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Abstract
This paper presents a framework to design mechanical models relying on a topological basis. Whereas naive
topological models such as adjacency graphs provide low topological control, the use of efficient topological
models such as generalized maps guarantees the quasi-manifold property of the manipulated object: Topological
inquiries or changes can be handled robustly and allow the model designer to focus on mechanical aspects. Even
if the topology structure is more detailed and consumes more memory, we show that an efficient implementation
does not impact computation time and still enables real-time simulation and interaction. We analyze how a simple
mass/spring model can be embedded within this framework.

Categories and Subject Descriptors(according to ACM CCS):
I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism—: Animation
I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling—: Physically-based modeling

Introduction

Various physical models have been proposed in the
physically-based animation field during the two last decades.
These models often include some topological information
dedicated to specific requirements, e. g. identifying the ver-
tices of each volume in finite element methods, or identify-
ing the faces around a vertex to compute a surface normal
before visualization.

The use of topological models is usually restricted to the
modeling field (any modeler relies on some sort of topo-
logical model), but to our knowledge, no physically-based
model has ever been proposed which includes general pur-
pose topological information while providing various and
adequate modifications. In some given applications, topo-
logical information is necessary, especially when topological
changes are undergone by the model. In surgical simulation,
cuttings, tearings or destructions of tissue are topological op-
erations which are performed during the simulation and not
as a preprocessing phase.

This paper aims at giving some clues about how to base a
physical model on a convenient topological model, namely,
generalized maps. The goal of this topological model is
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definitely not to spend less memory or even speed up the
computation. It rather provides robustness, due to rigorous
mathematical definitions, and versatility since it is easy to
define new operations. Maps provide an adequate help to
any neighborhood issue. Moreover, some ill-structured ob-
jects (i.e. “non-manifolds”) cannot be met after applying a
topological modification since they are impossible to rep-
resent using maps. We therefore eliminate the risk of cre-
ating pending faces or volumes only linked by a vertex or
an edge (topological representations of meshes that define
connectivity by the edges can not prevent such situations).
Furthermore, recent work has shown that collisions and self-
collisions can be handled in a robust way using topological
tracking [JCD09,LSM08].

Our goal is to show that topological models provide a
framework to implement topological transformation in a ro-
bust way and avoid topological issues such as incorrect de-
termination of neighbors for instance. However, their use re-
quires that the mechanical model relies on the topology. All
the associated algorithmic aspects must be designed subse-
quently, in terms of coverage of the structure. Thereafter, we
need to define the mechanical modifications implied by all
the considered topology changes. The main contributions of
our work are: (1) a general framework to provide existing
mechanical models with a topological basis in order to rep-
resent neighborhood relationships explicitly and avoid ill-
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Figure 1: 2D mesh cutting approaches: (a) removing of
faces. (b) separation of faces. (c) duplication of faces.

structured objets, (2) a mass/spring model based on such a
framework and (3) a robust approach to handle topological
changes in mechanical models.

This paper is organized as follows: After describing previ-
ous work, we detail the main principles of topological mod-
els and the specific vocabulary related to this field. Then, we
show how we can “embed” a topological model with me-
chanical information. In the following section, we present
how we have instantiated such an approach to a mass/spring
mesh. Section5 gives some optimizations to achieve real-
time requirements.

1. Previous work

Some early studies on physically-based animation have fo-
cused on topological changes to simulate fractures [TF88,
NTB∗91] or fusion [TPF89, Ton91]. While most of them
usually rely on simple mechanical models (particles or rigid
body), more recent approaches have applied topological
changes to explicit finite-element models [OH99].

Surgical simulation requires to apply such changes in real-
time, and several methods have been proposed to simulate
cuttings [CDA00, FG99, NvdS00]. The submitted solutions
have mainly focused on the mechanical adaptation related to
some topological changes, that, in the 3D (resp. 2D) case,
fall into one of these three approaches:

• volumes separation (resp. faces): neighborhood relation-
ships are discarded by dissociating the common face,
edges and vertices (resp. edge and vertices) between two
volumes (resp. faces) [FG99,NvdS00]

• volumes (resp. faces) removal [CDA00]
• volumes (resp. faces) duplication [MBF04,SDF07].

The different approaches in 2D are shown in Fig.1. They
imply different topological changes of various complexities.
The complexity of the operation comes both from the topo-
logical change itself and the computation of the local adap-
tation of physical values that usually requires the model to
provide neighborhood relations (it can be useful to enumer-
ate volumes adjacent to a vertex to compute its new mass
for instance). Separation and removal of volumes are actu-
ally complementary and it is convenient to combine both.
Separation of volumes is relevant to simulate scalpel cutting
whereas volumes removal reproduces destruction or burning
of tissue quite well. The topological basis allows us to unify
both approaches by relying on the same elementary modi-
fications: face dissociation (in the remainder of this article,
we will call “dissociation” the separation of common cells
between two separating volumes instead of the more usual
“splitting” term that is ambiguous in our context).

Note that when these approaches are used alone, the re-
sult is approximate because it heavily relies on the mesh
resolution. For instance in surgical simulation, the geom-
etry of splitting usually does not fit the intended cutting
path. Geometrical adaptation [NvdS03], division of volumes
into multiple sub-volumes [BG00] or mesh local refine-
ment [FDA05] are different approaches that address this is-
sue. In the case of meshless models, an approach relying on
co-refinement has also been proposed [SOG06]. These dif-
ferent approaches imply complex topological modifications
as well. Although they are beyond the scope of this paper,
they would surely benefit from a topologically-robust ap-
proach as the one we propose here.

Most approaches are actually based on adjacency graphs
and are indexed most of the time. In practice, vertices
are numbered in an array providing positions and usually
other features like velocities, forces and various mechan-
ical properties. Edges, faces and volumes are defined as
an ordered sequence of vertex indices. First, it has been
shown that adjacency graphs are ambiguous (several non
topologically-equivalent objects can rely on the same ad-
jacency graph) [LFB08]. Second, such models do not ex-
plicitly encode all the needed adjacency relationships. Ad-
ditional information is often required (for instance, a face
could also contain a list of its edges, a vertex could enumer-
ate its surrounding volumes, etc.). This information must be
updated in a consistent way during topology changes. Nev-
ertheless, since the different steps of the simulation (forces
computation, integration of differential equations, visualiza-
tion) require different neighborhood relations, this results in
a very heavy structure whose consistency is hard to main-
tain. To sum up, relying on naive topological models lead to
non robust topological handling algorithms.

Furthermore, as shown by Forest et al. [FDA05], the
simulated body should remain manifold during topologi-
cal changes, in order to avoid ill-structured elements (see
Fig. 2). However, instead of using a powerful topological
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Figure 2: Examples of non-manifold objects that must be
avoided after applying some topological modification.

structure, they proposed an algorithm to guarantee that the
object remains manifold (an-dimensional manifold is de-
fined as a topological space where every point has a neigh-
borhood homeomorphic to a ball). The algorithm is quite
heavy, several cases of ill-constructed structures must in-
deed be checked after any modification. Besides, instead of
restricting the objects to manifolds, we prefer to consider
a larger class of objects: quasi-manifolds. Quasi-manifolds
are defined, in 3D, as a set of volumes which are linked by
faces, provided that each face links at most two volumes.
Fig. 3 shows an example of a non-manifold object that is a
physically computable quasi-manifold.

Obviously, some studies have tried to use more appropri-
ate approaches. Some approaches only focus on the cellular
structure of the model itself and the simulation algorithms
(for instance, usingchainson cell complexes [ES00]), but
do not consider any topological modification. Other mod-
els are based on simplex meshes [DSCP94], but restrict the
topological modifications to volume separations. Some ap-
proaches have tried to use widely-known topological models
such as winged-edges [Bau75]. Nevertheless, these models

(a) (b)

Figure 3: (a) a manifold object and (b) a quasi-manifold
object. Indeed, the neighborhood of the central vertex is not
homeomorphic to a ball (but rather a kind of “pinched” ball)

Figure 4: Architecture of the topologically-based mechani-
cal model.

are restricted to dimension 2 and can only reproduce surface
cuttings or tearings.

Considering previous work, we understand that a frame-
work that enables any topological modifications and main-
tains the model consistency is required. This framework
aims at solving topological issues so that a designer can fo-
cus on the mechanical adaptation of his model only. This
framework implies to build the animation model (usually
composed of three parts to compute mechanical evolution,
collisions and visualization) on an additional component as
shown in Fig.4. Thus, the topological component appears
as a major part that supports at least visualization, behavior
and, if possible, collisions.

2. Topological models

The context we have exposed leads us to use, among all topo-
logical models, a versatile one, which does not constrain
any type of face or volume and enables multiple and com-
plex modeling operations, including refinement for instance.
Since the objects we manipulate can be represented as sub-
divisions, we find that topological maps are rather conve-
nient for our purpose [Lie94]. Combinatorial maps[Edm60]
are especially relevant, since they allow us to represent the
class of objects we manipulate, namely orientable quasi-
manifolds. Nevertheless, in this paper, we choose to rely
on generalized maps. This class of maps can represent ori-
entable or non-orientable quasi-manifolds but they require
twice as much memory as combinatorial maps. However,
their algebraic definition is homogeneous (in dimensionn),
and, compared to combinatorial maps, we found them easier
to present to a reader who is not familiar with topological
models. Generalized maps do not significantly change the
results obtained with our approach. Furthermore, methods
to export generalized maps to combinatorial maps are well-
known, so the results presented in this paper can be adapted.
Precise relations between generalized, combinatorial maps
and other data structures are presented in [Lie91].
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Figure 5: (a) A 2D subdivision. (b) The corresponding 2-g-
map. Darts are represented by numbered black segments.

2.1. Generalized maps

A n-dimensional generalized map (denotedn-g-map) is
based on a unique abstract element, calleddart that, for 3D-
objects, roughly represents “a vertex on an edge of a face
of a volume of the object”.n-g-maps are defined as a set of
darts and applications defined on these darts:

Definition (Generalized map) Letn≥ 0. An n-dimensional
generalized map (orn-g-map) is defined by G =
(B,α0, . . . ,αn) where:

1. B is a finite set of darts;
2. ∀i,0≤ i ≤ n,αi is an involution onB (an involution f on

S is a mapping fromSontoSsuch thatf = f−1);
3. ∀i, j,0≤ i < i +2≤ j ≤ n,αiα j is an involution (condi-

tion of quasi-manifolds).

In Fig. 5, dart 1 corresponds to vertexs1, edgea1 and
face f1, dart 2= α0(1) corresponds to(s2,a1, f1), 3= α1(2)
corresponds to(s2,a2, f1), and 20= α2(3) corresponds to
(s2,a2, f2). The following table shows the different links of
the first ten darts in the figure:

1 2 3 4 5 6 7 8 9 10

α0 2 1 4 3 6 5 8 7 10 9

α1 5 3 2 8 1 7 6 4 18 13

α2 1 2 20 19 5 6 7 8 9 10

For all the darts of the first line, we show in the following
lines the dart to which it isα0-, α1- andα2-linked with. We
can verify that eachα is an involution.

Let G be ann-g-map, andS be the corresponding subdi-
vision. A dart ofG corresponds to an(n+ 1)-tuple of cells
(c0, ...,cn), whereci is ani-dimensional cell that belongs to
the boundary ofci+1 [Bri89]. αi associates darts correspond-
ing with (c0, . . . ,cn) and(c′0, . . . ,c

′
n), wherec j = c′j for j 6= i,

andci 6= c′i (αi swaps the pair ofi-cells that are adjacent to
the same(i − 1) and(i + 1)-cells). When two dartsb1 and
b2 verify αi(b1) = b2 (0≤ i ≤ n), b1 is saidi-sewn withb2.
Moreover, ifb1 = b2 (that is,b1 is a fixed point) thenb1 is
said i-free (closed objects do not exhibit any fixed points ;
For open objects, the fixed points byαn form the boundary
of the object).n-g-maps provide an implicit representation
of cells:

Definition (orbit) Let{Π0, ...,Πn} be a set of permutations
on B. The orbit of an elementb relatively to this set of per-
mutations is〈Π0, ...,Πn〉(b) = {Φ(b) ,Φ ∈ 〈Π0, ...,Πn〉},
where〈Π0, . . . ,Πn〉 denotes the group of permutations gen-
erated by{Π0, . . . ,Πn}.

Definition (i-cell) LetG be ann-g-map,b a dart andi ∈N =
{0, .,n}. The i-cell adjacent tob is the orbit〈〉N−{i} (b) =
〈α0, . . . ,αi−1,αi+1, . . . ,αn〉(b).

An i-cell is the set of all darts that can be reached start-
ing from b, using any combination of all involutions except
αi . In Fig. 5, the 0-cell (vertex) adjacent to dart 2 is the or-
bit 〈α1,α2〉(2) = {2,3,20,21}, the 1-cell (edge) adjacent to
dart 3 is〈α0,α2〉(3) = {3,4,19,20}, and the 2-cell (face)
adjacent to dart 9 is〈α0,α1〉(9) = {9,10,13,14,17,18}.
The set ofi-cells is a partition of the darts of then-g-map,
for eachi between 0 andn. Two cells are disjoined if their
intersection is empty, i.e. when no dart is shared by these
cells. More details aboutn-g-maps are provided in [Lie94].

2.2. Embeddings

The topological model only describes the structure of an ob-
ject. The geometric information, such as the vertices posi-
tions for instance, must be added. For that purpose, it is pos-
sible to embed information in the structure, more precisely
information is attached to darts. However, the information
is usually related to a cell (in other words an orbit). This
means that all the darts of an orbit share the same informa-
tion. In practice, we can either attach the same information
to all the darts of the orbit or to a single dart (we have used
the second option, as discussed in the implementation sec-
tion below). As a consequence, a dart can potentially embed
information for each cell to which it belongs. This informa-
tion can be geometric, but any other type of information is
possible (chromaticity used for rendering for instance). In
our context, mechanical embedding is appropriate.

3. Topology-based physical modeling

3.1. Discussion

Using topology-based models, the modeling process may
only focus on mechanical embeddings since the complete
structure (vertices, edges, faces and volumes) is represented
within the model. Mechanical attributes must be added to
each considered cell. For instance, the mass of an element is
included within the volume embedding, the mass of a node
in the vertex embedding, the stiffness of a spring in the edge
embedding, and so on.

However, this approach requires that the mechanical
structure corresponds to a quasi-manifold. As stated in the
previous work section, the mesh of a finite-element model is
recommended to obtain such a structure. Nevertheless, this
hypothesis is more restrictive for particles models, since the
interaction graph is not likely to be quasi-manifold [ES00].
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Figure 6: While applying the cutting (a) on a 2D mesh, a
vertex (b) can be dissociated in two.

Basically, this means that nodes should be vertices, springs
are mapped to edges, and faces and volumes are formed by
a set of nodes and springs. For instance, in the model pro-
posed by [Pro95], neither a spring that crosses a face corre-
sponds to an edge nor a spring that links second neighbors
(that is, neighbors of neighbors). By relying on topological
models, we have to accept that only a sub-part of the me-
chanical structure should be in bijection with the topologi-
cal structure. The remaining mechanical elements should be
embedded in a way as convenient as possible. For instance, a
spring that crosses a face should be embedded in the face; a
spring which links second neighbors should be embedded on
the common node/vertex or one of the two concerned edges,
etc.

In the remainder of the paper, we suppose that the me-
chanical structure is quasi-manifold, that can be any Finite-
Element mesh or a mass/spring system where any interaction
maps to an edge.

3.2. Topological operations

In section1, we have shown the need for topological opera-
tions in surgical simulation. Here, we show that these oper-
ations can be very efficiently implemented usingn-g-maps.

Let us consider the volume separation (face dissociation)
first. Usingn-g-maps, this transformation only corresponds
to theα3-unsew operation between two volumes and is re-
ally straightforward: The algorithm walks through the darts
of the face (exploringα0 and α1 links), and discardsα3
links.

During this process, the elimination ofα3 may induce ver-
tex and/or edge dissociation, as shown in Fig.6 in the 2D
case. Fig.7 shows what is happening in the generalized map
when we eliminate adjacency relationships and a vertex is
dissociated. This side-effect can be easily detected, since in
this case, two unsewed darts no longer belong to the same
vertex (and/or edge) orbit. This must be checked during the
last step of the operation, since we must prevent unsewed
darts to share the same embeddings. The following steps are
performed:

Figure 7: In the2D case (a), we separate two faces by can-
celling theα2 link. As can be seen in (b), the darts A et B no
longer belong to the same vertex orbit.

• get a dart for each vertex and edge of the face to dissociate
• get a corresponding dart for each vertex and edge of the

adjacent face, by followingα3 links
• for each dartd of the face and adjacent face, eliminate

α3(d)
• check if a vertex is dissociated by checking if its dart and

the corresponding dart on the adjacent face still belong to
the same vertex orbit. If not, separate vertex embeddings.

• check if an edge is dissociated by checking if its dart and
the corresponding dart on the adjacent face still belong to
the same edge orbit. If not, separate edge embeddings.

When an orbit is dissociated, its embedding is available
for only one of both resulting orbits. As far as geometric
embeddings are concerned, another embedding must be cre-
ated by duplication for the other connected part of the orbit.
In practice, this basically means that the two resulting orbits
are topologically disjoined but share the same geometry, in
other words, the same space coordinates. As far as mechani-
cal embeddings are concerned, the duplication of embedding
is irrelevant. A new embedding of each part of the dissoci-
ated orbit must be computed according to the mechanical
properties of the modified object. For instance, the mass of
the original vertex must be distributed between the two re-
sulting vertices. A similar process is necessary for stiffness
in the case of edge dissociation.

The other operation we have considered is volume re-
moval. A straightforward but naive approach consists in
erasing all the darts of the volume. However, it can be quite
hazardous to control embeddings correctly using such an ap-
proach. When a dart is deleted, all its embeddings are dis-
patched on other darts belonging to its initiali-cell. How-
ever, as seen previously, mechanical embeddings should be
adapted accordingly. Unfortunately, that task becomes tricky
because of the loss of information implied by the deletion of
the darts. It is more convenient to isolate the volume first, by
iterating on all its faces and applying the previously-defined
face dissociation. Such a technique guarantees to share mass,
stiffness and so on. When the volume is isolated, all its darts
and corresponding embeddings can be deleted. Note that the
unsewed faces of the volumes surrounding the removed vol-
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ume become 3-free and must be taken into account in the
rendering step (since they belong to the boundary of the ob-
ject).

4. A topology-based mass/spring system

In this section, we show how to build a simple mechani-
cal model, namely a mass/spring mesh, upon a topological
model. We first have to consider how to embed the mechan-
ical properties and state variables into the structure. At this
point, we can study the basic algorithms to compute the be-
havior of the mesh. Then we present the topological opera-
tions that the model can currently undergo.

4.1. Embeddings

As explained in section3, we choose to consider a
mass/spring mesh as a quasi-manifold. Here, we suppose
that the mesh is only composed of tetrahedra, but our model
can easily be extended to other volume elements, sincen-g-
maps support any geometrical shape of quasi-manifolds.

We associate each mechanical property with the corre-
sponding cell. In a tetrahedron, we embed its mass (which
is easily obtained from the volume of the element for an ho-
mogeneous object). In an edge, we embed the rest-length
of the corresponding spring, the stiffness and, if needed, a
damping value. We select the outside faces of the object
and embed into them some details required by the rendering
step, such as faces normals for instance. Finally in a vertex,
we embed the mass of the corresponding node (obtained by
summing the contribution of all surrounding tetrahedra), an
ambient viscosity coefficient and the position and velocity
of the node. It is wise, for optimization purposes, to also in-
clude the sum of all forces applied to a node.

4.2. Behavior computation

Since different mechanical properties and state variables are
embedded into the structure, all usual algorithms must be de-
signed once again. Indeed, neither nodes nor springs appear
as arrays that we only have to parse. On the contrary, each al-
gorithm must rely on an adapted coverage of the topological
structure.

A coverage of the topological structure is always defined
from a starting dart and a given set ofα links. To cover
the wholei-cell, we basically check every dart of the struc-
ture, process the correspondingi-cell and mark all darts that
belong to the samei-cell orbit (i.e. that can be reached by
a combination ofα j , ∀ j ∈ {0, ...,n}− {i}). While walk-
ing through the structure, only unmarked darts are taken
into account before they are marked. At the end, all darts
are marked. At this stage, another coverage of the structure
aims at unmarking the darts (or alternatively, the value of the
marker is only swapped) and the marker can be released for
further uses.

To compute deformation forces, we cover all the edges
of the structure. Letb a dart that belongs to an edge orbit.
We can easily get the extremity nodes of the corresponding
spring:b belongs to the vertex orbit of one of the nodes, and
α0(b) to the other one. We can then compute the deformation
force relying on the position and velocity of extremity nodes
and apply it.

Force integration and state variables computation require
to cover all vertices in a similar way. The process is rather
straightforward for explicit integration schemes such as Eu-
ler or Runge Kutta. However, more elaborate integration
methods rely on linear algebra. For such methods, it is rec-
ommended to associate each vertex with an index in the state
variables vector. A final walk through the structure allows
each vertex to retrieve its new position and velocity in the
state vector.

Finally, because the collision process can be handled in
different ways [TKH∗05], we cannot make a complete in-
ventory of all possible approaches. Depending on the cho-
sen one, cells of a given dimension must be walked through.
For instance, one can cover vertices and faces to check if
a collision occur between objects. In penalty-based method,
it is more appropriate to use a volumetric approach, so the
volumes must be covered. Anyway, the topological model
always allows us to find the concerned vertices, get their po-
sition and velocity to compute the collision correctly and ap-
ply resulting forces.

4.3. Topological operations

We have shown in section3 that the topological operations
we want to implement are topologically straightforward but
require a careful handling of embeddings during face disso-
ciation.

We present in this section how to find the new embeddings
when a face is dissociated to separate two tetrahedra. Each
triangle of a tetrahedron is composed of 6 darts (2 darts per
edge). These 6 darts are separated (α3-unsewed) from the 6
darts of the common triangle with the adjacent tetrahedron.
For each vertex and each edge of the triangle, we check if the
corresponding unlinked darts still belong to the same orbit.
If it is not the case, a vertex or edge dissociation has occurred
(see Fig.8).

When a vertex is dissociated, we duplicate its position and
velocity but we have to compute the mass of the two new
vertices. Mass is obtained by covering adjacent tetrahedra
and sum up their respective mass contribution.

mv = ∑
i∈tetra(v)

mt
i/4 (1)

wheremv is the mass of a vertexv, tetra(v) the tetrahedra
adjacent tovandmt the mass of a tetrahedron. For the sake of
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Figure 8: After the dissociation of a vertex and an edge,
new masses m and stiffnesses k must be computed. Here, we
have m= m1 +m2 and k= k1 +k2.

simplicity, we found convenient to dispatch 1/4 of the mass
of a tetrahedron to each of its vertices. A more complex ap-
proach could have been used: We could have considered the
part of volume related to each vertex (by splitting the tetra-
hedron according to the mediator planes of each edge) and
distribute the mass accordingly. Note that this computation
must be done considering the rest shape of the object and not
after deformation (the model does not simulate mass trans-
fer). This approach guarantees a better mass repartition in
case of thin parts of a tetrahedron. However, in physically-
based modeling, these kind of shapes are known to lead to
ill-conditioned equations and must be avoided, so we can
suppose that a heterogeneous distribution of mass is a rea-
sonable hypothesis.

This way, we ensure that the sum of the masses of the two
vertices is always the mass of the original dissociated vertex.
We then consider that ambient viscosity is proportional to
the computed mass. Note that if the vertices have an index
into a state vector, we have to supply one of the appearing
vertices with a new index (the other vertex keeps the index
of the dissociated vertex).

The edge dissociation process is rather similar. If two un-
linked darts no longer belong to the same edge orbit, an edge
dissociation has occurred. We then consider all tetrahedra
adjacent to both resulting edges and sum their contributions
to obtain the resulting stiffness. This way, the sum of the
stiffness of the two edges equals the stiffness of the initial
dissociated edge, as stated by the Kirchhoff law applied to a
parallel combination of springs.

5. Implementation and optimizations

5.1. Implementation

We have implemented the model described in the previous
section. To handle 3-g-maps, we used the MOKA library
(freely available athttp://moka-modeller.sourceforge.net).
The mechanical aspects and the interaction tools are han-

Figure 9: Example of the removal of several tetrahedra.

Figure 10: Example of several dissociations of faces around
a vertex.

dled within a home-made dynamic simulator [MDH∗03] ,
using penalty methods between tetrahedra to handle colli-
sions. The Fig.9 shows our results for a liver object after
several tetrahedron removals.

Fig. 10 shows an example of a tearing. A simple face
dissociation to separate two volumes does not provide any
convincing visual effect, especially when no vertex is dis-
sociated. To allow the volumes to really separate from each
other, we have to dissociate several adjacent faces. The idea
is to extract a closed triangle fan around a vertex where the
inner forces go beyond a given threshold. Dissociating all
the faces of the fan yields this vertex to be dissociated. This
fan is easily defined using our topology model. Indeed, we
find a vertex we want to dissociate and select a starting face
by choosing, among adjacent faces, the one whose normal
best approximates the inner stress direction. Letd0 be one
of the two darts belonging to both face and vertex orbits. We
find a dartd1 of the next face in the fan by applyingα2, α3
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and againα2 andα1 successively tod0. We iterate to get the
nextdi in order to find the other faces of the fan. The process
stops when the initial dartd0 is reached or when the surface
of the object is met. In this last case, the process must stop
before applyingα3. We then apply the same algorithm to
α1(d0) to get the other part of the fan. Since noα0 is used,
we ensure that we obtain darts belonging to the orbit of the
vertex to dissociated.

First, we have implemented all algorithms with the above-
mentioned coverages of the structure. Using a dual core
2.8GHz processor, we needed 12ms to compute an evolution
step of a deformable body including 564 nodes, 2850 springs
and 1856 tetrahedra (using Runge Kutta 4). This computa-
tion time must be compared with the 2ms that the same ob-
ject based on a classic adjacency graph requires. This slow-
down is explained by the number of darts (here 44544) that
must be checked during the coverage of any type of cell. Op-
timizations are obviously needed to avoid such coverages,
even if the faster model lacks a lot of functionalities consid-
ering the poorness of the adjacency relationships it brings
(we have not ventured to implement topology changes on
this naive model).

5.2. Optimizations

To get faster results, we have chosen to put all the embed-
dings of cells of a given dimension in a separate double-
linked list (easy to implement using construction patterns
without disturbing topological operations). This prevents us
from covering all the structure where only embeddings (and
not the darts containing them) are needed. This optimiza-
tion allows us to reach 8ms for a simulation step, but this
is clearly not sufficient. A lot of algorithm steps require not
only embeddings but also neighborhood relations that em-
beddings are not intended to provide, so this optimization
appears quite limited.

Considering processor architectures and memory caching,
it is often recommended to put data into contiguous and in-
dexed structures such as arrays. It is not worth trying to
make our map-based model (a graph structure) perform as
fast as an indexed adjacency graph. In other words, the sim-
ulation loop should preferably rely on arrays while the topol-
ogy modifications should rather be driven by the topological
model. Here, we discuss how this idea can be implemented
in practice.

A first approach consists in manipulating both models al-
together. This implies that any topological operation applied
to the topological model should also be applied to the in-
dexed structure. This method is not really relevant. Indeed,
since the basic element of the topological model, namely the
dart, does not correspond to anything in the indexed model, it
is not possible to translate the atomic topological operations
(αi-sewing or unsewing) into modifications in the adjacency
graph. This method forces the topological changes to be ex-
pressed in terms of cell modifications, which is definitely

not intuitive when using (g-)maps and really restricting. This
leads to define new non-robust algorithms to modify the ob-
ject.

A second approach still consists in driving the topologi-
cal modification using the topological model, which guaran-
tees robustness and consistency. Nevertheless, when all the
modifications have been applied, we project the map into
an indexed structure which is not intended to duplicate the
information but rather aims at providing a fast way to navi-
gate inside the 3-g-map and access data. We therefore define
four arrays (one for each dimension of cells: vertices, edges,
faces and volumes). In these arrays, we find a pointer to a
dart representing eachi-cell and another pointer to the corre-
sponding embedding. The proposed data structure is defined
as follows:

struct Cell {
Dart *dart;
Embedding *emb;

};
vector<Cell> vertices,edges,faces,volumes;

This indexed structure is built from scratch after a series
of simultaneous topological changes and is used as such for
following simulation steps until a new topological modifica-
tion occurs. The construction phase requires a little amount
of time which is negligible compared to the overall compu-
tation time required to apply topological changes.

Using this optimized structure, we have been able to al-
most reach the results obtained with indexed structure (2ms),
the possible overhead (due to the use of indirections such as
pointers) is below the measure noise (10%). Thus, our opti-
mization method offers a satisfactory trade-off between ro-
bustness and computation time.

Conclusion and future work

In this paper, we have presented a framework based on
combinatorial topology that mechanical models can rely on.
Since maps represent any adjacency relationship explicitly,
they provide a convenient way to address topological issues
of models with variable topology. The computation of neigh-
borhood properties is simplified as well as the design of op-
erations. We have shown how to build the mechanical model
on this framework, by embedding physical properties and
state variables in the structure and have designed our algo-
rithms in terms of coverages of the structure. We have shown
how to compute the new embeddings when some topological
change is applied.

Using adequate optimization, we find that our model is as
fast as a naive indexed approach based on adjacency graphs.
In this paper, we only showed basic modifications, but more
complex ones can be considered. For instance, the loss of
connectivity is quite simple to verify: It consists in check-
ing if all the darts are marked while walking through the
structure following all theα-links. When the connectivity is
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lost, the mechanical model can be split in two parts to com-
pute the behavior of the two resulting bodies separately (and
even computing collisions between these two components).
Another example of useful complex topological operation is
refinement, that offers a good trade-off between precision
and shapes of elements as showed by [FDA05].

Moreover, we now aim at implementing an explicit linear
finite-element model upon our topological basis (such as the
co-rotational approach [MG04]). Whereas mechanical em-
beddings of such a model seem straightforward (position and
velocity on vertices, mass and local matrices on tetrahedra),
the inherent requirement of linear algebra during the reso-
lution process implies to provide each vertex with an index,
and moreover, to number vertices efficiently. Since this pro-
cess does not fit the topological structure well, we hope to
keep the resolution efficient even if “on-the-fly” numbering
is used.
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Appendix A: C++ Code of a topological operation

We present here the example of a separation of volumes
by dissociating their common face in order to illustrate that
the implementation of topological operation is simple and
straightforward. This example heavily relies on MOKA API.

void dissociateFace(Dart* a_dart) {
// a_dart is any of the darts of the face
// to dissociate (from its adjacent face)

int n=a_dart->NumberOfFaceVertices();
// number of vertices and edges
// of the face

Dart* da[n];
// each dart represents
// a vertex and an edge of the face

Dart* db[n];
// each dart represents a
// vertex and an edge of
// the adjacent face

// get one dart for each
// vertex and edge of the face
// (by covering alpha0 and alpha1 links)
da[0]=a_dart;
for(int i=1;i<n;i++)

da[i]=da[i-1]->getAlpha0()->getAlpha1();

// get the corresponding darts
// on the adjacent face
// following alpha3 links
for(int i=0;i<n;i++)

db[i]=da[i]->getAlpha3();

// **** Separate the two volumes ****
for(int i=0;i<n;i++) {

da[i]->setAlpha3(NULL);
// means free alpha3 link

db[i]->setAlpha3(NULL);

// Each edge has two darts
// (linked by alpha0) on the face.
// alpha3 must also be changed
// for these darts to maintain
// the 3-g-map consistency
da[i]->getAlpha0()->setAlpha3(NULL);
db[i]->getAlpha0()->setAlpha3(NULL);

}
// separation is complete

// Check vertex dissociation
for(int i=0;i<n;i++) {

if (!da[i]->isSameOrbit(VERTEX_ORBIT,db[i])
// separate vertex embeddings

}

// Check edge dissociation
for(int i=0;i<n;i++) {

if (!da[i]->isSameOrbit(EDGE_ORBIT,db[i])
// separate edge embeddings

}
}

In this algorithm, theisSameOrbitmethod consists in
walking along the orbit given as the first parameter of the
function and checking if the dart provided as the second pa-
rameter is met.
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