymorphisms have been described in CEP290, for which we refer to dbSNP (http://www.ncbi.nlm.nih.gov/projects/SNP) and Brancati and colleagues (Brancati et al., 2007). They were predicted not to alter splicing patterns or to impair protein function, and/or were present in over 2% of parents of affected individuals (Brancati et al., 2007). In addition, the pathogenic potential of some variants is indefinite (Supp. Table S2). Indeed, for several missense variants, in silico predictions are not conclusive (PolyPhen, SIFT and Grantham matrix). The first one is p.Asp664Gly. Despite the identification of this variant in a heterozygous state in a patient with JS and renal involvement, p.Asp664Gly also occurred in a healthy parent of another family, but not in his affected child (Brancati et al., 2007; Helou et al., 2007). Interestingly, Tory and colleagues screened this variant together with three other CEP290 missense variants (p.Glu277Gln, p.Lys838Glu and p.Arg1746Gln) in the context of modifier identification in the following three cohorts: 1) 13 patients carrying *NPHP1* mutation(s) with neurological symptoms; 2) 77-82 patients carrying NPHP1 mutation(s) without neurological symptoms and 3) 132-154 healthy control subjects. No significant difference in frequencies was found among these three cohorts, however (Tory et al., 2007). Other missense variants of unknown significance are p.Leu906Trp, p.Asn2228Lys, p.Ala1566Pro and p.Leu1694Pro (Brancati et al., 2007; Coppieters et al., 2010). The latter two were found in two LCA patients, in compound heterozygosity with a nonsense and splice site mutation, respectively, and segregated in healthy parents (Coppieters et

Deleted: These

Deleted: Again

Deleted: in

Deleted: Table 2
Deleted: F

Deleted: four

Human Mutation

al., 2010). Two additional unclassified variants include in-frame deletions. A p.Glu1554del variant segregated with p.Phe1950LeufsX15 in an LCA patient (Perrault et al., 2007), while a heterozygous p.Lys2437del variant was identified in a patient with isolated NPHP originating from consanguineous parents (Helou et al., 2007) (Supp. Table S2).

Deleted: Table 2

database

Deleted: is

Deleted: the locus-specific mutation

Mutation database

To provide a clear overview of all mutations and variants identified so far in *CEP290*, we developed <u>CEP290*base*</u> (medgen.ugent.be/cep290*base*). This <u>locus-specific mutation</u> database uses a novel scheme in which both genomic and phenotypic data <u>are</u> available, providing the possibility to link patients and their phenotypes to detailed variant information, and vice versa. Information on variants can be retrieved using the Overview page or the Mutation Browser.

The displays all unique variants following HGVS Overview page guidelines (http://www.hgvs.org/mutnomen) (NM_025114.3), with their occurrence and links to dbSNP, UniProt (http://www.uniprot.org) OMIM and (http://www.ncbi.nlm.nih.gov/sites/entrez?db=omim). addition. In а scaled graphical representation of variants in the CEP290 protein is shown. Variants in the Overview or image are linked to their variant-specific page which, if available, includes the protein domain (Sayer et al., 2006), as well as the frequency in control individuals, the RNA effect and the estimate of pathogenic probability (Stone, 2003). For truncating mutations, it is indicated whether mRNA might be subjected to NMD (Nagy and Maquat, 1998), and for missense mutations, the Grantham score is provided (Grantham, 1974). The database also links to SIFT (http://sift.jcvi.org) and PolyPhen (http://genetics.bwh.harvard.edu/pph) prediction servers, using the CEP290 GI number (109255233) and UniProt ID (015078) for automated input, respectively. Links to NetGene2

Deleted: o

(http://www.cbs.dtu.dk/services/NetGene2) and the Berkeley Drosophila Genome Project (http://www.fruitfly.org/seq_tools/splice.html) are available for splice site mutations. A list of patients reported to carry the selected variant completes the variant_specific_page. For each patient, information_regarding_disease, gender, age, origin, segregation_and_parental consanguinity is provided. Importantly, reported mutations are displayed using the nomenclature of the original publication, allowing easy retrieval of the variant from literature. If available, phenotypic information on ocular, renal, neurological and other signs appears by selecting the patient's ID. Disease calling was performed following the classification of Valente and coworkers, and is based on the involvement of different organ systems (Valente et al., 2008). Of note, these phenotypes might be incomplete due to factors such as a clinical investigation in an early disease stage.

The Mutation Browser enables custom querying. Both a quick and a more advanced search <u>are</u> <u>possible</u>. The quick search uses a selection of variant nomenclatures or patient IDs to list all patients carrying the selected variants, or all variants present in the selected patients. In the advanced search, different parameters can be set within and between three sections: variant, patient and source information. As in the quick search, the user has the choice between two output options: a mutation or patient list. Finally, users can submit novel or known variants they have identified.

In addition to the availability of phenotypic data in CEP290*base*, jt also includes variants in other genes that co-occur with *CEP290* variants, thereby providing a unique opportunity to link modifiers to associated clinical manifestations (see "Epistatic effect of other components of the ciliary proteome"). The database is running on MySQL. PHP and JavaScript were used to develop the web-based interface.

eleted:
eleteu:
eleted: specific

Deleted: specific

Deleted: who made a clear distinction between	
Deleted: n	
Deleted: early	

Deleted: can be performed

Deleted: the novel database scheme of **Deleted:** the database

Deleted: Mutation nomenclature is based on the NCBI RefSeq NM_025114, according to HGVS guidelines (http://www.hgvs.org/mutnomen).

Human Mutation

Biological relevance

Expression

The original KIAA0373 mRNA was found in kidney and ovary, and to a lesser extent in human thymus, prostate and testis tissue (Nagase et al., 1997). In addition, it was present in centrosomes from a human lymphoblastoid cell line (KE-37) (Andersen et al., 2003). The independently cloned 3H11Ag mRNA was extensively distributed in embryonic tissue and in different human cancerous tissues, but not in corresponding normal human tissues (Chen and Shou, 2001). The 150 C-terminal AAs of 3H11Ag appeared to be responsible for nuclear translocation. In addition, cytoplasmic presence was also established (Guo et al., 2004). Consistent with the localization of the KIAA0373 protein, CEP290 was found at centrosomes of both ciliated and non-ciliated cells (Chang et al., 2006; Sayer et al., 2006; Valente et al., 2006). This centrosomal localization of CEP290 is dynamic throughout the cell cycle, with redistribution to the cytosol starting in prometaphase (Sayer et al., 2006). During the interphase, two or four prominent spots were observed in the G1 and G2 phase. In the G0 phase, CEP290 was found on both the daughter and mother centriole, the latter from which the primary cilium is assembled (Tsang et al., 2008). Although the centrosomal localization is microtubule- and dynein-independent (Chang et al., 2006; Sayer et al., 2006), a major fraction of CEP290 is recruited to centriolar satellites along polymerized microtubules (Kim et al., 2008).

In the rod-dominated mouse retina, CEP290 was detected in the connecting cilia, and to a lesser extent in <u>the</u> inner segments (Chang et al., 2006; Sayer et al., 2006). Expression was also established in primate cone photoreceptors (Cideciyan et al., 2007). In olfactory sensory neurons, CEP290 <u>localizes</u> to dendritic knobs (McEwen et al., 2007), <u>A recent study on differential gene</u> expression in the ventricular myocardium of newborn piglets identified CEP290 as being three-

Deleted: human

Deleted: expressed

Deleted: is localized

Deleted: Similar to 3H11Ag, CEP290 showed both cytoplasmic and nuclear localization .

fold more enriched in the right compared with the left ventricle (Torrado et al., 2010). Knockdown experiments in zebrafish using morpholinos caused defects reminiscent of JS, comprising retinal, cerebellar and otic cavity developmental abnormalities as well as pronephric cyst formation, ectopic brain tissue in the fourth ventricle and an abnormal mid-to-hindbrain region associated with hydrocephalus (Sayer et al., 2006; Schafer et al., 2008). Alternatively spliced transcripts/isoforms were identified by us in lymphocytes (data not shown) and observed as bands of low molecular mass on immunoblot analysis in bovine retinal extracts (Chang et al., 2006).

Interaction with other (ciliary) proteins and function

Using a yeast two-hybrid screen and co-immunoprecipitation, Sayer and colleagues identified an interaction between the N-terminal third of CEP290 (exons 2-21) and the C-terminal two thirds of the Activation Transcription Factor 4 (ATF4) protein. Moreover, CEP290 was able to activate ATF4-mediated transcription (Sayer et al., 2006). ATF4 has a protective function by regulating the adaptation of cells to metabolic and oxidative stress, and is required for skeletal and lens development, and haematopoiesis (Ameri and Harris, 2008). In addition, association with $G_{\gamma 13}$ and G_{olf} was identified in mouse olfactory epithelial tissue, suggesting a role of CEP290 in G protein trafficking during olfactory perception (McEwen et al., 2007).

Moreover, CEP290 interacts with several centrosomal and ciliary proteins. Coimmunoprecipitation experiments using mouse or bovine retinal extracts showed that CEP290 is in complex with dynactin subunits $p150^{Glued}$ and p50-dynamitin, kinesin subunit KIF3A, kinesinassociated protein (KAP3), the pericentriolar components γ -tubulin and pericentrin, the centriolar marker centrin, PCM1, ninein, SMC1, SMC3, retinitis pigmentosa GTPase regulator (RPGR^{ORF15}) and RPGR-interacting protein 1 (RPGRIP1), but not with nucleophosmin, NPHP5

:¶
antisense :
: oligonucleotides
: being

Deleted: Deleted: of a human fetal brain expression library Deleted: corresponding with

Deleted: can function both as a transcriptional activator and repressor. The protein also plays Deleted: role Deleted: in Deleted: two components of the olfactory G protein, Deleted: ,

Deleted: PCM1,

Deleted: pericentrin,

Human Mutation

or RP1 (Chang et al., 2006). In mouse olfactory epithelial tissue, association with $p150^{Glued}$, KIF3A, RPGR^{ORF15} and γ -tubulin, but not BBS4 and IFT88, was also observed (McEwen et al., 2007). Of note, a subsequent study showed that pericentrin, γ -tubulin, and centrin do not exactly co-localize with CEP290 (Kim et al., 2008).

Recently, a potential role for CEP290 in primary cilium assembly was established. Knock-down of CEP290 using siRNAs in human retinal pigment epithelial cells caused a dramatic alteration in the ability of cycling cells to assemble primary cilia on the one hand, and a disrupted migration of mother centrioles to the cell cortex and primary cilia loss in quiescent cells on the other hand (Kim et al., 2008; Tsang et al., 2008). This observation might – at least partially - be attributed to the association of CEP290 with two proteins. First, CEP290 was found to be recruited to centriolar satellites by PCM-1, which is required for the organization of the cytoplasmic microtubule network, Both depletion and overexpression of CEP290 results in redistribution of PCM-1, thereby possibly influencing the transport function of PCM-1 granules between the cytosol and centrosome (Kim et al., 2008). In addition, CEP290 recruits Rab8a, a small GTPase required for ciliary membrane elongation, at centrosomes and cilia (Kim et al., 2008; Tsang et al., 2008). The interaction with Rab8a requires the CEP290 AAs 1208-1695 (Tsang et al., 2008). In growing cells (not yet capable of ciliogenesis), the latter function of CEP290 is probably inhibited through an interaction with CP110, which prevents CEP290-dependent Rab8a ciliogenesis (Tsang et al., 2008). Truncating CEP290 mutants defined the following aminoterminal regions necessary for and sufficient to bind CP110: AAs 1-366, AAs 221-366 and AAs 362-822. The binding region of CP110 consists of AAs 1-223, with major involvement of AAs 67-82 (Tsang et al., 2008).

Deleted: the pericentriolar components Deleted: and Deleted: , Deleted: the centriolar marker

Deleted: At f

Deleted: a major component of centriolar satellites that

Deleted: and cooperates with the BBS complex

Deleted: in cooperation with a core complex of BBS proteins

Interestingly, several other CEP290-interacting proteins are also associated with ciliopathies (<u>Table 1</u>). A first one is RPGR. Although a yeast two-hybrid screen could not identify a direct interaction with CEP290, co-immunoprecipitation assays suggested complex formation and both proteins co-localized in IMCD-3 cells and dissociated mouse rods (Chang et al., 2006). Mutations in *RPGR* account for approximately 70-90% of X-linked retinitis pigmentosa (RP) and mainly occur in isoforms containing the carboxy-terminal exon open reading frame 15 (RPGR^{ORF15}), which are highly expressed in connecting cilia of photoreceptors (Hong et al., 2003; Shu et al., 2007). In the *rd16* mouse (see "Animal models"), mutant CEP290 binds RPGR^{ORF15} more avidly, leading to aggregation of RPGR^{ORF15} in the inner segments and redistribution of rhodopsin and arrestin throughout the plasma membrane (Chang et al., 2006).

A second example of a CEP290-interacting protein also associated with ciliary disease is NPHP5, which is associated with SLS. The protein binds calmodulin and is in complex with RPGR^{ORF15} (Otto et al., 2005). Despite the absence of a complex between CEP290 and NPHP5 in retinal extracts (Chang et al., 2006), NPHP5 was shown to specifically bind <u>a</u> region of CEP290 encompassing CCIII and part of the SMC homology domain (AAs 696 to 896) (Schafer et al., 2008). <u>Combined knock-down of both proteins in zebrafish embryos synergistically augmented</u> phenotypes seen in embryos treated with morpholinos for either *NPHP5* or *CEP290*. In *Xenopus laevis*, expression of the NPHP5-binding domain of CEP290 caused substantial neural tube closure defects that were similar to the effect of *NPHP5* knock-down. Moreover, co-expression of the NPHP5-binding domain of CEP290 with NPHP5 itself rescued the phenotype, supporting a physical interaction between both proteins *in vivo* (Schafer et al., 2008).

Both TMEM67 (MKS3) and CC2D2A are also CEP290-interacting proteins involved in disease. Mutations in both genes may cause MKS, JS and COACH syndrome, which are all severe

Deleted	Table 3	
Deleted	photoreceptors	

Deleted: subsequent

Deleted: The *NPHP5* gene was first described as a disease gene for SLS, correlating well with its expression in connecting cilia and outer segments (OS) of photoreceptors and primary cilia of renal epithelial cells.

Deleted: the N-terminal

Deleted: Knock-down assays in zebrafish embryos of either NPHP5 or CEP290 leads to very similar neurological abnormalities and pronephric cysts, while combined knockdown of both proteins synergistically augmented these phenotypes.

. {	Deleted: MKS3
-{	Deleted: add to
-{	Deleted: that are
-{	Deleted: are

Human Mutation

ciliopathies with multi-systemic involvement (Smith et al., 2006; Baala et al., 2007b; Gorden et al., 2008; Tallila et al., 2008; Brancati et al., 2009; Doherty et al., 2009). <u>TMEM67 is involved in</u> both ciliary structure/function and endoplasmic reticulum-associated degradation of surfactant protein C (Tammachote et al., 2009; Wang et al., 2009). Morpholino experiments in zebrafish revealed a strong genetic interaction between *cep290* and <u>Tmem67</u>, with more severe phenotypic effects following knock-down of both genes, compared with depletion of only one of both (Leitch et al., 2008). *CC2D2A* is presumed to act as a sensor for intracellular calcium and is part of the basal body complex from which the cilium is assembled, where it co-localizes with CEP290 (Gorden et al., 2008; Tallila et al., 2008). The interaction between both proteins involves the 998 N-terminal AAs of CC2D2A and a fragment of CEP290 containing CCs IV-VI (AAs 703-1130). A functional interaction was observed in the pronephros of *sentinel* zebrafish (Gorden et al., 2008).

The involvement of CEP290 in the above-mentioned ciliary complexes strongly supports a role in ciliogenesis and ciliary trafficking. The (tissue-specific) access of its binding partners is possibly regulated by conformational changes of CEP290, since both the N-terminal (AAs 1-695) and C-terminal (AAs 1966-2479) domains are involved in homo- and heterodimeric interactions (Schafer et al., 2008).

Animal models

So far, two naturally occurring animal models are known with mutations in *cep290*: a pedigree of Abyssinian cats and the *rd16* mouse. Both models display AR progressive retinal degeneration, albeit with a different age-of-onset, possibly related to a differential effect of both distinct *cep290* mutations. Interestingly, no associated cerebellar or renal abnormalities are present in both

Deleted: MKS3

Deleted: mks3

Deleted: proteins

Deleted: is expressed in many adult tissues, with high levels in prostate, pancreas, lung, retina, kidney and fetal brain and kidney (Gorden et al., 2008; Noor et al., 2008). It

Deleted: n
 Deleted: internal
 Deleted: ,

Deleted: overall

Deleted: animal

Deleted: Contrary to pleiotropic effects of *CEP290* in human

models (Chang et al., 2006; Menotti-Raymond et al., 2007). The cat and mouse orthologues show 92.1% and 87% AA sequence homology to human CEP290, respectively (Menotti-Raymond et al., 2007) (<u>www.ensembl.org</u>).

The genetic defect for the Abyssinian cat retinal degeneration (rdAc) consists of a nucleotide substitution in intron 50 that creates a strong canonical splice donor site (IVS50+9T>G), resulting in a prolongation of exon 50 with 4bp, and a frameshift with a PTC three AAs downstream. The translated protein is truncated by 159 AAs, corresponding to the loss of the KIDV and KIDVI domains (Menotti-Raymond et al., 2007). The age of onset of the first ophthalmoscopic signs is highly variable, with 12-18 months of age in the majority of animals. Full-field flash electroretinography (ERG) at the age of eight months shows a reduction of mainly a-wave amplitudes, whereas reduced sensitivity of the pupillary light reflex is observed with disease progression. (Thompson et al., 2010; Narfstrom et al., 2009). Vacuolization and degeneration of membranes in the basal part of the rod <u>outer segments (OS)</u> in early stages of disease point to potential defects in protein transport through the connecting cilia (Menotti-Raymond et al., 2007).

In contrast to rdAC, the *rd16* mouse displays an early-onset retinal dystrophy, caused by a homozygous in-frame deletion of 897 bp (AAs 1599-1897) that covers <u>the</u> majority of the myosin-tail homology region. Early fundus examinations revealed white retinal vessels and large pigment patches, in addition to severely reduced ERG responses for both rods and cones. The mutation causes early progressive degeneration of the OS and reduction in thickness of the outer nuclear layer (Chang et al., 2006). In addition, considerable thickening of the inner nuclear and plexiform layer were observed in mid- and central retinal regions, together with an enlargement of nuclei of all retinal cell types (Cideciyan et al., 2007). Interestingly, *rd16* mice displayed severe early-onset olfactory dysfunction. Although the olfactory sensory neurons have

Deleted: Ensembl

Deleted: causal gene

(Deleted:
$\left(\right)$	Deleted: the inclusion of an additional 4 bp
ĺ	Deleted: -insertion
ĺ	Deleted: at the end of

Deleted: m

Deleted: The age of onset of the first ophthalmoscopic signs is highly variable, with 12-18 months of age in the majority of animals

Deleted: a

Deleted: functions

Deleted: displayed

Human Mutation

struc of th the c prote Both thera LCA exist speci thera Bain Clir

structurally intact cilia with correct localization of <u>CEP290 to dendritic knobs</u>, two components of the olfactory G protein that are in complex with <u>CEP290</u>, $G_{\gamma 13}$ and G_{olf} , were undetectable in the cilia of *rd16* mice, suggesting a potential role for CEP290 in the regulation of olfactory G protein trafficking (McEwen et al., 2007).

Both models offer interesting opportunities for *in vivo* research on CEP290 function and therapeutic intervention. The progressive nature of retinal disease in *rd16* mice resembles human LCA, and therefore constitutes an excellent basis to study disease development. Moreover, the existence of a large animal model such as rdAC is an asset for the implementation of gene-specific therapy for retinal degeneration, as already shown by successful *RPE65*-replacement therapy in Briard dogs <u>which preceded human phase I clinical trials (Acland et al., 2001;</u> Bainbridge et al., 2008; Hauswirth et al., 2008; Maguire et al., 2008; Maguire et al., 2009).

Clinical and diagnostic relevance

CEP290-linked phenotypes

Leber Congenital Amaurosis (LCA)

Leber Congenital Amaurosis (LCA, MIM[204000]) is the earliest and most severe form of all inherited retinal dystrophies, causing profound visual deficiency, nystagmus and an undetectable or severely reduced ERG in the first year of life. Approximately 20% of all blind children are thought to suffer from this disease, which is mainly inherited in an AR manner. So far, 15 disease loci (14 genes) are known, which together account for ~70% of cases (den Hollander et al., 2008). In 2006, *CEP290* was identified as a disease gene for LCA, with the deep intronic substitution c.2991+1655A>G as causal mutation. Targeted screening of this mutation in 76

	Deleted: In general, LCA is inherited in an AR manner.
.1	Deleted: approximately

Deleted: causal

Deleted: the initial

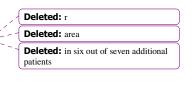
Deleted: ACIII CNGA2 and different

G protein-coupled olfactory receptors

Deleted: . These data suggest

Deleted: preceding

unrelated LCA patients revealed its presence in 16 additional probands (21%), suggesting a major involvement of *CEP290* in LCA (den Hollander et al., 2006). Subsequent studies corroborate that *CEP290* mutations are highly recurrent in Northwestern Europe (Perrault et al., 2007; Coppieters et al., 2010), but contribute to only a minor part of LCA in Italy, Saudi Arabia, Spain, Southern India and Korea (targeted screening of c.2991+1655A>G in the latter three populations) (Simonelli et al., 2007; Vallespin et al., 2007; Seong et al., 2008; Li et al., 2009; Sundaresan et al., 2009). Interestingly, c.2991+1655A>G was not identified in 126 Spanish patients with earlyonset RP, suggesting specificity of this mutation for LCA (Vallespin et al., 2007).


The *CEP290*-related phenotype consists of a severe cone-rod type retinal dystrophy (Perrault et al., 2007), with best-corrected visual acuity of counting fingers or worse in the majority of cases (Walia et al., 2010). Early fundus changes include white dots or a marbleized or salt and pepper aspect, and progress to <u>midperipheral</u>_nummular or spicular pigmentation (Littink et al., 2010; den Hollander et al., 2006; Perrault et al., 2007; Coppieters et al., 2010). A detailed study of the retinal architecture of human *CEP290*-mutant retinas identified profound retinal remodeling in the peripheral rod-rich regions, which was characterized by <u>thickening of inner retinal layers. In</u> the cone-rich foveal region, however, no <u>clear alterations were observed</u>. This difference in rod and cone degeneration may point to a distinct function of CEP290 in both cell types (Cideciyan et al., 2007). Spectral-domain optical coherence tomography confirmed preservation of the outer nuclear layer in the central macula, with distorted inner retina (Pasadhika et al., 2009). No abnormalities were seen in visual brain pathway anatomy (Cideciyan et al., 2007). Apart from the ocular phenotype, neurological involvement (mental retardation [MR] or autism) was observed in approximately $11_{\pi}33\%$ of cases with *CEP290*-related LCA, which is more frequent than in patients with mutations in other LCA genes (Hanein et al., 2004; Perrault et al., 2007; Coppieters

Deleted: mainly originating from Northern Europe and Canada, Deleted:

Deleted: indeed

Deleted: with a

Deleted: abnormal expansion
Deleted: degeneration or thinning was
Deleted: n

Deleted: 5

Human Mutation

et al., 2010). Four probands presented with either <u>(transitory)</u> hypotonia or ataxia (Perrault et al., 2007). Interestingly, some patients displayed signs suggestive for involvement of other ciliary processes. One patient presented with recurrent otitis media (Coppieters et al., 2010), and LCA patients homozygous for c.2991+1655A>G exhibited severe olfactory dysfunction, whereas mild to severe microsmia was observed in heterozygous carriers (McEwen et al., 2007). <u>Obviously, MR, autism, ataxia and hypotonia may be signs of the mild end of the clinical spectrum of systemic phenotypes related to *CEP290* rather than of true LCA as isolated retinal disease.</u>

Nephronophthisis (NPHP) and Senior-Loken syndrome (SLS)

Nephronophthisis (NPHP, MIM[256100]) is the most frequent genetic cause for end-stage renal disease (ESRD) in the first three decades of life. Infantile, juvenile and adolescent forms have been described, Key histology findings are tubulointerstitial fibrosis, tubular atrophy, tubular dilatation and cyst formation. Renal ultrasound (US) reveals increased cortical echogenicity, loss of corticomedullary differentiation and corticomedullary cysts (Salomon et al., 2009; Simms et al., 2009). In 10-15% of cases, juvenile NPHP is accompanied by retinal involvement, which is called Senior-Loken syndrome (SLS, MIM[266900]). Based on the degree of retinal degeneration, both early-onset and late-onset types have been described. NPHP and SLS are AR disorders. So far, nine genes are known to cause NPHP; <u>some of them are associated with SLS</u>. (Hildebrandt and Zhou, 2007; Hildebrandt et al., 2009). *CEP290* mutations have been described in eight families with SLS, two of which present with intrafamilial clinical variability of neurological and/or renal involvement_(Tory et al., 2007). In six families, two mutations segregated, while in two other families, one heterozygous *CEP290* mutation occurred in combination with a homozygous mutation in *NPHP1* and a heterozygous mutation in *NPHP4*, respectively (Helou et al., 2007; Tory et al., 2007). The age at which ESRD occurred ranged from

Deleted: depending on the age of onset of ESRD

Deleted: six

Deleted: , respectively

Deleted: ESRD
Deleted: between

5 to 40 years and retinal degeneration was usually severe (Sayer et al., 2006; Helou et al., 2007; Tory et al., 2007; Coppieters et al., 2010). Jt is presumed that *CEP290* mutations do not represent a major cause of NPHP/SLS, since large-scale mutation screening in almost 100 families with SLS (Helou et al., 2007; O'Toole et al., 2007) and 21 families with isolated NPHP, revealed mutations in only two patients with SLS and a heterozygous unclassified variant in one patient with NPHP (Helou et al., 2007).

Joubert syndrome (JS) and Joubert syndrome related disorders (JSRD)

Joubert syndrome (JS, MIM[213300]) is a genetically heterogeneous disorder of which the main phenotypic hallmarks are hypotonia, ataxia, psychomotor delay and variable occurrence of oculomotor apraxia and neonatal breathing abnormalities. The most consistent feature, the "molar tooth sign" (MTS), is visible on magnetic resonance imaging (MRI), and consists of a deep interpeduncular fossa with narrow isthmus, thickened, elongated and mal-oriented superior cerebellar peduncles and cerebellar vermis aplasia/hypoplasia (Doherty, 2009). In addition to pure JS, a range of disorders exists that share the MTS and the main neurological signs of JS, yet are distinct due to the involvement of other organs. They are called Joubert syndrome-related disorders (JSRD) and consist of five major subgroups: "JS associated with retinopathy, JS associated with renal involvement, cerebello-oculo-renal syndrome (CORS or JS-SLS), COACH syndrome (MIM[216360]) and orofaciodigital syndrome type VI (OFDVI, MIM[277170]) (Valente et al., 2008).

<u>Currently</u>, Jess than 50% of <u>AR</u> cases can be attributed to mutations in <u>nine</u> genes, which all encode ciliary proteins, as far as known (Valente et al., 2008; Bielas et al., 2009; Doherty, 2009; Valente et al., 2010). *CEP290* mutations are a major cause of JSRD, in particular the CORS

Deleted: AR

Deleted: and

Deleted: 34

Deleted:

RP (Helou et al., 2007).

Deleted: One exception is patient F848,

at the age of 40 and late-onset progressive

heterozygous for one *NPHP4* and one *CEP290* mutation, who displayed ESRD

Deleted: a unique constellation of midbrain-hindbrain abnormalities, seen Deleted: .	
Deleted: essentially	

Deleted: from JS

Deleted:

Deleted: Based on additional features, Valente and coworkers defined the following five subgroups:

. {	Deleted: L
• -{	Deleted: seven
-{	Deleted: (nine loci)

Human Mutation

subgroup. Approximately 50% of cases with CORS are associated with *CEP290* mutations. In contrast, only a small fraction (~20%) of *CEP290* mutations contributes to the other JSRD subgroups (Valente et al., 2008). So far, only two <u>families with classic JS harbored *CEP290* mutations, <u>one of which displayed intrafamilial variability of the renal phenotype (Valente et al., 2006; Brancati et al., 2007). In most cases, NPHP was of the juvenile type, with development of renal failure toward the end of the first decade or early in the second decade, <u>whereas retinal degeneration mostly consisted of congenital blindness</u>. Jnterestingly, several patients displayed associated features reminiscent of other subgroups or overlapping ciliopathies, <u>including cleft</u> palate, abnormal liver ultrasound, elevated liver enzymes, Hirschsprung disease, occipital (meningo)encephalocele, atrial/ventricular septal defects, cardiomegaly, postaxial polydactyly, *situs inversus*, lobulated tongue, retinal coloboma, empty sella, hepatic fibrosis, <u>recurrent otitis</u> media and hearing loss (Valente et al., 2006; Brancati et al., 2007; Coppieters et al., 2010).</u></u>

Deleted: patients

Deleted: one

Deleted: However, renal failure at an age of 4 and 25 was also reported (Brancati et al., 2007; Tory et al., 2007). Retinal degeneration mostly consisted of congenital blindness, although RP has also been described in a few patients (Brancati et al., 2007; Helou et al., 2007).

Deleted: . These features include

Meckel-Grüber syndrome (MKS)

Meckel-Grüber syndrome (MKS, MIM[249000]) is a neonatally lethal disorder characterized by combination of central nervous malformations (typically occipital а system [meningo]encephalocele), bilateral cystic kidney dysplasia, ductal proliferation in the portal area of the liver and postaxial polydactyly. Associated features may include cardiac abnormalities, developmental anomalies of external or internal genitalia, cleft palate, situs inversus and others. The worldwide incidence ranges from 1/13,250 to 1/140,000 live births (Alexiev et al., 2006). Some cases present with incomplete phenotypes that are called "Meckel-like syndrome" (MIM[208540]) and probably make up a clinical spectrum situated between JSRD and MKS. In addition, a phenotypic and genetic overlap was seen between MKS and BBS (see "Bardet-Biedl

syndrome (BBS)") (Karmous-Benailly et al., 2005; Leitch et al., 2008). MKS is inherited in an AR fashion with five genes (six loci) identified so far, all encoding centrosomal/ciliary proteins. Mutations in *CEP290* were identified in eight families with MKS and four families with Meckel-like syndrome, <u>further</u> supporting a role for *CEP290* in a wide range of phenotypes (Baala et al., 2007a; Frank et al., 2008).

Bardet-Biedl syndrome (BBS)

Bardet-Biedl syndrome (BBS, MIM[209900] is a complex multi-organ ciliopathy, characterized by <u>a variable combination of</u> retinal degeneration, obesity, hypogonadism, polydactyly, renal dysfunction and MR. Additional features consist of neurological impairment, speech deficits, craniofacial abnormalities, hearing loss, diabetes mellitus, metabolic defects, cardiovascular abnormalities, hepatic defects and Hirschsprung disease. In most cases, BBS is inherited <u>as an</u> AR <u>trait, with currently 14 genes known</u>, Notably, mutations in different genes have been described in the same patient. These modifiers affect either the expressivity or the overall penetrance of the phenotype (Zaghloul and Katsanis, 2009). In search of a genetic explanation for the partial clinical overlap between BBS and MKS, Leitch and coworkers identified *MKS1* and *CEP290* as disease genes for BBS. Interestingly, the homozygous p.Glu1903X *CEP290* mutation causing BBS was found together with a complex <u>TMEM67</u> allele, possibly influencing the phenotype (Leitch et al., 2008).

Deleted: in Deleted: fashion Deleted: for which Deleted: loci Deleted: are known

Deleted: MKS3

Deleted: 89

Genotype-phenotype correlations

For the majority of mutations, no clear-cut correlation could be established between the genotype and clinical expression. Despite <u>90</u> mutations reported exclusively in only one phenotype, 14 others segregated with two diseases while 8 were even associated with three or more phenotypes.

Human Mutation

In most cases, these phenotypes are partially overlapping, although few mutations were observed <u>to lead to strongly divergent disorders</u>, such as LCA and MKS. <u>Overall</u>, <u>mutations causing</u> JS(RD) tend to cluster in the second half of the gene, whereas mutations segregating with LCA, SLS and MKS are homogeneously distributed throughout the gene (Brancati et al., 2007; Valente et al., 2008) (<u>Supp. Table S1</u>).

For a few mutations, a genotype-phenotype correlation could be established, albeit to a limited extent. The most common mutation in JSRD, p.Gly1890X, was also described in two siblings with isolated LCA, in compound heterozygosity with c.2991+1655A>G (Cideciyan et al., 2007). Despite the severe retinal phenotype of these siblings and four other patients heterozygous for Gly1890X, a milder or even absent visual impairment was seen in eight of nine patients homozygous for p.Gly1890X, suggesting that this mutation might be less harmful for retinal function (Sayer et al., 2006; Valente et al., 2006; Brancati et al., 2007; Valente et al., 2008). Similarly, a compound heterozygous genotype c.2991+1655G>A/c.451C>T caused an earlyonset retinal dystrophy phenotype less severe than most CEP290-related LCA, probably due to the mild effect of both mutations (Littink et al., 2010). So far, c.2991+1655A>G has only been described in patients with isolated LCA. Since a small amount of wild-type product is still present, a dosage-dependent mechanism was proposed, in which complete loss of function of both alleles would lead to JS, whereas a residual CEP290 activity would be sufficient for normal cerebellar and renal function but not for correct retinal activity (den Hollander et al., 2006). However, subsequent identification of truncating mutations on both alleles in several LCA patients countered the latter hypothesis (Perrault et al., 2007). In addition, we identified c.2991+1655A>G in two patients with features suggestive of renal dysfunction, implicating that this mutation is possibly not exclusively associated with isolated LCA (Coppieters et al., 2010).

Deleted: in Deleted: M

Deleted: Table 1

Deleted: Interestingly, t

Deleted: the
 Deleted: mutation

Deleted: for

Deleted: stated

A similar hypothesis was proposed for certain other *CEP290* splice site mutations. It was a presumed that these do not lead to truncated proteins, but rather to (partial) deletion of one of the CCs. In contrast to truncating mutations, these do not seem to hamper normal neurologic development, <u>Examples are two first-degree cousins</u>, each carrying p.Leu1884ThrfsX23 on one allele, but a different *CEP290* mutation on the other. One of them harbored a nonsense mutation and presented with JS without renal involvement by the age of eight, whereas the other was heterozygous for c.4195-1G>A and suffered from SLS without neurologic symptoms (Tory et al., 2007). In addition, a homozygous splice site mutation segregated with SLS in a Turkish family (Sayer et al., 2006). However, in two other unrelated patients with neurological involvement, two distinct splice site mutations were detected. Of note, in both cases, one of both mutations does not affect a consensus splice site (c.1711+5A>G and c.6271-8T>G) (Perrault et al., 2007; Tory et al., 2007).

For all *CEP290*-related phenotypes, different degrees of neurological, ocular and renal involvement were observed between unrelated patients harboring the same *CEP290* genotype. A homozygous p.Lys1575X mutation was detected in four patients with isolated LCA and normal development, one patient with LCA and autistic behavior but normal MRI, one patient with LCA and severe MR (of whom no MRI was available), and one patient with LCA-JS (proven MTS on MRI) (Perrault et al., 2007; Coppieters et al., 2010). Patients homozygous for p.Gly1890X always displayed characteristics typical of JS but associated features ranged from none over JS with NPHP to CORS (Sayer et al., 2006; Valente et al., 2006; Brancati et al., 2007). A homozygous p.Trp7Cys mutation was identified in two patients of Pakistani origin who suffered from retinal degeneration and NPHP. In only one patient, however, several features suggestive for JS were observed (Valente et al., 2006; Coppieters et al., 2010). In addition, compound

Deleted: Therefore
Deleted: they
Deleted: might allow
Deleted: , in contrast to truncating mutations
Deleted: This is based on clinical findings in
Deleted: one

Deleted: for

Deleted: for Deleted: (isolated JS)

Human Mutation

heterozygous p.Leu1884ThrfsX23 and p.Phe1950LeufsX15 mutations were described in two French siblings with CORS (Tory et al., 2007), and two French siblings with Meckel-like syndrome, aged 18 and 29 weeks of gestation, respectively (Baala et al., 2007a). Moreover, intrafamilial variability was reported in several cases. Perrault and colleagues described two LCA families in which all affected sibs carried the same mutations, but displayed different neurological involvement (Perrault et al., 2007). In addition, kidney US in two brothers with JS (deceased at an age of four and seven months), both homozygous for p.Gln1942X, revealed cortical cysts in only one patient (Valente et al., 2006). Overall, this wide clinical spectrum is difficult to explain by the *CEP290* genotype alone.

Epistatic effect of other components of the ciliary proteome

It is presumed that the clinical variability of *CEP290*-related disease might be caused by secondsite modifier alleles. Since CEP290 <u>forms a complex with several members of the ciliary</u> proteome, variants in these genes are likely to affect the interaction with and function of CEP290. So far, three ciliary genes have been described in which variants co-occur with *CEP290* mutations. The first gene is *AHI1*, which is associated with JS(RD) and possibly acts in a <u>pathway</u> common with CEP290 (Ferland et al., 2004; Parisi et al., 2006; Kim et al., 2008; Hsiao et al., 2009). Tory and colleagues identified a heterozygous p.Arg830Trp missense variant in a CORS patient harboring a homozygous p.Leu1884ThrfsX23 *CEP290* mutation. This *AHI1* variant was not present in an affected sibling with the same *CEP290* genotype. Interestingly, no significant difference could be seen in neurological and ocular manifestation between both sibs, albeit that the one carrying p.Arg830Trp displayed renal failure earlier than the other (11 versus 25 years). In addition, a higher frequency of p.Arg830Trp was observed in patients with *NPHP1* mutations and neurological symptoms, in comparison with patients with *NPHP1* mutations

Deleted:

Deleted: In the first family, only one of two affected sibs suffered from autism, whereas in the other family, two out of five affected sibs were mentally retarded

Deleted: is in

Deleted: pathway as

lacking neurological involvement or with healthy controls, suggesting an influence on the Deleted: and neurological expression of NPHP1-related disease. Mutations in NPHP1 cause NPHP or SLS, Deleted: Very with JS-related neurological involvement in up to 12% of cases (Tory et al., 2007). Recently, a Deleted: r modifying effect of p.Arg830Trp has also been established on the development of retinal degeneration in patients suffering from NPHP, independent of primary mutations in NPHP1. Deleted: Patients with NPHP carrying p.Arg830Trp have a relative risk of 7.5 AHI1 genetically interacts with NPHP1 in retinal development and was proven necessary for (95% CI 4.0-11.2) to develop retinal degeneration. photoreceptor OS development (Louie et al., 2010). In addition to p.Arg830Trp, we identified a different heterozygous missense variant, p.Asn811Lys, in the most severely affected patient out of three with the same CEP290 genotype and LCA but with different neurological involvement Deleted: A as well as variable age-of-onset of ESRD. Yet another LCA patient with MR carried a third AHII missense variant, p.His758Pro, in combination with two mutations in CEP290 (Coppieters et al., Deleted: are 2010). Of note, all potential modifier alleles identified in AHII so far have been missense variants, located in the strongly conserved WD40 repeat, whereas most of the JS-causing mutations are truncating. Obviously, these variants in AHII are not sufficient to explain all of the Deleted: could be clinical variability, as no AHI1 mutations were demonstrated in two large cohorts of patients with Deleted: JS(RD) and CEP290 mutations (Brancati et al., 2007; Helou et al., 2007). A second gene **Deleted:** suggesting the involvement of other factors Deleted: The considered to harbor a potential modifier allele is <u>TMEM67</u> (<u>MKS3</u>). A homozygous p.Glu1903X Deleted: MKS3 CEP290 mutation was accompanied by a complex p.[Gly218Ala; Ser320Cys] *TMEM67* allele in Deleted: TMEM67 Deleted: MKS3 a patient with BBS. The <u>TMEM67</u> allele is likely to influence the CEP290-related phenotype, Deleted: MKS3 Deleted: mks3 given the genetic interaction between *cep290* and *Tmem67* in zebrafish and the pathogenic potential of the p.Ser320Cys variant and to a lesser extent the p.Gly218Ala variant (Leitch et al., Deleted: makes up 2008). NPHP4, which is associated with both isolated NPHP and SLS (Otto et al., 2002), is the third gene, since a heterozygous p.Thr627Met mutation in NPHP4 was identified in a patient with SLS who is also heterozygous for p.Arg1978X in CEP290 (Hoefele et al., 2005; Helou et 26

1 2

3

4

5

6

7 8

9 10

John Wiley & Sons, Inc.

Human Mutation

al., 2007). In addition to the heterozygous alleles identified in *AHI1*, *TMEM67* and *NPHP4*, both homozygosity at the *PKHD1* locus and a homozygous *CEP290* mutation were identified in a consanguineous family segregating MKS as well as AR polycystic kidney disease. As expected, a homozygous *CEP290* mutation combined with linkage to the *PKHD1* locus in one sibling with MKS caused a more severe kidney and liver phenotype, in comparison with the other siblings that carried either the same *CEP290* or *PKHD1* genotype (Baala et al., 2007a).

Conversely, mutations in *CEP290* might affect phenotypes caused by mutations in other ciliary genes. A heterozygous p.Asn96MetfsX29 mutation segregated in two siblings who also harbored a homozygous *NPHP1* deletion. In spite of a common genotype and similar retinal degeneration, these siblings differ in both renal and neurological phenotype, suggesting the involvement of additional factors (Tory et al., 2007). In addition, a heterozygous *CEP290* mutation/variant was identified in two probands that might carry a homozygous mutation in another ciliary gene, since they each originate from consanguineous parents (Helou et al., 2007).

Molecular diagnostic strategies

Given the large number of coding exons (53), sequencing of *CEP290* is laborious, expensive and requires a considerable amount of DNA. Therefore, first-step analysis might comprise screening for the most recurrent mutations, the choice of which depends on the phenotype of the patient. This approach has been applied successfully by several groups (den Hollander et al., 2006; Perrault et al., 2007; Coppieters et al., 2010). Targeted mutation screening can be <u>performed</u> using denaturing high-performance liquid chromatography (dHPLC) or sequencing. For a few mutations, specific detection techniques are available, such as an allele-specific PCR for c.2991+1655A>G (den Hollander et al., 2006). Moreover, 96 *CEP290* mutations are present on a

, {	Deleted: done
, {	Deleted: by
{	Deleted: ,
{	Deleted: , or by other means

Deleted: that

commercially available microarray, which represents standard genetic screening for LCA by testing for 641 mutations in 13 genes (Asper Ophthalmics, v8.0). In the majority of cases however, screening of the complete coding region remains necessary, either to identify the second disease allele, or to screen for both mutations in case of negative first-pass screening. PCR primers and conditions for both sequencing (Sayer et al., 2006; Valente et al., 2006) and dHPLC (Brancati et al., 2007) have been published and an alternative pre-screening assay based on heteroduplex formation and subsequent CEL I endonuclease digest has been described (Helou et al., 2007). Brancati and colleagues first screened parental DNA using dHPLC, followed by sequencing of the identified mutations in the affected offspring and of the whole coding region in case of a heterozygous mutation (Brancati et al., 2007). Apart from detecting small variants, comprehensive *CEP290* screening should also include dosage analysis of all exons, using for instance quantitative real-time PCR (Travaglini et al., 2009).

Deleted: LCA

Deleted: early-onset RP and LCA

Deleted: purposes

Deleted: In order to preserve DNA of affected children,

Future Prospects

Given the emerging importance of modifier alleles on the phenotypic expression of ciliopathies, future studies are <u>required to understand their mechanism of action and to further elucidate the</u> ciliary protein networks. The identification of modifiers for retinal, renal, neurological or other phenotypes might contribute to an improved predictive power of a *CEP290*-related genotype. Early management of patients with a higher risk of NPHP, for instance, may delay the progression toward renal failure and minimize secondary complications. In a diagnostic setting, mutations in ciliopathies should ideally be evaluated in the context of the entire spectrum of ciliary variants. Novel technologies such as next-generation sequencing will play a crucial role in this respect. Finally, more insights in the molecular pathogenesis of ciliopathies will eventually direct towards therapeutic options, such as gene therapy. Since all *CEP290*-related phenotypes

Deleted: necessary

Deleted: clinical

Human Mutation

Deleted: autosomal recessive

are inherited in an AR manner and the majority of mutations consist of loss-of-function alleles,

gene-replacement therapy might *indeed* be an option.

References

Acland GM, Aguirre GD, Ray J, Zhang Q, Aleman TS, Cideciyan AV, Pearce-Kelling SE, Anand V, Zeng Y, Maguire AM, Jacobson SG, Hauswirth WW, Bennett J. 2001. Gene therapy restores vision in a canine model of childhood blindness. Nat Genet 28(1):92-5.

Alexiev BA, Lin X, Sun CC, Brenner DS. 2006. Meckel-Gruber syndrome: pathologic manifestations, minimal diagnostic criteria, and differential diagnosis. Arch Pathol Lab Med 130(8):1236-8.

- Ameri K, Harris AL. 2008. Activating transcription factor 4. Int J Biochem Cell Biol 40(1):14-21.
- Andersen JS, Wilkinson CJ, Mayor T, Mortensen P, Nigg EA, Mann M. 2003. Proteomic characterization of the human centrosome by protein correlation profiling. Nature 426(6966):570-4.
- Baala L, Audollent S, Martinovic J, Ozilou C, Babron MC, Sivanandamoorthy S, Saunier S, Salomon R, Gonzales M, Rattenberry E, Esculpavit C, Toutain A, Moraine C, Parent P, Marcorelles P, Dauge MC, Roume J, Le Merrer M, Meiner V, Meir K, Menez F, Beaufrere AM, Francannet C, Tantau J, Sinico M, Dumez Y, MacDonald F, Munnich A, Lyonnet S, Gubler MC, Genin E, Johnson CA, Vekemans M, Encha-Razavi F, Attie-Bitach T. 2007a. Pleiotropic effects of CEP290 (NPHP6) mutations extend to Meckel syndrome. Am J Hum Genet 81(1):170-9.
- Baala L, Romano S, Khaddour R, Saunier S, Smith UM, Audollent S, Ozilou C, Faivre L, Laurent N, Foliguet B, Munnich A, Lyonnet S, Salomon R, Encha-Razavi F, Gubler MC, Boddaert N, de Lonlay P, Johnson CA, Vekemans M, Antignac C, Attie-Bitach T. 2007b. The Meckel-Gruber syndrome gene, MKS3, is mutated in Joubert syndrome. Am J Hum Genet 80(1):186-94.
- Bainbridge JW, Smith AJ, Barker SS, Robbie S, Henderson R, Balaggan K, Viswanathan A, Holder GE, Stockman A, Tyler N, Petersen-Jones S, Bhattacharya SS, Thrasher AJ, Fitzke FW, Carter BJ, Rubin GS, Moore AT, Ali RR. 2008. Effect of gene therapy on visual function in Leber's congenital amaurosis. N Engl J Med 358(21):2231-9.
- Berbari NF, O'Connor AK, Haycraft CJ, Yoder BK. 2009. The primary cilium as a complex signaling center. Curr Biol 19(13):R526-35.
- Bielas SL, Silhavy JL, Brancati F, Kisseleva MV, Al-Gazali L, Sztriha L, Bayoumi RA, Zaki MS, Abdel-Aleem A, Rosti RO, Kayserili H, Swistun D, Scott LC, Bertini E, Boltshauser E, Fazzi E, Travaglini L, Field SJ, Gayral S, Jacoby M, Schurmans S, Dallapiccola B, Majerus PW, Valente EM, Gleeson JG. 2009. Mutations in INPP5E, encoding inositol polyphosphate-5-phosphatase E, link phosphatidyl inositol signaling to the ciliopathies. Nat Genet 41(9):1032-6.
- Brancati F, Barrano G, Silhavy JL, Marsh SE, Travaglini L, Bielas SL, Amorini M, Zablocka D, Kayserili H, Al-Gazali L, Bertini E, Boltshauser E, D'Hooghe M, Fazzi E, Fenerci EY, Hennekam RC, Kiss A, Lees MM, Marco E, Phadke SR, Rigoli L, Romano S, Salpietro CD, Sherr EH, Signorini S, Stromme P, Stuart B, Sztriha L, Viskochil DH, Yuksel A,

1

Dallapiccola B, Valente EM, Gleeson JG. 2007. CEP290 mutations are frequently identified in the oculo-renal form of Joubert syndrome-related disorders. Am J Hum Genet 81(1):104-13. Brancati F, Iannicelli M, Travaglini L, Mazzotta A, Bertini E, Boltshauser E, D'Arrigo S, Emma F, Fazzi E, Gallizzi R, Gentile M, Loncarevic D, Mejaski-Bosnjak V, Pantaleoni C, Rigoli L, Salpietro CD, Signorini S, Stringini GR, Verloes A, Zabloka D, Dallapiccola B, Gleeson JG, Valente EM. 2009. MKS3/TMEM67 mutations are a major cause of COACH Syndrome, a Joubert Syndrome related disorder with liver involvement. Hum Mutat 30(2):E432-42. Chang B, Khanna H, Hawes N, Jimeno D, He S, Lillo C, Parapuram SK, Cheng H, Scott A, Hurd RE, Sayer JA, Otto EA, Attanasio M, O'Toole JF, Jin G, Shou C, Hildebrandt F, Williams DS, Heckenlively JR, Swaroop A. 2006. In-frame deletion in a novel centrosomal/ciliary protein CEP290/NPHP6 perturbs its interaction with RPGR and results in early-onset retinal degeneration in the rd16 mouse. Hum Mol Genet 15(11):1847-57. Chen D, Shou C. 2001. Molecular cloning of a tumor-associated antigen recognized by monoclonal antibody 3H11. Biochem Biophys Res Commun 280(1):99-103. Cideciyan AV, Aleman TS, Jacobson SG, Khanna H, Sumaroka A, Aguirre GK, Schwartz SB, Windsor EA, He S, Chang B, Stone EM, Swaroop A, 2007, Centrosomal-ciliary gene CEP290/NPHP6 mutations result in blindness with unexpected sparing of photoreceptors and visual brain: implications for therapy of Leber congenital amaurosis. Hum Mutat 28(11):1074-83. Coppieters F, Casteels I, Meire FM, De Jaegere S, Hooghe S, Van Regemorter N, Van Esch H, Matulevičienė A, Castedo S, Meersschaut V, Walraedt S, Standaert L, Coucke P, Hoeben H, Kroes HY, Vande Walle J, de Ravel T, Leroy BP, De Baere E. 2010. Genetic screening of LCA in Belgium: predominance of CEP290 and identification of potential modifier alleles in AHI1 of CEP290-related phenotypes. Under review. den Hollander AI, Koenekoop RK, Yzer S, Lopez I, Arends ML, Voesenek KE, Zonneveld MN, Strom TM, Meitinger T, Brunner HG, Hoyng CB, van den Born LI, Rohrschneider K, Cremers FP. 2006. Mutations in the CEP290 (NPHP6) gene are a frequent cause of Leber congenital amaurosis. Am J Hum Genet 79(3):556-61. den Hollander AI, Roepman R, Koenekoop RK, Cremers FP. 2008. Leber congenital amaurosis: genes, proteins and disease mechanisms. Prog Retin Eye Res 27(4):391-419. Doherty D. 2009. Joubert syndrome: insights into brain development, cilium biology, and complex disease. Semin Pediatr Neurol 16(3):143-54. Doherty D, Parisi MA, Finn LS, Gunay-Aygun M, Al-Mateen M, Bates D, Clericuzio C, Demir H, Dorschner M, van Essen AJ, Gahl WA, Gentile M, Gorden NT, Hikida A, Knutzen D, Ozyurek H, Phelps I, Rosenthal P, Verloes A, Weigand H, Chance PF, Dobyns WB, Glass IA. 2009. Mutations in 3 genes (MKS3, CC2D2A and RPGRIP1L) cause COACH syndrome (Joubert syndrome with congenital hepatic fibrosis). J Med Genet 47(1):8-21,

Dryja TP, Adams SM, Grimsby JL, McGee TL, Hong DH, Li T, Andreasson S, Berson EL. 2001. Null RPGRIP1 alleles in patients with Leber congenital amaurosis. Am J Hum Genet 68(5):1295-8.

Ferland RJ, Eyaid W, Collura RV, Tully LD, Hill RS, Al-Nouri D, Al-Rumayyan A, Topcu M, Gascon G, Bodell A, Shugart YY, Ruvolo M, Walsh CA. 2004. Abnormal cerebellar development and axonal decussation due to mutations in AHI1 in Joubert syndrome. Nat Genet 36(9):1008-13. Deleted: Submitted

Deleted:

Page 31 of 51

1

Human Mutation

2
3
1
4
5
6
7
0
0
9
10
11
10
12
13
14
15
16
10
17
18
19
20
20
21
22
567891012341567890112341567890011222224256789333333333333333333333333333333333333
20
∠4
25
26
27
21
28
29
30
21
31
32
33
34
25
30
36
37
38
20
39
40
41
42
43
44
45
46
47
41
48
49
50
51
01
52
53
54
57
55
56
57
58
00
59

60

- Frank V, den Hollander AI, Bruchle NO, Zonneveld MN, Nurnberg G, Becker C, Du Bois G, Kendziorra H, Roosing S, Senderek J, Nurnberg P, Cremers FP, Zerres K, Bergmann C. 2008. Mutations of the CEP290 gene encoding a centrosomal protein cause Meckel-Gruber syndrome. Hum Mutat 29(1):45-52.
- Gerdes JM, Davis EE, Katsanis N. 2009. The vertebrate primary cilium in development, homeostasis, and disease. Cell 137(1):32-45.
- Gorden NT, Arts HH, Parisi MA, Coene KL, Letteboer SJ, van Beersum SE, Mans DA, Hikida A, Eckert M, Knutzen D, Alswaid AF, Ozyurek H, Dibooglu S, Otto EA, Liu Y, Davis EE, Hutter CM, Bammler TK, Farin FM, Dorschner M, Topcu M, Zackai EH, Rosenthal P, Owens KN, Katsanis N, Vincent JB, Hildebrandt F, Rubel EW, Raible DW, Knoers NV, Chance PF, Roepman R, Moens CB, Glass IA, Doherty D. 2008. CC2D2A is mutated in Joubert syndrome and interacts with the ciliopathy-associated basal body protein CEP290. Am J Hum Genet 83(5):559-71.
- Grantham R. 1974. Amino acid difference formula to help explain protein evolution. Science 185(4154):862-4.
- Guo J, Jin G, Meng L, Ma H, Nie D, Wu J, Yuan L, Shou C. 2004. Subcellullar localization of tumor-associated antigen 3H11Ag. Biochem Biophys Res Commun 324(2):922-30.
- Hanein S, Perrault I, Gerber S, Tanguy G, Barbet F, Ducroq D, Calvas P, Dollfus H, Hamel C, Lopponen T, Munier F, Santos L, Shalev S, Zafeiriou D, Dufier JL, Munnich A, Rozet JM, Kaplan J. 2004. Leber congenital amaurosis: comprehensive survey of the genetic heterogeneity, refinement of the clinical definition, and genotype-phenotype correlations as a strategy for molecular diagnosis. Hum Mutat 23(4):306-17.
- Hauswirth WW, Aleman TS, Kaushal S, Cideciyan AV, Schwartz SB, Wang L, Conlon TJ, Boye SL, Flotte TR, Byrne BJ, Jacobson SG. 2008. Treatment of leber congenital amaurosis due to RPE65 mutations by ocular subretinal injection of adeno-associated virus gene vector: short-term results of a phase I trial. Hum Gene Ther 19(10):979-90.
- Helou J, Otto EA, Attanasio M, Allen SJ, Parisi MA, Glass I, Utsch B, Hashmi S, Fazzi E, Omran H, O'Toole JF, Sayer JA, Hildebrandt F. 2007. Mutation analysis of NPHP6/CEP290 in patients with Joubert syndrome and Senior-Loken syndrome. J Med Genet 44(10):657-63.
- Hildebrandt F, Attanasio M, Otto E. 2009. Nephronophthisis: disease mechanisms of a ciliopathy. J Am Soc Nephrol 20(1):23-35.
- Hildebrandt F, Zhou W. 2007. Nephronophthisis-associated ciliopathies. J Am Soc Nephrol 18(6):1855-71.
- Hoefele J, Sudbrak R, Reinhardt R, Lehrack S, Hennig S, Imm A, Muerb U, Utsch B, Attanasio M, O'Toole JF, Otto E, Hildebrandt F. 2005. Mutational analysis of the NPHP4 gene in 250 patients with nephronophthisis. Hum Mutat 25(4):411.
- Hong DH, Pawlyk B, Sokolov M, Strissel KJ, Yang J, Tulloch B, Wright AF, Arshavsky VY, Li T. 2003. RPGR isoforms in photoreceptor connecting cilia and the transitional zone of motile cilia. Invest Ophthalmol Vis Sci 44(6):2413-21.
- Hsiao YC, Tong ZJ, Westfall JE, Ault JG, Page-McCaw PS, Ferland RJ. 2009. Ahi1, whose human ortholog is mutated in Joubert syndrome, is required for Rab8a localization, ciliogenesis and vesicle trafficking. Hum Mol Genet 18(20):3926-41.
- Karmous-Benailly H, Martinovic J, Gubler MC, Sirot Y, Clech L, Ozilou C, Auge J, Brahimi N, Etchevers H, Detrait E, Esculpavit C, Audollent S, Goudefroye G, Gonzales M, Tantau J, Loget P, Joubert M, Gaillard D, Jeanne-Pasquier C, Delezoide AL, Peter MO, Plessis G, Simon-Bouy B, Dollfus H, Le Merrer M, Munnich A, Encha-Razavi F, Vekemans M,

Attie-Bitach T. 2005. Antenatal presentation of Bardet-Biedl syndrome may mimic Meckel syndrome. Am J Hum Genet 76(3):493-504.

- Kim J, Krishnaswami SR, Gleeson JG. 2008. CEP290 interacts with the centriolar satellite component PCM-1 and is required for Rab8 localization to the primary cilium. Hum Mol Genet 17(23):3796-805.
- Leitch CC, Zaghloul NA, Davis EE, Stoetzel C, Diaz-Font A, Rix S, Al-Fadhel M, Lewis RA, Eyaid W, Banin E, Dollfus H, Beales PL, Badano JL, Katsanis N. 2008. Hypomorphic mutations in syndromic encephalocele genes are associated with Bardet-Biedl syndrome. Nat Genet 40(4):443-8.
- Li Y, Wang H, Peng J, Gibbs RA, Lewis RA, Lupski JR, Mardon G, Chen R. 2009. Mutation survey of known LCA genes and loci in the Saudi Arabian population. Invest Ophthalmol Vis Sci 50(3):1336-43.
- Littink KW, Pott JW, Collin RW, Kroes HY, Verheij JB, Blokland EA, de Castro Miro M, Hoyng CB, Klaver C, Koenekoop RK, Rohrschneider K, Cremers FP, van den Born I, den Hollander AI. <u>2010.</u> A novel nonsense mutation in CEP290 induces exon skipping and leads to a relatively mild retinal phenotype. Invest Ophthalmol Vis Sci. In Press.
- Louie CM, Caridi G, Lopes VS, Brancati F, Kispert A, Lancaster MA, Schlossman AM, Otto EA, Leitges M, Grone HJ, Lopez I, Gudiseva HV, O'Toole JF, Vallespin E, Ayyagari R, Ayuso C, Cremers FP, den Hollander AI, Koenekoop RK, Dallapiccola B, Ghiggeri GM, Hildebrandt F, Valente EM, Williams DS, Gleeson JG. 2010. AHI1 is required for photoreceptor outer segment development and is a modifier for retinal degeneration in nephronophthisis. Nat Genet 42(2):175-80.
- Maguire AM, High KA, Auricchio A, Wright JF, Pierce EA, Testa F, Mingozzi F, Bennicelli JL, Ying GS, Rossi S, Fulton A, Marshall KA, Banfi S, Chung DC, Morgan JI, Hauck B, Zelenaia O, Zhu X, Raffini L, Coppieters F, De Baere E, Shindler KS, Volpe NJ, Surace EM, Acerra C, Lyubarsky A, Redmond TM, Stone E, Sun J, McDonnell JW, Leroy BP, Simonelli F, Gauderman JB. 2009. Age-dependent effects of RPE65 gene therapy for Leber's congenital amaurosis: a phase 1 dose-escalation trial. Lancet 375(9708):30.
- Maguire AM, Simonelli F, Pierce EA, Pugh EN, Jr., Mingozzi F, Bennicelli J, Banfi S, Marshall KA, Testa F, Surace EM, Rossi S, Lyubarsky A, Arruda VR, Konkle B, Stone E, Sun J, Jacobs J, Dell'Osso L, Hertle R, Ma JX, Redmond TM, Zhu X, Hauck B, Zelenaia O, Shindler KS, Maguire MG, Wright JF, Volpe NJ, McDonnell JW, Auricchio A, High KA, Bennett J. 2008. Safety and efficacy of gene transfer for Leber's congenital amaurosis. N Engl J Med 358(21):2240-8.
- McEwen DP, Koenekoop RK, Khanna H, Jenkins PM, Lopez I, Swaroop A, Martens JR. 2007. Hypomorphic CEP290/NPHP6 mutations result in anosmia caused by the selective loss of G proteins in cilia of olfactory sensory neurons. Proc Natl Acad Sci U S A 104(40):15917-22.
- Meindl A, Dry K, Herrmann K, Manson F, Ciccodicola A, Edgar A, Carvalho MR, Achatz H, Hellebrand H, Lennon A, Migliaccio C, Porter K, Zrenner E, Bird A, Jay M, Lorenz B, Wittwer B, D'Urso M, Meitinger T, Wright A. 1996. A gene (RPGR) with homology to the RCC1 guanine nucleotide exchange factor is mutated in X-linked retinitis pigmentosa (RP3). Nat Genet 13(1):35-42.
- Menotti-Raymond M, David VA, Schaffer AA, Stephens R, Wells D, Kumar-Singh R, O'Brien SJ, Narfstrom K. 2007. Mutation in CEP290 discovered for cat model of human retinal degeneration. J Hered 98(3):211-20.

Deleted:

Deleted:

Page 33 of 51

Human Mutation

1 2	Name T Ishihama V Nal
2 3 4 5	Nagase T, Ishikawa K, Nak N, Ohara O. 1997. I
4	The complete seque
5	proteins in vitro. D
6	Nagy E, Maquat LE. 1998.
7	when nonsense affe
8	Narfstrom K, David V, Jarr
9	2009. Retinal degen
10 11	genotype and pheno
12	12(5):285-91.
13	Nigg EA, Raff JW. 2009. C 139(4):663-78.
14	O'Toole JF, Otto EA, Hoef
15	families with nephro
16	Otto E, Hoefele J, Ruf R, M
17	Birkenhager R, Sud
18	mutated in nephrono
19	nephroretinin, conse
20	Otto EA, Loeys B, Khanna
21	Attanasio M, Utsch
22	Klages S, Tsuda M,
23 24	PA, Hill J, Beales P F. 2005. Nephrocys
24 25	syndrome and intera
26	Parisi MA, Doherty D, Eck
27	Shahwan S, Dohaya
28	Glass IA. 2006. AH
29	Joubert syndrome. J
30	Pasadhika S, Fishman GA,
31	M. 2009. Differentia
32	and AIPL1 Related
33	Perrault I, Delphin N, Hane
34 25	H, Fazzi E, Munnicl
35 36	mutations in Leber
37	Hum Mutat 28(4):4
38	Salomon R, Saunier S, Nia
39	Sayer JA, Otto EA, O'Toole
40	Attanasio M, Fauset
41	Kusakabe T, Tsuda
42	C, Lillo C, Williams
43	M, Kispert A, Gloy
44	Leroux MR, Hildeb
45	Joubert syndrome an Schafer T, Putz M, Lienkar
46	M, Mattonet C, Cza
47	Wi, Wiattonet C, CZa
48 49	
49 50	
51	
52	
53	
54	
55	
56	

- Nagase T, Ishikawa K, Nakajima D, Ohira M, Seki N, Miyajima N, Tanaka A, Kotani H, Nomura N, Ohara O. 1997. Prediction of the coding sequences of unidentified human genes. VII. The complete sequences of 100 new cDNA clones from brain which can code for large proteins in vitro. DNA Res 4(2):141-50.
- Nagy E, Maquat LE. 1998. A rule for termination-codon position within intron-containing genes: when nonsense affects RNA abundance. Trends Biochem Sci 23(6):198-9.
- Narfstrom K, David V, Jarret O, Beatty J, Barrs V, Wilkie D, O'Brien S, Menotti-Raymond M. 2009. Retinal degeneration in the Abyssinian and Somali cat (rdAc): correlation between genotype and phenotype and rdAc allele frequency in two continents. Vet Ophthalmol 12(5):285-91.
- Nigg EA, Raff JW. 2009. Centrioles, centrosomes, and cilia in health and disease. Cell 139(4):663-78.
- O'Toole JF, Otto EA, Hoefele J, Helou J, Hildebrandt F. 2007. Mutational analysis in 119 families with nephronophthisis. Pediatr Nephrol 22(3):366-70.
- Otto E, Hoefele J, Ruf R, Mueller AM, Hiller KS, Wolf MT, Schuermann MJ, Becker A, Birkenhager R, Sudbrak R, Hennies HC, Nurnberg P, Hildebrandt F. 2002. A gene mutated in nephronophthisis and retinitis pigmentosa encodes a novel protein, nephroretinin, conserved in evolution. Am J Hum Genet 71(5):1161-7.
 - Otto EA, Loeys B, Khanna H, Hellemans J, Sudbrak R, Fan S, Muerb U, O'Toole JF, Helou J, Attanasio M, Utsch B, Sayer JA, Lillo C, Jimeno D, Coucke P, De Paepe A, Reinhardt R, Klages S, Tsuda M, Kawakami I, Kusakabe T, Omran H, Imm A, Tippens M, Raymond PA, Hill J, Beales P, He S, Kispert A, Margolis B, Williams DS, Swaroop A, Hildebrandt F. 2005. Nephrocystin-5, a ciliary IQ domain protein, is mutated in Senior-Loken syndrome and interacts with RPGR and calmodulin. Nat Genet 37(3):282-8.
- Parisi MA, Doherty D, Eckert ML, Shaw DW, Ozyurek H, Aysun S, Giray O, Al Swaid A, Al Shahwan S, Dohayan N, Bakhsh E, Indridason OS, Dobyns WB, Bennett CL, Chance PF, Glass IA. 2006. AHI1 mutations cause both retinal dystrophy and renal cystic disease in Joubert syndrome. J Med Genet 43(4):334-9.
- Pasadhika S, Fishman GA, Stone EM, Lindeman M, Zelkha R, Lopez I, Koenekoop RK, Shahidi M. 2009. Differential Macular Morphology in Patients with RPE65, CEP290, GUCY2D and AIPL1 Related Leber Congenital Amaurosis. Invest Ophthalmol Vis Sci_51(5):2608-14_
- Perrault I, Delphin N, Hanein S, Gerber S, Dufier JL, Roche O, Defoort-Dhellemmes S, Dollfus H, Fazzi E, Munnich A, Kaplan J, Rozet JM. 2007. Spectrum of NPHP6/CEP290 mutations in Leber congenital amaurosis and delineation of the associated phenotype. Hum Mutat 28(4):416.

Salomon R, Saunier S, Niaudet P. 2009. Nephronophthisis. Pediatr Nephrol 24(12):2333-44.

Sayer JA, Otto EA, O'Toole JF, Nurnberg G, Kennedy MA, Becker C, Hennies HC, Helou J, Attanasio M, Fausett BV, Utsch B, Khanna H, Liu Y, Drummond I, Kawakami I, Kusakabe T, Tsuda M, Ma L, Lee H, Larson RG, Allen SJ, Wilkinson CJ, Nigg EA, Shou C, Lillo C, Williams DS, Hoppe B, Kemper MJ, Neuhaus T, Parisi MA, Glass IA, Petry M, Kispert A, Gloy J, Ganner A, Walz G, Zhu X, Goldman D, Nurnberg P, Swaroop A, Leroux MR, Hildebrandt F. 2006. The centrosomal protein nephrocystin-6 is mutated in Joubert syndrome and activates transcription factor ATF4. Nat Genet 38(6):674-81.
Schafer T, Putz M, Lienkamp S, Ganner A, Bergbreiter A, Ramachandran H, Gieloff V, Gerner

Schafer T, Putz M, Lienkamp S, Ganner A, Bergbreiter A, Ramachandran H, Gieloff V, Gerner M, Mattonet C, Czarnecki PG, Sayer JA, Otto EA, Hildebrandt F, Kramer-Zucker A,

Deleted:

Walz G. 2008. Genetic and physical interaction between the NPHP5 and NPHP6 gene products. Hum Mol Genet 17(23):3655-62.

- Seong MW, Kim SY, Yu YS, Hwang JM, Kim JY, Park SS. 2008. Molecular characterization of Leber congenital amaurosis in Koreans. Mol Vis 14:1429-36.
- Shu X, Black GC, Rice JM, Hart-Holden N, Jones A, O'Grady A, Ramsden S, Wright AF. 2007. RPGR mutation analysis and disease: an update. Hum Mutat 28(4):322-8.
- Simms RJ, Eley L, Sayer JA. 2009. Nephronophthisis. Eur J Hum Genet 17(4):406-16.
- Simonelli F, Ziviello C, Testa F, Rossi S, Fazzi E, Bianchi PE, Fossarello M, Signorini S, Bertone C, Galantuomo S, Brancati F, Valente EM, Ciccodicola A, Rinaldi E, Auricchio A, Banfi S. 2007. Clinical and molecular genetics of Leber's congenital amaurosis: a multicenter study of Italian patients. Invest Ophthalmol Vis Sci 48(9):4284-90.
- Smith UM, Consugar M, Tee LJ, McKee BM, Maina EN, Whelan S, Morgan NV, Goranson E, Gissen P, Lilliquist S, Aligianis IA, Ward CJ, Pasha S, Punyashthiti R, Malik Sharif S, Batman PA, Bennett CP, Woods CG, McKeown C, Bucourt M, Miller CA, Cox P, Algazali L, Trembath RC, Torres VE, Attie-Bitach T, Kelly DA, Maher ER, Gattone VH, 2nd, Harris PC, Johnson CA. 2006. The transmembrane protein meckelin (MKS3) is mutated in Meckel-Gruber syndrome and the wpk rat. Nat Genet 38(2):191-6.
- Stone EM. 2003. Finding and interpreting genetic variations that are important to ophthalmologists. Trans Am Ophthalmol Soc 101:437-84.
- Sundaresan P, Vijayalakshmi P, Thompson S, Ko AC, Fingert JH, Stone EM. 2009. Mutations that are a common cause of Leber congenital amaurosis in northern America are rare in Southern India. Mol Vis 15:1781-7.
- Tallila J, Jakkula E, Peltonen L, Salonen R, Kestila M. 2008. Identification of CC2D2A as a Meckel syndrome gene adds an important piece to the ciliopathy puzzle. Am J Hum Genet 82(6):1361-7.
- Tammachote R, Hommerding CJ, Sinders RM, Miller CA, Czarnecki PG, Leightner AC, Salisbury JL, Ward CJ, Torres VE, Gattone VH, 2nd, Harris PC. 2009. Ciliary and centrosomal defects associated with mutation and depletion of the Meckel syndrome genes MKS1 and MKS3. Hum Mol Genet 18(17):3311-23.
- Thompson S, Whiting RE, Kardon RH, Stone EM, Narfstrom K. <u>2010.</u> Effects of hereditary retinal degeneration due to a CEP290 mutation on the feline pupillary light reflex. Vet Ophthalmol 13(3):151-7.
- Torrado M, Iglesias R, Nespereira B, Mikhailov AT. <u>2010.</u> Identification of candidate genes potentially relevant to chamber-specific remodeling in postnatal ventricular myocardium. J Biomed Biotechnol 2010:603159.
- Tory K, Lacoste T, Burglen L, Moriniere V, Boddaert N, Macher MA, Llanas B, Nivet H, Bensman A, Niaudet P, Antignac C, Salomon R, Saunier S. 2007. High NPHP1 and NPHP6 mutation rate in patients with Joubert syndrome and nephronophthisis: potential epistatic effect of NPHP6 and AHI1 mutations in patients with NPHP1 mutations. J Am Soc Nephrol 18(5):1566-75.
- Travaglini L, Brancati F, Attie-Bitach T, Audollent S, Bertini E, Kaplan J, Perrault I, Iannicelli M, Mancuso B, Rigoli L, Rozet JM, Swistun D, Tolentino J, Dallapiccola B, Gleeson JG, Valente EM, Zankl A, Leventer R, Grattan-Smith P, Janecke A, D'Hooghe M, Sznajer Y, Van Coster R, Demerleir L, Dias K, Moco C, Moreira A, Kim CA, Maegawa G, Petkovic D, Abdel-Salam GM, Abdel-Aleem A, Zaki MS, Marti I, Quijano-Roy S, Sigaudy S, de Lonlay P, Romano S, Touraine R, Koenig M, Lagier-Tourenne C, Messer J, Collignon P, Wolf N, Philippi H, Kitsiou Tzeli S, Halldorsson S, Johannsdottir J, Ludvigsson P,

Human Mutation

Deleted: .

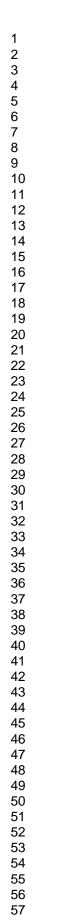
Zaghloul NA, Katsanis N. 2009. Mechanistic insights into Bardet-Biedl syndrome, a model ciliopathy. J Clin Invest 119(3):428-37.

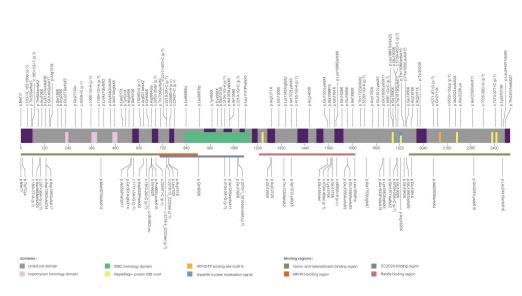
Figure legends

Figure 1: Overview of all mutations and variants currently present in CEP290base.

The exact location of the mutation/variant is depicted with respect to the CEP290 protein (Sayer et al., 2006). If no protein effect is known, the c.DNA nomenclature is used. Mutations depicted twice have been reported to arise from different nucleotide changes.

Figure 2: Overlap of CEP290 mutations between different diseases.


 Abbreviations used: LCA: Leber Congenital Amaurosis; SLS: Senior-Loken syndrome; JS:


 Joubert syndrome; JS + RD: Joubert syndrome with associated retinopathy; JS + RF:

 Joubert syndrome with associated renal failure; CORS: cerebello-oculo-renal syndrome;

 MKS: Meckel-Grüber syndrome; MKS-like: Meckel-Grüber syndrome – like; BBS:

 Bardet-Biedl syndrome.

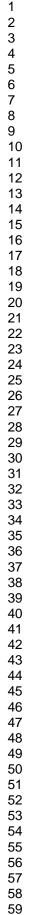


Figure 1: Overview of all mutations and variants currently present in CEP290base.

The exact location of the mutation/variant is depicted with respect to the CEP290 protein (Sayer et al., 2006). If no protein effect is known, the c.DNA nomenclature is used. Mutations depicted twice have been reported to arise from different nucleotide changes. 291x141mm (300 x 300 DPI)

John Wiley & Sons, Inc.

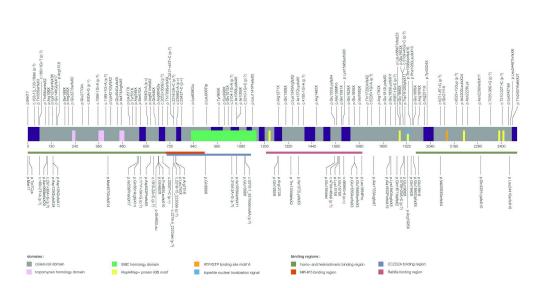
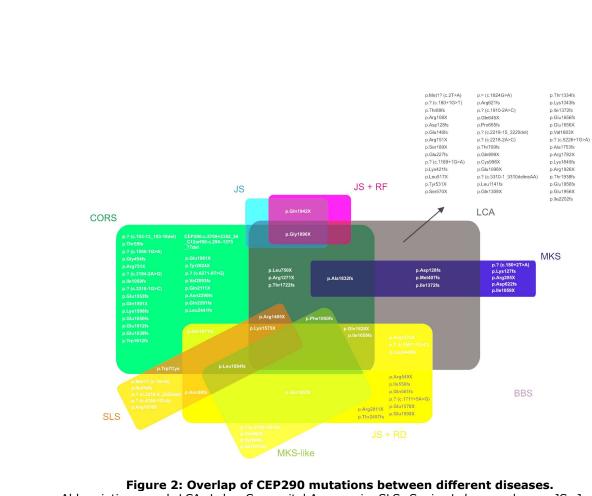
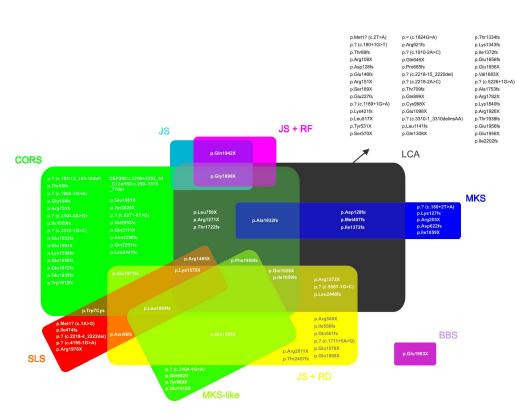




Figure 1: Overview of all mutations and variants currently present in CEP290base. The exact location of the mutation/variant is depicted with respect to the CEP290 protein (Sayer et al., 2006). If no protein effect is known, the c.DNA nomenclature is used. Mutations depicted twice have been reported to arise from different nucleotide changes. 291x141mm (300 x 300 DPI)

Human Mutation

Abbreviations used: LCA: Leber Congenital Amaurosis; SLS: Senior-Loken syndrome; JS: Joubert syndrome; JS + RD: Joubert syndrome with associated retinopathy; JS + RF: Joubert syndrome with associated renal failure; CORS: cerebello-oculo-renal syndrome; MKS: Meckel-Grüber syndrome; MKS-like: Meckel-Grüber syndrome – like; BBS: Bardet-Biedl syndrome. 165x121mm (300 x 300 DPI)

Figure 2: Overlap of CEP290 mutations between different diseases.

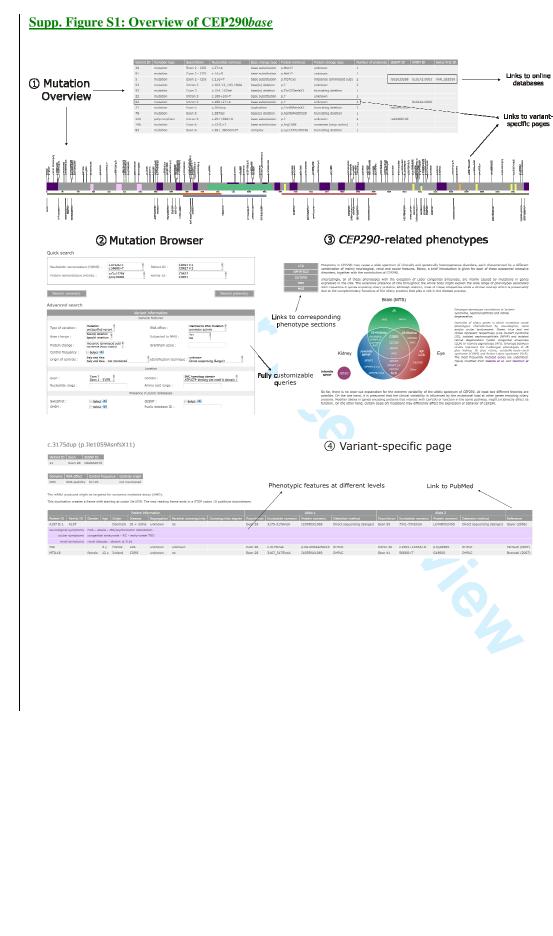
Abbreviations used: LCA: Leber Congenital Amaurosis; SLS: Senior-Loken syndrome; JS: Joubert syndrome; JS + RD: Joubert syndrome with associated retinopathy; JS + RF: Joubert syndrome with associated renal failure; CORS: cerebello-oculo-renal syndrome; MKS: Meckel-Grüber syndrome; MKS-like: Meckel-Grüber syndrome – like; BBS: Bardet-Biedl syndrome. 165x121mm (300 x 300 DPI)

Human Mutation

Deleted: 3

Table <u>1</u>: Overview of selected ciliary proteins interacting with CEP290, and their

involvement in partially overlapping yet distinct ciliopathies.


1	Protein			Asso	ciated pheno	otype				
	riotein	RD	NPHP	SLS	JS(RD)	MKS	BBS	COACH		
(CEP290	(den Hollander et al., 2006)	(Helou et al., 2007)(?)	(Sayer et al., 2006)	(Sayer, et al., 2006; Valente et al., 2006)	(Baala et al., 2007a)	(Leitch et al., 2008)			
	RPGR	(Meindl et al., 1996)								
roteins	RPGRIP1	(Dryja et al., 2001)								
CEP290 interacating proteins	NPHP5			(Otto et al., 2005)						
P290 inte	TMEM67 (MKS3)				(Baala et al., 2007ь) -	(Smith et al., 2006)		(Brancati et al., 2009)	<	Deleted: MKS3¶
CE	CC2D2A				(Gorden et al., 2008)	(Tallila et al., 2008)		(Doherty et al., 2009)		Deleted: IMEM67

Abbreviations used: RD: retinal degeneration; NPHP: nephronophthisis; SLS: Senior-Loken

syndrome; JS(RD): Joubert syndrome (related disorders); MKS: Meckel-Grüber syndrome; BBS:

Bardet-Biedl syndrome; COACH: cerebellar vermis hypo/aplasia, oligophrenia, congenital

ataxia, ocular coloboma, and hepatic fibrosis; (?): uncertain association.

Human Mutation

The database is accessible from: http://medgen.ugent.be/cep290base. Information on variants can be retrieved using the Mutation Overview (1) or the Mutation Browser (2). In addition, the Phenotype page (3) describes all phenotypes associated with CEP290 so far. The variant-specific pages (4) are accessible from both the Mutation Overview and Mutation Browser and include detailed information on the pathogenic potential. The database links to NetGene2 and BDGP for splice site mutations and automatically fills in queries for PolyPhen and SIFT for missense changes. In addition, the database includes variants in other genes that co-occur with CEP290 iding a unv mutations, thereby providing a unique opportunity to link modifiers to associated clinical manifestations.

Nucleotide numbering reflects cDNA numbering with +1 corresponding to the A of the ATGtranslation initiation codon in the reference sequence (NM 025114.3), according to journalguidelines (www.hgvs.org/mutnomen). The initiation codon is codon 1.Page 2

Deleted: Table 1

Supp. Table S1: Overview of all CEP290 mutations identified so far and their occurrence in

different phenotypes.

tein clature et1? r7Cys .? SerfsX3 .? .? AsnfsX2 MetfsX29 (108X AsnfsX36 GlufsX17 GlufsX34 GlyfsX17	LCA 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	SLS 1 1 1 1 1 1 1*	JS	JS + RD	JS + RF	CORS 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	MKS	MKS- like	BBS
et1? 7Cys 7Cys SerfsX3 .? .? AsnfsX2 MetfsX29 (108X AsnfsX36 GlufsX17 GlufsX17	1	1		1*		1			
7Cys .? SerfsX3 .? .? AsnfsX2 MetfsX29 (108X AsnfsX36 GlufsX17 GlufsX34 GlyfsX17	1			1*		1			
.? SerfsX3 .? .? AsnfsX2 MetfsX29 (108X AsnfsX36 GlufsX17 GlufsX34 GlyfsX17	1			1*		1			
SerfsX3 .? .? AsnfsX2 MetfsX29 (108X AsnfsX36 GlufsX17 GlufsX34 GlyfsX17	1	1*		1*					
.? AsnfsX2 MetfsX29 (108X AsnfsX36 GlufsX17 GlufsX34 GlyfsX17	1	1*		1*		1			
.? AsnfsX2 MetfsX29 ;108X AsnfsX36 GlufsX17 GlufsX34 GlyfsX17	1	1*		1*					
AsnfsX2 MetfsX29 (108X AsnfsX36 GlufsX17 GlufsX34 GlyfsX17	1	1*		1*					
MetfsX29 (108X AsnfsX36 GlufsX17 GlufsX34 GlyfsX17	1	1*		1*					
AsnfsX36 GlufsX17 GlufsX34 GlyfsX17	1	1*		1*					
AsnfsX36 GlufsX17 GlufsX34 GlyfsX17	1								
GlufsX17 GlufsX34 GlyfsX17	1								
GlufsX34 GlyfsX17	1						1		
GlyfsX17			1						
•	1						4 (2)		
	1								
<u>(151X</u>	<u>1</u>								
189X	1								
205X							2(1)		
7SerfsX2	1								
.?						1			
.?	1								
GlufsX14	3						1		
GlyfsX2	2								
4GlufsX5						1			
ArgfsX5		1							
517X	1								
531X	1								
549X				1					
PhefsX17				1					
	GlufsX14 GlyfsX2 GlufsX5 ArgfsX5 517X 531X 549X	GlufsX14 3 GlyfsX2 2 GlufsX5 2 ArgfsX5 5 517X 1 531X 1 549X 2	GlufsX14 3 GlyfsX2 2 GlufsX5 1 ArgfsX5 1 517X 1 531X 1 549X 2	GlufsX14 3 GlyfsX2 2 GlufsX5 ArgfsX5 1 517X 1 531X 1 549X	GlufsX14 3	GlufsX14 3	GlufsX14 3 1 GlyfsX2 2 1 GlufsX5 1 1 ArgfsX5 1 1 517X 1 1 531X 1 1 549X 1 1	GlufsX14 3 1 GlyfsX2 2 1 GlufsX5 1 1 ArgfsX5 1 1 517X 1 1 531X 1 1 549X 1 1	GlufsX14 3 1 GlyfsX2 2 1 GlufsX5 1 ArgfsX5 1 517X 1 531X 1 549X 1

Human Mutation

Mutat	tion				Ass	sociate	d phenoty	pe			_
Nucleotide nomenclature	Protein nomenclature	LCA	SLS	JS	JS + RD	JS + RF	CORS	MKS	MKS- like	BBS	
c.1682_1683del	p.Gln561ArgfsX14				1						
c.1709C>G	p.Ser570X	1									
c.1711+5A>G	p.?				1						
c.1824G>A	p.=	1									
c.1859_1862del	p.Arg621IlefsX2	2									
c.1860_1861del	p.Asp622PhefsX5							1			
c.1910-2A>C	p.?	1									
c.1936C>T	p.Gln646X	2(1)									
c.1984C>T	p.Gln662X								2 (1)		
c.1992del	p.Pro665LeufsX10	1									
<u>c.2118_2122dup</u>	p.Thr709SerfsX9	1									
c.2218-15_2220del	p.?	1									
c.2218-4_2222del	p.?		2(1)								Deleted: c.2118_2122dup
c.2218-2A>C	p.?	1								1	Deleted: c.2118_2122dup
c.2249T>G	p.Leu750X	1					1				
c.2251C>T	p.Arg751X						1				
c.2695C>T	p.Gln899X	1									
c.2906dup	p.Tyr969X								1		_
c.2991+1655A>G	p.Cys998X	92 (83)									
c.3043G>T	p.Glu1015X								1		
c.3104-2A>G	p.?						1				
c.3104-1G>A	p.?								1		
c.3175del	p.Ile1059X							1			
c.3175dup	p.Ile1059AsnfsX11	1			1		1				
c.3176del	p.Ile1059LysfsX6						1				
c.3292G>T	p.Glu1098X	2									
c.3310-1G>C	p.?						1				
c.3310- 1_3310delinsAA	p.?	3									
c.3422dup	p.Leu1141PhefsX5	1									
c.3793C>T	p.Gln1265X				1				1		

Nucleotide numbering reflects cDNA numbering with +1 corresponding to the A of the ATGtranslation initiation codon in the reference sequence (NM 025114.3), according to journalguidelines (www.hgvs.org/mutnomen). The initiation codon is codon 1.Page 4

Mut	ation	Associated phenotype										
Nucleotide nomenclature	Protein nomenclature	LCA	SLS	JS	JS + RD	JS + RF	CORS	MKS	MKS- like	BBS		
c.3811C>T	p.Arg1271X	1					4 (2)					
c.3814C>T	p.Arg1272X	1			1							
c.3922C>T	p.Gln1308X	1										
c.4001del	p.Thr1334IlefsX2	1										
c.4028del	p.Lys1343ArgfsX2	1										
c.4114_4115del	p.Ile1372LysfsX5	1										
c.4115_4116del	p.Ile1372LysfsX5	1						1				
c.4195-1G>A	p.?		1									
c.4393C>T	p.Arg1465X	1	2				3					
c.4656del	p.Glu1553LysfsX4						1					
c.4723A>T	p.Lys1575X	12	2		1		1					
c.4732G>T	p.Glu1578X				3 (1)							
c.4771C>T	p.Gln1591X	6					2 (1)					
c.4791_4794del	p.Lys1598SerfsX8						1					
c.4882C>T	p.Gln1628X	2			1*		3*					
c.4962_4963del	p.Glu1656AsnfsX3	2										
c.4965_4966del	p.Glu1656AsnfsX3						1					
c.4966G>T	p.Glu1656X	1										
c.5046del	p.Val1683X	1										
c.5163del	p.Thr1722GlnfsX2	3					2					
c.5226+1G>A	p.?	1										
c.5256_5257del	p.Ala1753ArgfsX7	2(1)										
c.5344C>T	p.Arg1782X	1										
c.5434_5435del	p.Glu1812LysfsX5						1					
c.5493del	p.Ala1832ProfsX19	1					1	4 (2)				
c.5515_5518del	p.Glu1839LysfsX11						1					
c.5519_5537del	p.Lys1840ArgfsX5	1										
c.5587-1G>C	p.?	3			2							
c.5611_5614del	p.Gln1871ValfsX2				1*		1*					
c.5649dup	p.Leu1884ThrfsX23		1*		1*		3 (2)		2 (1)			
c.5668G>T	p.Gly1890X	2(1)		1		3	9(7)					

 Nucleotide numbering reflects cDNA numbering with +1 corresponding to the A of the ATG

 translation initiation codon in the reference sequence (NM 025114.3), according to journal

 guidelines (www.hgvs.org/mutnomen). The initiation codon is codon 1.
 Page 5

Mutation					Ass	sociate	d phenoty	pe			
Nucleotide nomenclature	Protein nomenclature	LCA	SLS	JS	JS + RD	JS + RF	CORS	MKS	MKS- like	BBS	
						(2)					
¥	p.Glu1903X									1	
CEP290:c.5709+2352_ 54_ C12orf50:c.290- 1375_77del	p.?						1				
c.5722G>T	p.Glu1908X				1						
c.5734del	p.Trp1912GlyfsX11						4 (2)				
c.5776C>T	p.Arg1926X	1									
c.5813_5817del	p.Thr1938AsnfsX16	1									
c.5824C>T	p.Gln1942X			1*		1*					
c.5850del	p.Phe1950LeufsX15	3					2(1)		2(1)		
c.5865_5867delinsGG	p.Glu1956GlyfsX9	1									
c.5866G>T	p.Glu1956X	1									
c.5932C>T	p.Arg1978X		1								
c.5941G>T	p.Glu1981X						2				
c.6031C>T	p.Arg2011X				1						
c.6072C>A	p.Tyr2024X						2(1)				
c.6271-8T>G	p.?						1				
c.6277del	p.Val2093SerfsX4						1				
c.6331C>T	p.Gln2111X				6		1				
c.6604del	p.Ile2202LeufsX24	7 (2)									
c.6869del	p.Asn2290IlefsX11						2				
c.6870del	p.Gln2291LysfsX10						2 (1)				
c.7318_7321dup	p.Leu2441SerfsX16						2 (1)				
c.7341dup	p.Leu2448ThrfsX8	1			2						Deleted: 1
c.7366_7369del	p.Thr2457AlafsX27				2 (1)						
Total number of distin	ct nationts (familias)	184	13	2	$\frac{23}{(20)}$	4					Deleted: 22
i otal number of ulstill	ci patients (tanines)	(167)	(12)	<u></u>	$\left(\frac{20}{2}\right)$	- (3) -	(53)	- (11)	(7)	1	Deleted: 19

phenotype (updating date: 14th of June, 2010). Numbers between brackets indicate the unique

 Nucleotide numbering reflects cDNA numbering with +1 corresponding to the A of the ATG

 translation initiation codon in the reference sequence (NM 025114.3), according to journal

 guidelines (www.hgvs.org/mutnomen). The initiation codon is codon 1.
 Page 6

number of families. Abbreviations used: LCA: Leber Congenital Amaurosis; SLS: Senior-Loken syndrome; JS: Joubert syndrome; JS + RD: Joubert syndrome with associated retinopathy; JS + RF: Joubert syndrome with associated renal failure; CORS: cerebello-oculo-renal syndrome; MKS: Meckel-Grüber syndrome; MKS-like: Meckel-Grüber syndrome_Jike; BBS: Bardet-Biedl____ syndrome. ¥: nucleotide nomenclature not specified in publication. *: both patients carrying the mutation belong to the same family.

, {	Deleted:
(Deleted: –

Nucleotide numbering reflects cDNA numbering with +1 corresponding to the A of the ATG translation initiation codon in the reference sequence (NM 025114.3), according to journal guidelines (www.hgvs.org/mutnomen). The initiation codon is codon 1. Page 7

Deleted: Table 2

Supp. Table S2: Overview of all CEP290 unclassified variants identified so far and their

occurrence in different phenotypes.

Unclassifi	ed variant		Associate	d phenotype	
Nucleotide nomenclature	Protein nomenclature	LCA	NPHP	JS +RF	Healthy
c.1991A>G	p.Asp664Gly			1	1
c.2717T>G	p.Leu906Trp				1
c.6684T>G	p.Asn2228Lys				1
c.4696G>C	p.Ala1566Pro	1			
c.5081T>C	p.Leu1694Pro	1			
c.4661_4663del	p.Glu1554del	1			
c.7311_7313del	p.Lys2437del		1		

Abbreviations used: LCA: Leber Congenital Amaurosis; NPHP: nephronophthisis; JS + RF:

Joubert syndrome with associated renal failure.

ιgen.. nal failure. Nucleotide numbering reflects cDNA numbering with +1 corresponding to the A of the ATG translation initiation codon in the reference sequence (NM 025114.3), according to journal guidelines (www.hgvs.org/mutnomen). The initiation codon is codon 1. Page 8

Page 4: [1] Deleted	Frau	ke Coppi	eters		6/1	4/2010 5	:55:00 PN
c.2118_2122dup	p.Thr709SerfsX9	1					

Unable to Convert Image

The dimensions of this image (in pixels) are too large to be converted. For this image to convert, the total number of pixels (height x width) must be less than 40,000,000 (40 megapixels).

Supp. Figure S1: Overview of CEP290base.

The database is accessible from: http://medgen.ugent.be/cep290base. Information on variants can be retrieved using the Mutation Overview (1) or the Mutation Browser (2). In addition, the Phenotype page (3) describes all phenotypes associated with *CEP290* so far. The variant-specific pages (4) are accessible from both the Mutation Overview and Mutation Browser and include detailed information on the pathogenic potential. The database links to NetGene2 and BDGP for splice site mutations and automatically fills in queries for PolyPhen and SIFT for missense changes. In addition, the database includes variants in other genes that co-occur with *CEP290* mutations, thereby providing a unique opportunity to link modifiers to associated clinical manifestations.

