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We consider an equation modeling the evolution of a viscous liquid thin film wetting a horizontal solid substrate destabilized by an electric field normal to the substrate. The effects of the electric field are modeled by a lower order non-local term. We introduce the good functional analysis framework to study this equation on a bounded domain and prove the existence of weak solutions defined globally in time for general initial data (with finite energy).

Introduction

In this paper, we construct solutions for a thin film type equation with a destabilizing singular integral term. This term models the effects of an electric field (see [START_REF] Tseluiko | Nonlinear dynamics of electrified thin liquid films[END_REF]). From the analytical point of view, this paper belongs to the large body of literature devoted to the thin film equation with destabilizing terms such as long-wave unstable thin film problems [START_REF] Bertozzi | Long-wave instabilities and saturation in thin film equations[END_REF][START_REF]Finite-time blow-up of solutions of some long-wave unstable thin film equations[END_REF][START_REF] Witelski | Blowup and dissipation in a critical-case unstable thin film equation[END_REF] or the Kuramato-Sivashinsky equation in combustion and solidification [START_REF] Frankel | On the equation of a curved flame front[END_REF][START_REF] Frankel | On a free boundary problem associated with combustion and solidification[END_REF].

More precisely, we are considering the following equation, which is introduced by Tseluiko and Papageorgiou in [START_REF] Tseluiko | Nonlinear dynamics of electrified thin liquid films[END_REF] (see also [START_REF] Papageorgiou | Gravity capillary waves in fluid layers under normal electric fields[END_REF]):

u t + u 3 (cu xx -αu -λI(u)) x x = 0 x ∈ [0, L], t > 0 (1) 
(in [START_REF] Tseluiko | Nonlinear dynamics of electrified thin liquid films[END_REF], (1) is supplemented with periodic boundary conditions). This equation models the evolution of a liquid thin film (of height u) wetting a horizontal solid

The existence of non-negative weak solutions for (2) was first established by F. Bernis and A. Friedman [START_REF] Bernis | Higher order nonlinear degenerate parabolic equations[END_REF] for f (u) = u n , n > 1. Further results (existence for n > 0 and further regularity results) were later obtained, by similar technics, in particular by E. Beretta, M. Bertsch and R. Dal Passo [START_REF] Beretta | Nonnegative solutions of a fourth-order nonlinear degenerate parabolic equation[END_REF] and A. Bertozzi and M. Pugh [START_REF] Bertozzi | The lubrication approximation for thin viscous films: the moving contact line with a "porous media" cut-off of van der Waals interactions[END_REF][START_REF]The lubrication approximation for thin viscous films: regularity and long-time behavior of weak solutions[END_REF]. Results in higher dimension were obtained in particular by Grün in [START_REF]On Bernis' interpolation inequalities in multiple space dimensions[END_REF][START_REF] Grün | Degenerate parabolic differential equations of fourth order and a plasticity model with non-local hardening[END_REF][START_REF] Passo | On a fourth-order degenerate parabolic equation: global entropy estimates, existence, and qualitative behavior of solutions[END_REF]. The thin film equation with lower order destabilizing terms has also received a lot of interest. In particular in [START_REF] Bertozzi | Long-wave instabilities and saturation in thin film equations[END_REF][START_REF]Finite-time blow-up of solutions of some long-wave unstable thin film equations[END_REF], the following equation

u t + (f (u)u xxx -g(u)u x ) x = 0 (3) 
is considered. Such a destabilizing term (which, unlike that of [START_REF] Agranovich | On Fourier series in eigenfunctions of elliptic boundary value problems[END_REF], is a local term of order 2) models, for instance, the effects of gravity for a hanging thin film, or van der Waals type interactions with the solid substrate. In [START_REF] Bertozzi | Long-wave instabilities and saturation in thin film equations[END_REF], the nonlinearities f (u) = u n and g(u) = u m are considered and it is proved (among other things) that there is no blow-up for m < n + 2. In [START_REF]Finite-time blow-up of solutions of some long-wave unstable thin film equations[END_REF], for f (u) = u and g(u) = u m , it is proved that there is blow-up for m ≥ 3 and initial data in H 1 (R) with negative "energy". The reader is referred to [START_REF]Finite-time blow-up of solutions of some long-wave unstable thin film equations[END_REF] for a precise statement.

In our equation [START_REF] Agranovich | On Fourier series in eigenfunctions of elliptic boundary value problems[END_REF], the nonlinearities in front of the stabilizing and destabilizing terms are the same (f (u) = g(u) = u 3 ), but the destabilizing term is elliptic of order 3 and is nonlocal in space. It is known (see [START_REF] Tseluiko | Nonlinear dynamics of electrified thin liquid films[END_REF]) that positive smooth solutions of (1) do not blow up. The goal of the present paper is to prove the existence of global in time weak solutions for [START_REF] Agranovich | On Fourier series in eigenfunctions of elliptic boundary value problems[END_REF].

Note that besides the existence of solutions, many important properties of the thin film equation [START_REF] Beretta | Nonnegative solutions of a fourth-order nonlinear degenerate parabolic equation[END_REF] have been investigated (finite speed of propagation of the support, waiting time phenomenon, existence of source-type solutions etc.).

The key tools in many of these studies are various delicate integral inequalities (in particular the so-called α-entropy inequalities and local entropy and energy inequalities. See [START_REF] Bernis | Higher order nonlinear degenerate parabolic equations[END_REF][START_REF]Nonnegative solutions of a fourth-order nonlinear degenerate parabolic equation[END_REF][START_REF]The lubrication approximation for thin viscous films: regularity and long-time behavior of weak solutions[END_REF][START_REF] Bertozzi | Long-wave instabilities and saturation in thin film equations[END_REF]). It is not clear that similar functional inequalities holds for [START_REF] Agranovich | On Fourier series in eigenfunctions of elliptic boundary value problems[END_REF]. One reason is that the algebra involving the operator I(u) is considerably more difficult than that of the Laplace operator. Another reason, is the obvious difficulty in deriving local estimates (due to the nonlocal nature of the operator I(u)). For that reason, we only address the existence issue in this paper.

As in [START_REF] Bertozzi | Long-wave instabilities and saturation in thin film equations[END_REF][START_REF]Finite-time blow-up of solutions of some long-wave unstable thin film equations[END_REF], the main difficulty in proving the existence of solutions for [START_REF] Agranovich | On Fourier series in eigenfunctions of elliptic boundary value problems[END_REF] comes from the fact that the energy (see [START_REF]Finite-time blow-up of solutions of some long-wave unstable thin film equations[END_REF] below) can take negative values. In order to obtain H 1 a priori estimate, one thus has to use the conservation of mass which, for non-negative solutions, gives a global in time L 1 bound for the solution (see Lemma 1).

With such an estimate in hand, the existence of global in time solutions should follow from the construction of approximated solutions satisfying the right functional inequalities. Typically, one needs to regularize the mobility coefficient u 3 . One way to proceed is to replace the coefficient u 3 with u 3 + ε so that the equation becomes strictly parabolic. However, for such a regularized equation one cannot show the existence of non-negative solutions (the maximum principle does not hold for fourth order parabolic equations) and Lemma 1 is of no use. An alternative regularization is to replace the mobility coefficient u 3 with a function f ε (u) which satisfies in particular f ε (u) ∼ u 4 /ε. For such (more degenerate) mobility coefficient, solutions are expected to be strictly positive and therefore smooth. This second regularization procedure was first suggested by Bernis and Friedman [START_REF] Bernis | Higher order nonlinear degenerate parabolic equations[END_REF] and is used in particular by Bertozzi and Pugh [START_REF] Bertozzi | The lubrication approximation for thin viscous films: the moving contact line with a "porous media" cut-off of van der Waals interactions[END_REF][START_REF] Bertozzi | Long-wave instabilities and saturation in thin film equations[END_REF]. However, the local in time existence for such a degenerate equation is not clear to us, since the corresponding proofs in [START_REF] Bernis | Higher order nonlinear degenerate parabolic equations[END_REF] rely on Schauder estimates which are not classical (and perhaps tedious) with our non-local singular term I(u). For this reason, we choose the first regularization approach; this requires us to pay attention to the lack of positivity of the approximated solutions. In particular, the L 1 norm is not controlled, and the H 1 norm will be controlled by combining the energy inequality with the entropy inequality. The idea of combining the energy together with the entropy in order to get a Lyapunov functional appeared previously in [START_REF] Shishkov | On the equation of the flow of thin films with nonlinear convection in multidimensional domains[END_REF] where a thin film equation with a nonlinear drift term is thouroughly studied in all dimensions.

The main contribution of this paper is thus to introduce the precise functional analysis framework to be used to treat the term I(u) and to provide a method for constructing weak solutions satisfying the proper a priori estimates.

Rather than working in the periodic setting, we will consider equation (1) on a bounded domain with Neumann boundary conditions (these Neumann conditions can be interpreted as the usual contact angle conditions and seem physically more relevant -the periodic framework could be treated as well with minor modifications). Further details about the derivation of (1) will be given in Section 2. Since the gravity term is of lower order than the electric field term, it is of limited interest in the mathematical theory developed in this paper. We will thus take α = 0 and c = λ = 1.

We thus consider the following problem:

     u t + f (u)(u xx -I(u)) x x = 0 for x ∈ Ω, t > 0 u x = 0, f (u)(u xx -I(u)) x = 0 for x ∈ ∂Ω, t > 0 u(x, 0) = u 0 (x) for x ∈ Ω. (4) 
The domain Ω is a bounded interval in R; in the sequel, we will always take Ω = (0, 1). The mobility coefficient f

(u) is a C 1 function f : [0, +∞) → (0, +∞) satisfying f (u) ∼ u n as u → 0 (5)
for some n > 1. The operator I is a non-local elliptic operator of order 1 which will be defined precisely in Section 3 as the square root of the Laplace operator with Neumann boundary conditions (we have to be very careful with the definition of I in a bounded domain).

A priori estimates. As for the thin film equation ( 2), we prove the existence of solutions for (4) using a regularization/stability argument. The main tools are integral inequalities which provide the necessary compactness. Besides the conservation of mass, we will see that the solution u of (4) satisfies two important integral inequalities: We define the energy E(u) and the entropy e(u) by

E(u)(t) = 1 2 Ω (u 2 x (t) + u(t)Iu(t))dx and e(u)(t) = 1 2 Ω G(u(t))dx
where G is a non-negative convex function such that f G ′′ = 1. Classical solutions of (4) then satisfy:

E(u)(t) + t 0 Ω f (u) (u xx -I(u)) x 2 dx ds ≤ E(u 0 ), (6) e(u)(t) 
+ t 0 (u xx ) 2 dx ds + t 0 u x I(u) x dx ds ≤ e(u 0 ). (7) 
Similar inequalities hold for the thin film equation [START_REF] Beretta | Nonnegative solutions of a fourth-order nonlinear degenerate parabolic equation[END_REF]. However, we see here the destabilizing effect of the nonlocal term I(u): First, we note that as in [START_REF] Bertozzi | Long-wave instabilities and saturation in thin film equations[END_REF][START_REF]Finite-time blow-up of solutions of some long-wave unstable thin film equations[END_REF] the energy E(u) can be written as the difference of two non-negative quantities:

E(u)(t) = u(t) 2 Ḣ1 (Ω) -u(t) 2 Ḣ 1 2 (Ω) , (8) 
and may thus take negative values. Similarly, the entropy dissipation can be written as

t 0 (u xx ) 2 dx ds + t 0 u x I(u) x dx ds = u(t) 2 Ḣ2 (Ω) -u(t) 2 Ḣ 3 2 N (Ω)
, so the entropy may not be decreasing. Nevertheless, it is reasonable to expect (4) to have solutions that exist for all times. Indeed, as shown in [START_REF] Tseluiko | Nonlinear dynamics of electrified thin liquid films[END_REF], the conservation of mass, the inequality [START_REF]The lubrication approximation for thin viscous films: regularity and long-time behavior of weak solutions[END_REF] and the following functional inequality (see Lemma 1)

u 2 Ḣ1 (Ω) ≤ αE(u) + β u 2 L 1 (Ω) , ∀u ∈ H 1 (Ω),
implies that non-negative solution remains bounded in L ∞ (0, T ; H 1 (Ω)) for all time T . Furthermore, the interpolation inequality 

u(t) 2 Ḣ 3 2 N ≤ C u(t) Ḣ1 u(t) Ḣ2 ≤ 1 2 u(t) 2 Ḣ2 + C 2 u(t)
G ′′ (u) = 1 f (u)
for all u > 0.

Theorem 1. Let n > 1 and u 0 ∈ H 1 (Ω) be such that u 0 ≥ 0 and

Ω G(u 0 ) dx < ∞. (9) 
For all T > 0 there exists a function u(t, x) ≥ 0 with

u ∈ C(0, T ; L 2 (Ω)) ∩ L ∞ (0, T ; H 1 (Ω)), u x ∈ L 2 (0, T ; H 1 0 (Ω))
such that, for all φ ∈ D([0, T ) × Ω) satisfying φ x = 0 on (0, T ) × ∂Ω,

Q uφ t -f (u)[u xx -I(u)]φ xx -f ′ (u)u x (u xx -I(u))φ x dt dx + Ω u 0 (x)φ(0, x) dx = 0. ( 10 
)
Moreover, the function u satisfies for every t ∈ [0, T ],

Ω u(t, x) dx = Ω u 0 (x) dx, E(u(t)) + t 0 Ω f (u) (u xx -I(u)) x 2 ds dx ≤ E(u 0 ), ( 11 
) Ω G(u(t)) dx + t 0 Ω (u xx ) 2 + u x I(u) x dsdx ≤ Ω G(u 0 ) dx. ( 12 
)
We point out that the weak formulation [START_REF] Passo | On a fourth-order degenerate parabolic equation: global entropy estimates, existence, and qualitative behavior of solutions[END_REF] involve two integrations by parts. Our second main result is concerned with non-negative initial data whose entropies are possibly infinite (this is the case if u 0 vanishes on an open subset of Ω and n ≥ 2). In that case, only one integration by parts is possible, and the solutions that we construct are weaker than those constructed in Theorem 1. In particular, the equation is only satisfied on the positivity set of the solution and the boundary conditions are satisfied in a weaker sense.

Theorem 2. Assume n > 1 and let u 0 ∈ H 1 (Ω) be such that u 0 ≥ 0. For all T > 0 there exists a function u(t, x) ≥ 0 such that [START_REF] Grün | Degenerate parabolic differential equations of fourth order and a plasticity model with non-local hardening[END_REF] where P = {(x, t) ∈ Q : u(x, t) > 0, t > 0}. Moreover, the function u satisfies the conservation of mass and the energy inequality [START_REF] Frankel | On a free boundary problem associated with combustion and solidification[END_REF].

u ∈ C(0, T ; L 2 (Ω)) ∩ L ∞ (0, T ; H 1 (Ω)) ∩ C 1 2 , 1 8 (Ω × (0, T )) such that f (u)[u xx -I(u)] x ∈ L 2 (P ) and such that, for all φ ∈ D([0, T ) × Ω), Q uφ t dt dx + P f (u)[u xx -I(u)] x φ x dt dx + Ω u 0 (x)φ(0, x) dx = 0
Finally, u x vanishes at all points (x, t) of ∂Ω × (0, T ) such that u(x, t) = 0.

Comments. These results are comparable to those of [START_REF] Bernis | Higher order nonlinear degenerate parabolic equations[END_REF] when λ = 0. The reader might be surprised that they are presented in a different order than in [START_REF] Bernis | Higher order nonlinear degenerate parabolic equations[END_REF]. The reason has to do with the proofs; indeed, in contrast with [START_REF] Bernis | Higher order nonlinear degenerate parabolic equations[END_REF], weak solutions given by Theorem 2 are constructed as limits of the solutions given by Theorem 1. This is because the entropy is needed in order to construct the nonnegative solutions. See the discussion at the beginning of Section 5 for further details.

As pointed out earlier, the non-linearities in front of the stabilizing (u xxx ) and destabilizing ((I(u)) x ) are the same. This is in contrast with the work of Bertozzi and Pugh [START_REF] Bertozzi | Long-wave instabilities and saturation in thin film equations[END_REF][START_REF]Finite-time blow-up of solutions of some long-wave unstable thin film equations[END_REF]. By analogy with (3), one could consider the equation

u t + (u n u xxx -u m (I(u)) x ) x = 0
in which case a scaling analysis similar to that of [START_REF] Bertozzi | Long-wave instabilities and saturation in thin film equations[END_REF] suggests that blow up can only occur if m ≥ n + 1. However, to our knowledge, there is no physical motivation for such a generalization (in our case).

Organization of the article. In Section 2, we give more details about the physical model leading to (4). We gather, in Section 3, material that will be used throughout the paper. In particular, we detail the functional analysis framework and the definition of the non-local operator I (which is similar to that used in [START_REF] Imbert | Existence of solutions for a higher order non-local equation appearing in crack dynamics[END_REF]). Section 4, 5 and 6 are devoted to the proofs of the main results. Finally, we give in Appendix a technical result which is more or less classical.
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Physical model

In this section, we briefly recall the derivation of (4) (see [START_REF] Tseluiko | Nonlinear dynamics of electrified thin liquid films[END_REF] for further details). We consider a viscous liquid film which completely wets a solid horizontal substrate and is constrained between two solid walls (at x = 0 and x = 1), see Figure 1. The fluid is Newtonian and is assumed to be a perfect conductor. The substrate is a grounded electrode held at zero voltage. Thanks to the presence of another electrode (at infinity), an electric field E is created which is constant at infinity (in the direction perpendicular to the substrate):

E(x, y) -→ (0, E 0 )
as y → +∞.

The height of the fluid is denoted by u(t, x). Under the assumptions of the lubrication approximation, it is classical that the evolution of u is described by Poiseuille's law:

u t -∂ x u 3 3µ ∂ x p = 0 ( 14 
)
where p is the pressure at the free surface of the fluid y = u(t, x). This pressure is the sum of three terms:

1. The capillary pressure due to surface tension, which can be approximated by p 1 ∼ -σu xx (replacing the mean curvature operator by the Laplacian).

2. The effect of gravity, given by p 2 = gu.

3. The additional pressure due to the action of the electric field E.

To compute the third term appearing in the pressure, we introduce the potential V such that E = -∇V , which satisfies ∆V = 0 for y ≥ u(x) and V (x, y) = 0 on y = u(x).

The condition at y → ∞ means that we can write

V ∼ E 0 (Y 0 -y)
with (using standard linear approximation)

   ∆Y 0 = 0 for y > 0, x ∈ Ω ∇Y 0 → 0 as y → ∞, x ∈ Ω Y 0 (x, 0) = u(x) for x ∈ Ω. ( 15 
)
At the boundary of the cylinder, we assume that the electric field has no horizontal component:

∂ x V = 0, for x ∈ ∂Ω, y > 0.
The pressure exerted by the electric field is then proportional to

p 3 = γE y = -γ∂ y V (x, 0) = -γE 0 (∂ y Y 0 -1).
The application u → ∂ y Y 0 (x, 0) is a Dirichlet-to-Neumann map for the harmonic extension problem [START_REF] Imbert | Existence of solutions for a higher order non-local equation appearing in crack dynamics[END_REF]. We denote this operator by I(u). We will see in Section 3 that I(u) is in fact the square root of the Laplace operator on the interval Ω with homogeneous Neumann boundary conditions. We thus have

p = p 1 + p 2 + p 3 = -σu xx + gu -γE 0 I(u) + c 0
for some constant c 0 , and we obtain (1) with c = σ 3µ , α = g 3µ and λ = -γE0 3µ . Note that Poiseuille's law [START_REF]On Bernis' interpolation inequalities in multiple space dimensions[END_REF] is obtained under the no-slip condition for the fluid along the solid support. Other conditions, such as the Navier slip condition leads to f (u) = u 3 + Λu s with s = 1 or s = 2. This explains the interest of the community for general diffusion coefficient f (u).

Boundary conditions. Along the boundary ∂Ω, the fluid is in contact with a solid wall. It is thus natural to consider a contact angle condition at x = 0 and x = 1: Assuming that the contact angle is equal to π/2, we then get the boundary condition u x = 0 on ∂Ω.

In [START_REF] Tseluiko | Nonlinear dynamics of electrified thin liquid films[END_REF], the authors derive their analytic results in a periodic setting which is obtained by considering the even extension of u to the interval (-1, 1) (recall that Ω = (0, 1)) and then taking the periodic extension (with period 2) to R.

Finally, since the equation is of order 4, we need an additional boundary condition. We thus assume that u satisfies the following null-flux condition

u 3 (u xx -I(u)) x = 0
on ∂Ω which will guarantee the conservation of mass.

Preliminaries

In this section, we recall how the operator I is defined (see [START_REF] Imbert | Existence of solutions for a higher order non-local equation appearing in crack dynamics[END_REF]) and give the functional analysis results that we will need to prove the main theorem. A very similar operator, with Dirichlet boundary conditions rather than Neumann boundary conditions, was studied by Cabré and Tan [START_REF] Cabré | Positive solutions of nonlinear problems involving the square root of the laplacian[END_REF].

Functional spaces

The space H s N (Ω). We denote by {λ k , ϕ k } k=0,1,2... the eigenvalues and corresponding eigenfunctions of the Laplace operator in Ω with Neumann boundary conditions on ∂Ω:

-

∆ϕ k = λ k ϕ k in Ω ∂ ν ϕ k = 0 on ∂Ω, (16) 
normalized so that Ω ϕ 2 k dx = 1. When Ω = (0, 1), we have

λ 0 = 0 , ϕ 0 (x) = 1 and λ k = (kπ) 2 , ϕ k (x) = √ 2 cos(kπx) k = 1, 2, 3, . . .
The ϕ k 's clearly form an orthonormal basis of L 2 (Ω). Furthermore, the ϕ k 's also form an orthogonal basis of the space H s N (Ω) defined by

H s N (Ω) = u = ∞ k=0 c k ϕ k ; ∞ k=0 c 2 k (1 + λ s k ) < +∞ equipped with the norm ||u|| 2 H s N (Ω) = ∞ k=0 c 2 k (1 + λ s k )
or equivalently (noting that c 0 = Ω u(x) dx and λ k ≥ 1 for k ≥ 1):

||u|| 2 H s N (Ω) = u 2 L 1 (Ω) + u 2 Ḣs N (Ω)
where the homogeneous norm is given by:

u 2 Ḣs N (Ω) = ∞ k=1 c 2 k λ s k .
A characterisation of H s N (Ω). The precise description of the space H s N (Ω) is a classical problem.

Intuitively, for s < 3/2, the boundary condition u ν = 0 does not make sense, and one can show that (see Agranovich and Amosov [START_REF] Agranovich | On Fourier series in eigenfunctions of elliptic boundary value problems[END_REF] and references therein):

H s N (Ω) = H s (Ω) for all 0 ≤ s < 3 2 .
In particular, we have H

1 2 N (Ω) = H 1 2
(Ω) and we will see later that

u 2 Ḣ 1 2 (Ω) = Ω Ω (u(y) -u(x)) 2 ν(x, y)dxdy
where ν(x, y) is a given positive function; see (20) below.

For s > 3/2, the Neumann condition has to be taken into account, and we have in particular

H 2 N (Ω) = {u ∈ H 2 (Ω) ; u ν = 0 on ∂Ω}
which will play a particular role in the sequel. More generally, a similar characterization holds for 3/2 < s < 7/2. For s > 7/2, additional boundary conditions would have to be taken into account, but we will not use such spaces in this paper. In Section 4, we will also work with the space H 3 N (Ω) which is exactly the set of functions in H 3 (Ω) satisfying u ν = 0 on ∂Ω.

The case s = 3/2 is critical (note that u ν | ∂Ω is not well defined in that space) and one can show that

H 3 2 N (Ω) = u ∈ H 3 2 (Ω) ; Ω u 2 x d(x) dx < ∞
where d(x) denotes the distance to ∂Ω. A similar result appears in [START_REF] Cabré | Positive solutions of nonlinear problems involving the square root of the laplacian[END_REF]; more precisely, such a characterization of H 3 2

N (Ω) can be obtained by considering functions u such that u x ∈ V 0 (Ω) where V 0 (Ω) is defined in [START_REF] Cabré | Positive solutions of nonlinear problems involving the square root of the laplacian[END_REF] as the equivalent of our space H 1/2 N (Ω) with Dirichlet rather than Neumann boundary conditions. We do not dwell on this issue since we will not need this result in this paper.

The operator I

As it is explained in the Introduction, the operator I is related to the computation of the pressure as a function of the height of the fluid. Spectral definition. With λ k and ϕ k defined by ( 16), we define the operator

I : ∞ k=0 c k ϕ k -→ - ∞ k=0 c k λ 1 2 k ϕ k ( 17 
)
which clearly maps H 1 (Ω) onto L 2 (Ω) and

H 2 N (Ω) onto H 1 (Ω).
Dirichlet-to-Neuman map. We now check that this definition of the operator I is the same as the one given in Section 2, namely I is the Dirichletto-Neumann operator associated with the Laplace operator supplemented with Neumann boundary conditions:

We consider the following extension problem:

   -∆v = 0 in Ω × (0, +∞), v(x, 0) = u(x) on Ω, v ν = 0 on ∂Ω × (0, ∞). (18) 
Then, we can show (see [START_REF] Imbert | Existence of solutions for a higher order non-local equation appearing in crack dynamics[END_REF]):

Proposition 1 ([15]). For all u ∈ H 1 2
N (Ω), there exists a unique extension v ∈ H 1 (Ω × (0, +∞)) solution of [START_REF] Simon | Compact sets in the space L p (0, T ; B)[END_REF].

Furthermore, if u(x) = ∞ k=1 c k ϕ k (x), then v(x, y) = ∞ k=1 c k ϕ k (x) exp(-λ 1 2 k y). ( 19 
)
and we have:

Proposition 2 ([15]
). For all u ∈ H 2 N (Ω), we have

I(u)(x) = - ∂v ∂ν (x, 0) = ∂ y v(x, 0) for all x ∈ Ω,
where v is the unique harmonic extension solution of [START_REF] Simon | Compact sets in the space L p (0, T ; B)[END_REF].

Furthermore I • I(u) = -∆u.

Integral representation. Finally, the operator I can also be represented as a singular integral operator:

Proposition 3 ([15]
). Consider a smooth function u : Ω → R. Then for all x ∈ Ω,

I(u)(x) = Ω (u(y) -u(x))ν(x, y)dy
where ν(x, y) is defined as follows: for all x, y ∈ Ω,

ν(x, y) = π 2 1 1 -cos(π(x -y)) + 1 1 -cos(π(x + y)) . ( 20 
)

Functional equalities and inequalities

Equalities. The semi-norms

|| • || Ḣ 1 2 (Ω) , || • || Ḣ1 (Ω) , || • || Ḣ 3 2 N (Ω)
and

|| • || Ḣ2 N (Ω)
are related to the operator I by equalities which will be used repeatedly.

Proposition 4 (The operator I and several semi-norms - [START_REF] Imbert | Existence of solutions for a higher order non-local equation appearing in crack dynamics[END_REF]).

For all u ∈ H 1 2 (Ω), we have

-uI(u) dx = 1 2 Ω Ω (u(x) -u(y)) 2 ν(x, y)dxdy = ||u|| 2 Ḣ 1 2 (Ω)
where ν is defined in [START_REF] Witelski | Blowup and dissipation in a critical-case unstable thin film equation[END_REF].

For all u ∈ H 2 N (Ω), we have

- Ω u x I(u) x dx = ||u|| 2 Ḣ 3 2 N (Ω)
.

For all k ∈ N and u ∈ H k+1 N (Ω), we have

Ω (∂ k x I(u)) 2 dx = u 2 Ḣk+1 N (Ω) . (21) 
Inequalities. First, we recall the following Nash inequality:

u L 2 (Ω) ≤ C u 1 3 H 1 (Ω) u 2 3
L 1 (Ω) . It implies in particular that,

u 2 L 2 (Ω) ≤ 1 2 u 2 Ḣ1 (Ω) + C u 2 L 1 (Ω) . (22) 
This inequality will allow us to control the H 1 norm by the energy E(u) and the L 1 norm. Indeed, we recall that the energy is defined by

E(u) = 1 2 Ω |u x | 2 + u I(u) dx = 1 2 u 2 Ḣ1 (Ω) - 1 2 u 2 Ḣ 1 2 (Ω) . (23) 
We then have:

Lemma 1. There exist positive constants α, β such that for all u ∈ H 1 (Ω),

u 2 Ḣ1 (Ω) ≤ αE(u) + β u 2 L 1 (Ω) .
Remark 1. See also Lemma 4.1 in [START_REF] Tseluiko | Nonlinear dynamics of electrified thin liquid films[END_REF].

Proof. We have

u 2 Ḣ1 (Ω) = 2E(u) + u 2 Ḣ 1 2 (Ω)
, and using (21) with k = 0 and (22), we get:

u 2 Ḣ 1 2 (Ω) = -u I(u) dx ≤ u L 2 (Ω) I(u) L 2 (Ω) ≤ u L 2 (Ω) u Ḣ1 (Ω) ≤ 1 2 u 2 L 2 (Ω) + 1 2 u 2 Ḣ1 (Ω) ≤ 3 4 u 2 Ḣ1 (Ω) + C 2 u 2 L 1 (Ω) ,
hence the result.

A regularized problem

We can now turn to the proof of Theorem 1 and 2. As usual, we introduce the following regularized equation:

     u t + (f ε (u)(u xx -I(u)) x ) x = 0 for x ∈ Ω, t > 0 u x = 0, f ε (u)(u xx -I(u)) x = 0 for x ∈ ∂Ω, t > 0 u(x, 0) = u 0 (x) for x ∈ Ω (24)
where the mobility coefficient f (u) is approximated by

f ε (u) = min(max(ε, f (|u|)), M ) which satisfies ε ≤ f ε (u) ≤ M for all u ∈ R.
Ultimately, we will show that the solution u satisfies 0 ≤ u(t, x) ≤ M 0 for some constant M 0 independent of M , so that we do not have to worry about M (provided we take it large enough). The ε is of course the most important parameter in the regularization since it makes (24) non-degenerate. The proof of Theorem 1 consists of two parts: First, we have to show that the regularized equation (24) has a solution (which may take negative values). Then we must pass to the limit ε → 0 and show that we obtain a non-negative solution of (4).

In this section, we prove the first part. Namely, we prove (to be compared with Theorem 1.1 in [START_REF] Bernis | Higher order nonlinear degenerate parabolic equations[END_REF]): Theorem 3. Let u 0 ∈ H 1 (Ω). For all T > 0 there exists a function u ε (t, x) such that

u ε ∈ C(0, T ; L 2 (Ω)) ∩ L ∞ (0, T ; H 1 (Ω)) ∩ L 2 (0, T ; H 3 N (Ω)) such that, for all φ ∈ D([0, T ) × Ω), Q u ε φ t + f ε (u ε )[u ε xx -I(u ε )] x φ x dt dx + Ω u 0 (x)φ(0, x) dx = 0. ( 25 
)
Moreover, the function u ε satisfies for every t ∈ [0, T ],

Ω u ε (t, x) dx = Ω u 0 (x) dx, E(u ε (t)) + t 0 Ω f ε (u ε ) (u ε xx -I(u ε )) x 2 ds dx ≤ E(u 0 ), (26) 
and

Ω (u ε x ) 2 dx + t 0 Ω f ε (u ε )(u ε xxx ) 2 ds dx ≤ Ω ((u 0 ) x ) 2 dx + t 0 Ω f ε (u ε )u ε xxx (I(u ε )) x ds dx (27)
and

Ω G ε (u ε (t)) dx + t 0 Ω (u ε xx ) 2 + u ε x I(u ε ) x dsdx ≤ Ω G ε (u 0 ) dx. ( 28 
)
where G ε is a non-negative function such that f ε G ′′ ε = 1. Finally, u ε is 1 2 -Hölder continuous with respect to x and 1 8 -Hölder continuous with respect to t; more precisely, there exists a constant C 0 only depending on

Ω and u ε L ∞ (0,T ;H 1 (Ω)) and f ε (u ε )[u ε xx -I(u ε )] x L 2 (Q) such that u ε C 1 2 , 1 8 
t,x (Q) ≤ C 0 . ( 29 
)
Remark 2. This theorem is very similar to Theorem 1.1 in [START_REF] Bernis | Higher order nonlinear degenerate parabolic equations[END_REF], and some steps in our proof follow along the lines of [START_REF] Bernis | Higher order nonlinear degenerate parabolic equations[END_REF]. For instance, getting the Hölder estimates from the L ∞ H 1 estimate is done in the same way. However, the main difficulty in proving this theorem is precisely to get the L ∞ H 1 estimate; this step is not straightforward at all and this is a significant difference with [START_REF] Bernis | Higher order nonlinear degenerate parabolic equations[END_REF].

Proof of Theorem 3. Theorem 3 follows from a fixed point argument: For some T * , we denote V = L 2 (0, T * ; H 2 N (Ω)) and we define the application

F : V → V such that for v ∈ V , F (v) is the solution u of      u t + (f ε (v)(u xxx -I(v) x )) x = 0 for x ∈ Ω, t > 0 u x = 0, f ε (v)(u xx -I(v)) x = 0 for x ∈ ∂Ω, t > 0 u(x, 0) = u 0 (x) for x ∈ Ω. ( 30 
)
The fact that F is well defined follows from the observation that for v ∈ V , we have

a(t, x) = f ε (v(t, x)) ∈ [ε, M ] and g(t, x) = I(v) x ∈ L 2 (Q)
and the following proposition:

Proposition 5. Consider u 0 ∈ H 1 (Ω) and a(t, x) ∈ L ∞ (Q) such that ε ≤ a(t, x) ≤ M a.e. in Q. If g ∈ L 2 (Q), then there exists a function u ∈ C(0, T ; L 2 (Ω)) ∩ L ∞ (0, T ; H 1 (Ω)) ∩ L 2 (0, T ; H 3 N (Ω))
and

Q uφ t + a(u xxx -g)φ x dt dx + Ω u 0 (x)φ(0, x) dx = 0 for all φ ∈ D([0, T ) × Ω). Moreover, for every t ∈ [0, T ], u satisfies Ω u(t, x) dx = Ω u 0 (x) dx
and

Ω (u x ) 2 (t) dx + 1 2 t 0 Ω a(u xxx ) 2 ds dx ≤ M 2 t 0 Ω g 2 ds dx + Ω (u 0 ) 2 x dx. (31)
Furthermore, u is 1 2 -Hölder continuous with respect to x and 1 8 -Hölder continuous with respect to t; more precisely, there exists a constant C 0 only depending on Ω and u L ∞ (0,T ;H 1 (Ω)) and

u xxx -g L 2 (Q) such that u C 1 2 , 1 8 
t,x (Q) ≤ C 0 . ( 32 
)
This proposition is a very natural existence result for the fourth order linear parabolic equation

u t + (au xxx ) x = (ag) x .
Its proof is fairly classical, we give some details in Appendix A for the interested reader.

Next, we show the following result:

Lemma 2. There exists a (small) time T * > 0, depending only on ε, M and Ω, such that F has a fixed point u in V = L 2 (0, T * ; H 2 N (Ω)) for any initial data u 0 ∈ H 1 (Ω). Furthermore, u satisfies

u V ≤ R||u 0 || Ḣ1 (Ω) and u L ∞ (0,T * ; Ḣ1 (Ω)) ≤ √ 2||u 0 || Ḣ1 (Ω) . (33) 
Before proving this lemma, let us complete the proof of Theorem 3.

Construction of a solution for large times. Lemma 2 gives the existence of a solution u ε 1 of (24) defined for t ∈ [0, T * ]. Since T * does not depend on the initial condition, we can apply Lemma 2 to construct a solution u ε 2 in [T * , 2T * ] with initial condition u ε 1 (T * , x) which is H 1 (Ω) by ( 33). This way, we obtain a solution u ε of (24) on the time interval [0, 2T * ]. Note that we also have

u ε L ∞ (0,2T * ; Ḣ1 (Ω)) ≤ √ 2 2 ||u 0 || Ḣ1 (Ω) .
Iterating this argument, we construct a solution u ε on any interval [0, T ] satisfying in particular, for all k ∈ N such that kT * ≤ T ,

||u ε || L ∞ (0,kT * , Ḣ1 (Ω)) ≤ √ 2 k R||u 0 || Ḣ1 (Ω) .
Energy and entropy estimates. The conservation of mass follows from Proposition 5, but we need to explain how to derive (26), ( 27) and ( 28) from (25). Formally, one has to choose successively φ = -u ε xx + I(u ε ), φ = -u ε xx and φ = G ′ ε (u ε ). Making such a formal computation rigourous is quite standard; details are given in Appendix B for the reader's convenience. Finally, (29) follows from (32).

Proof of Lemma 2. We need to check that the conditions of Leray-Schauder's fixed point theorem are satisfied:

F is compact. Let (v n ) n be a bounded sequence in V and let u n denote F (v n ). The sequence (I(v n )) x is bounded in L 2 (Q),
and so

g n = f ε (v n )∂ x I(v n ) is bounded in L 2 (Q). Estimate (31) implies that u n is bounded in L 2 (0, T * ; H 3 N (Ω)). In particular ∂ xxx u n is bounded in L 2 (0, T * ; L 2 (Ω)) and Equation (30) implies that ∂ t (u n ) is bounded in L 2 (0, T * , H -1 (Ω)). Using Aubin's lemma, we deduce that (u n ) n is pre-compact in V = L 2 (0, T * ; H 2 N (Ω)). F is continuous. Consider now a sequence (v n ) n in V such that v n → v in V and let u n = F (v n ). We have in particular v n → v in L 2 (Q) and, up to a subsequence, we can assume that v n → v almost everywhere in Q. Hence, f ε (v n ) → f ε (v) almost everywhere in Q. We also have that (I(v n )) x converges to (I(v)) x in L 2 (Q), and since |f ε (v n )| ≤ M a.
e., we can show that

g n = f ε (v n )∂ x I(v n ) → f ε (v)∂ x I(v) = g in L 2 (Q).
Next, the compacity of F implies that (u n ) n is pre-compact in the space L 2 (0, T ; H 2 N (Ω)), and so u n converges (up to a subsequence) to U in V . In particular, u n → U in L 2 (Q) and (up to a another subsequence), u n → U almost everywhere in Q. We thus have f ε (u n ) → f ε (U ) in L 2 (Q), and passing to the limit in the equation, we conclude that U = u = F (v) (by the uniqueness result in Proposition 5). Since this holds for any subsequence of u n , we deduce that the whole sequence u n converges to u hence

F (v n ) → F (v) in V as n → ∞
and F is continuous.

A priori estimates. It only remains to show that there exists a constant R > 0 such that for all functions u ∈ V and σ ∈

[0, 1] such that u = σF (u), we have u V ≤ R.
This is where the smallness of T * will be needed.

Using (31), we see that

Ω (u x (t)) 2 dx + ε 2 T * 0 Ω (u xxx ) 2 dx dt ≤ M 2 T * 0 Ω ((I(u) x ) 2 dx dt + Ω (u 0 ) 2 x dx, (34) 
and using (21) and the interpolation inequality

u x L 2 (Ω) ≤ C u 1 2 L 2 (Ω) u xx 1 2 L 2 (Ω) , (35) 
we get:

T * 0 Ω ((I(u) x ) 2 dx dt ≤ 2C ε T * 0 I(u)(t) 2 2 dt + ε 2M T * 0 (I(u)) xx (t) 2 2 dt ≤ 2C ε T * 0 u x (t) 2 2 dt + ε 2M T * 0 u xxx (t) 2 2 dt ≤ 2C ε T * sup t∈[0,T * ] u x (t) 2 2 + ε 2M T * 0 u xxx (t) 2 2 dt (36)
where C ε only depends on the constant C in (35) and the parameters ε and M . Combining (34) and (36), we conclude that

(1 -M C ε T * ) sup t∈[0,T ] u x (t) 2 2 + ε 4 T * 0 u xxx (t) 2 2 dt ≤ Ω (u 0 ) 2 x dx.
Therefore, choosing T * := 1 2MCε , we get the following estimates

u L ∞ (0,T * ; Ḣ1 (Ω)) ≤ √ 2||u 0 || Ḣ1 (Ω) and u L 2 (0,T * ; Ḣ3 N (Ω)) ≤ 2 √ ε ||u 0 || Ḣ1 (Ω)
Since we also have

Ω u(t) dx = Ω u 0 dx,
we deduce that u V ≤ R for some constant R depending on ε, which completes the proof.

Proof of Theorem 1

As pointed out in the introduction, one of the main difficulties in the proof of Theorem 1 is that the natural energy estimate (31) does not give any information by itself, since E(u) may be negative. Even if Lemma 1 implies that the quantity

αE(u ε ) + β||u ε || L 1 (Ω)
is bounded below by the H 1 norm of u, the mass conservation only allows us to control the L 1 norm of u ε if we know that u ε is non-negative. Unfortunately, it is well known that equation (24) does not satisfy the maximum principle, and that the existence of non-negative solutions of ( 4) is precisely a consequence of the degeneracy of the diffusion coefficient, so that while we can hope (and we will prove) to have lim ε→0 u ε ≥ 0 we do not have, in general, that u ε ≥ 0. Lemma 3 below will show that it is nevertheless possible to derive some a priori estimates that are enough to pass to the limit, provided the initial entropy is finite [START_REF] Cabré | Positive solutions of nonlinear problems involving the square root of the laplacian[END_REF].

Proof of Theorem 1. Consider the solution u ε of (24) given by Theorem 3. In order to prove Theorem 1, we need to show that lim ε→0 u ε exists and solves [START_REF] Passo | On a fourth-order degenerate parabolic equation: global entropy estimates, existence, and qualitative behavior of solutions[END_REF].

Since we cannot use the energy inequality to get the necessary estimates on u ε , we will need the following lemma: Lemma 3. Let H ε denote the following functional:

H ε (v) = Ω [v 2 x + 2M G ε (v)] dx.
Then the solution u ε given by Theorem 3 satisfies

H ε (u ε (t)) + M 2 t 0 Ω (u ε xx ) 2 dx ds + 1 2 t 0 Ω f ε (u ε )(u ε xxx ) 2 dx ds ≤ H ε (u 0 )e t/2
for every t ∈ [0, T ].

Proof of Lemma 3. Using ( 27) and (28) we see that

Ω G ε (u ε (t)) dx + 1 2 t 0 Ω (u ε xx ) 2 dx ds ≤ Ω G ε (u 0 ) dx + 1 2 t 0 Ω (u ε x ) 2 dx ds
and

Ω (u ε x ) 2 dx + 1 2 t 0 Ω f ε (u ε )[u ε xxx ] 2 dx ds ≤ Ω ((u 0 ) x ) 2 dx + M 2 t 0 Ω (u ε xx ) 2 dx ds.
This implies

H ε (u ε (t)) ≤ H ε (u 0 ) + t 0 H ε (u ε (s))ds,
and Gronwall's lemma yields the desired result.

Sobolev and Hölder bounds. We now gather all the a priori estimates: Using the conservation of mass, Lemma 3 and inequality (9), we see that there exists a constant C independent of ε such that:

sup t∈[0,T ] Ω (u ε x (t)) 2 dx ≤ C, (37) 
sup

t∈[0,T ] Ω G ε (u ε (t)) dx ≤ C, (38) 
T 0 Ω f ε (u ε )[u ε xxx ] 2 dx dt ≤ C, (39) 
T 0 Ω (u ε xx ) 2 dx dt ≤ C. (40) 
Next, we note that (37) yields

E(u ε ) ≥ -||u ε || L ∞ (0,T ; Ḣ1/2 (Ω)) ≥ -C||u ε || L ∞ (0,T ;H 1 (Ω)) ≥ -C
and so (26) gives

T 0 Ω f ε (u ε ) u ε xxx -I(u ε ) xx 2 ds dx ≤ C. (41) 
Finally, estimates (29), ( 37) and (41) yield that u ε is bounded in

C 1/2,1/8 x,t (Q).
Limit ε → 0. The previous Hölder estimate implies that there exists a function u(x, t) such that u ε converges uniformly to u as ε goes to zero (up to a subsequence). Inequality (40) also implies that u ε ⇀ u in L 2 (0, T ; H 2 (Ω))-weak and Aubin's lemma gives

u ε -→ u in L 2 (0, T ; H 1 (Ω))-strong.
After integration by parts, (25) can be written as

Q u ε φ t -f ε (u ε )[u ε xx -I(u ε )]φ xx -f ′ ε (u ε )u ε x (u ε xx -I(u ε ))φ x dt dx = Ω u 0 (x)φ(0, x) dx
and passing to the limit ε → 0 gives [START_REF] Passo | On a fourth-order degenerate parabolic equation: global entropy estimates, existence, and qualitative behavior of solutions[END_REF].

Non-negative solution. It only remains to show that u is non-negative. This can be done as in [START_REF] Bernis | Higher order nonlinear degenerate parabolic equations[END_REF], using (38) (and the fact that f satisfies (5) with n > 1).

L ∞ a priori estimate. Finally, (37) and Sobolev's embedding implies that there exits a constant M 0 depending only on

||u 0 || H 1 (Ω) such that 0 ≤ u(t, x) ≤ M 0 . (42) 
Choosing M > M 0 , we deduce that u solves (4).

Proof of Theorem 2

In order to get Theorem 2, we need to derive the following corollary from Theorem 1.

Corollary 1. The solution u constructed in Theorem 1 satisfies for all φ ∈ D((0, T ) × Ω),

Q uφ t dt dx + P f (u)[u xx -I(u)] x φ x dt dx = 0 ( 43 
)
where P = {(x, t) ∈ Q : u(x, t) > 0, t > 0}.

Proof. In view of the proof of Theorem 1, u is the uniform limit of a subsequence of (u ε ) ε>0 where u ε is given by Theorem 3. Since u ε satisfies (25), it is thus enough to pass to the limit in this weak formulation as ε → 0 in order to get the desired result. Let

h ε denote f ε (u ε )[u ε xx -I(u)] x . Estimates (41) and (42) imply Q h 2 ε dx dt ≤ C. (44) 
In other words, (h ε ) ε is bounded in L 2 (Q). Hence, up to a subsequence,

h ε ⇀ h in L 2 (Q)-weak.
Furthermore, we recall that there exists a continuous function u(x, t) such that u ε converges uniformly to u as ε goes to zero (up to a subsequence).

Passing to the limit in (25), we deduce that the function u satisfies

Q uφ t dt dx + Ω hφ x dt dx = 0.
We now have to show that

h = 0 in {u = 0}, f (u) u xx -I(u) x in P = {u > 0}.
First we note that for any test function φ and η > 0, we have

T 0 {u≤η} f ε (u ε ) u ε xxx -I(u ε ) x φ dx dt ≤ C(φ) f ε (3η/2) 1/2 T 0 {u≤η} f ε (u ε ) u xxx -I(u) x 2 dx dt 1/2
for ε small enough (so that |u ε -u| ≤ η/2). Inequality (41) thus implies lim sup

ε→0 T 0 {u≤2η} f ε (u ε ) u ε xxx -I(u ε ) x φ dx dt ≤ C(φ)f (η/2) 1/2 .
We deduce (since f (0) = 0)

h = 0 on {u = 0}. (45) 
Next, (44) yields (for ε > 0 and η small enough)

{u>2η} |u ε xxx -I(u ε ) x | 2 dx ds ≤ C(η). This implies that, if Q η denotes {u > 2η}, (u ε xxx -I(u ε ) x ) is bounded in the space L 2 (Q η ). Hence, we can extract from (u ε xxx -I(u ε ) x ) ε>0 a subsequence converging weakly in L 2 (Q η ). Moreover, remark that Q η is an open subset of Q (recall that u is Hölder continuous) and u ε xxx -I(u ε )
x converges in the sense of distributions to u xxx -I(u) x (use the integral representation for I(•)). We thus conclude that,

u ε xxx -I(u ε ) x ⇀ u xxx -I(u) x in L 2 (Q η ). This yields h = f (u) u xxx -I(u) xx in {u > 0}
which concludes the proof of Corollary 1.

We now turn to the proof of Theorem 2.

Proof of Theorem 2. When u 0 does not satisfy (9), we lose the L 2 (0, T ; H 2 (Ω)) bound on u ε , and the previous analysis fails. However, we can introduce u δ 0 = u 0 + δ which satisfies [START_REF] Cabré | Positive solutions of nonlinear problems involving the square root of the laplacian[END_REF]. Theorem 1 then provides the existence of a non-negative solution u δ of [START_REF] Passo | On a fourth-order degenerate parabolic equation: global entropy estimates, existence, and qualitative behavior of solutions[END_REF]. In view of Corollary 1, u δ satisfies:

Q u δ φ t dt dx + P f (u δ )[u δ xx -I(u δ )] x φ x dt dx = 0. (46) 
Since u δ is non-negative, the conservation of mass gives a bound in the space L ∞ (0, T ; L 1 (Ω)) and allows us to make use of the energy inequality: Indeed, using [START_REF] Frankel | On a free boundary problem associated with combustion and solidification[END_REF] and Lemma 1 we see that there exists a constant C independent of δ such that

||u δ || L ∞ (0,T ;H 1 (Ω)) ≤ C and T 0 Ω f (u δ ) u δ xxx -I(u δ ) x 2 ds dx ≤ C. (47) 
We now define the flux

h δ = f (u δ ) u δ xxx -I(u δ )
x . Inequality (47) implies that h δ is bounded in L 2 (Q), and that there exists a function h ∈ L 2 (Q) such that

h δ ⇀ h in L 2 (Q)-weak.
Proceeding as in the proof of Theorem 1, we deduce that u δ is bounded in C 1/2,1/8 (Ω×(0, T )) and that there exists a function u(x, t) such that u δ converges uniformly to u as δ goes to zero (up to a subsequence). We can now argue (with minor changes) as in the proof of Corollary 1 and conclude.

A Proof of Proposition 5

Our goal here is to prove the existence of a weak solution of u t + (au xxx ) x = (ag) x .

We first prove the following proposition.

Proposition 6. For all h ∈ H 1 (Ω), there exists v ∈ V 0 := H 1 ∩ H 3 N such that for all φ ∈ D( Ω),

- Ω v -h τ φ dx + av xxx φ x dx = Ω agφ x dx. (48) 
In particular,

Ω v dx = Ω h dx, 1 2 Ω v 2 x + τ Ω av 2 xxx ≤ 1 2 Ω h 2 x + τ Ω agv xxx . (49) 
Proof. In order to prove this proposition, we have to reformulate the equation. More precisely, instead of choosing test functions φ ∈ D( Ω), we choose φ = -ψ xx + Ω ψ dx where ψ is given by the following lemma We check that it is continuous and coercive:

|A(v, w)| ≤ v x 2 w x 2 + M τ v xxx 2 w xxx 2 + v 1 w 1 ≤ C v V0 w V0 A(v, v) ≥ Ω [(v x ) 2 + ετ (v xxx ) 2 ] dx + Ω v dx 2 ≥ v 2 V0 .
We now consider the following linear form L in V 0 : for all w ∈ V 0 ,

L(w) = Ω h x w x dx + Ω h dx Ω w dx + τ Ω agw xxx dx
Since 0 ≤ a ≤ M and g ∈ L 2 , L is continuous as soon as h ∈ H 1 (Ω). Lax-Milgram theorem thus implies that there exists v ∈ V 0 such that (50) holds true for all w ∈ V 0 . Eventually, remark that conservation of mass and (49) are direct consequences of (48). The proof of Proposition 6 is now complete.

We can now prove Proposition 5.

Proof of Proposition 5. For any τ > 0, we consider N τ = ⌈ T τ ⌉. We then define inductively a sequence (u n ) n=0,...,Nτ of V 0 as follows: u 0 = u 0 and u n+1 is obtained by applying Proposition 6 to h = u n . We then define u τ : [0, N τ τ ) × Ω as follows:

u τ (t, x) = u n (x) for t ∈ [nτ, (n + 1)τ ).

We have Ω u τ (t, x) dx = Ω u 0 (x) dx for all t. We also derive from (49) that we have In particular, (u τ ) τ is bounded in L ∞ (0, T ; H 1 (Ω)) and (S τ u τ -u τ ) τ is bounded in L 2 (0, T -τ ; H -1 (Ω)) where S τ v(t, x) = v(t + τ, x). We derive from [START_REF] Simon | Compact sets in the space L p (0, T ; B)[END_REF]Theorem 5] that (u τ ) τ is relatively compact in C(0, T ; L 2 (Ω)).

We now have to pass to the limit in (48). Since (u τ xxx ) τ is bounded in L 2 (Q) and we can find a sequence τ n → 0 such that u τn → u in C(0, T, L 2 (Ω)) and u τn xxx → u xxx in L 2 (Q). This is enough to conclude. We next explain how to get (32). Sobolev's embedding imply that there exists a constant K (depending on u L ∞ (0,T ;H 1 (Ω)) ) such that

|u(x 1 , t) -u(x 2 , t)| ≤ K|x 1 -x 2 | 1/2
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for all x 1 , x 2 ∈ Ω and for all t ∈ (0, T ). Since u satisfies u t = h x with h ∈ L 2 (Q), it is a fairly classical result that Hölder regularity in space implies Hölder regularity in time. More precisely, we have (see [START_REF] Bernis | Higher order nonlinear degenerate parabolic equations[END_REF], Lemma 2.1 for details): Lemma 5. There exists a constant C such that for all x 1 , x 2 in Ω and all t 1 ,

The proof of Proposition 5 is thus complete.

B Proof of (26), ( 27) and (28)

We have to derive (26), ( 27) and ( 28) from (25). Using the fact that u ε lies in C([0, T ], H 1 (Ω)), we first state the following lemma

The proof of such a lemma is fairly classical. It relies on mollifiers that are decentered in the time variable. More precisely, one considers a smooth even function ρ : R → [0, 1] compactly supported in [-1, 1] and such that ρ = 1. Then for α > 0 and δ ∈ R, one can define

If now a function f is defined in [0, T ], it can be extended by 0 to R; in other words, it can be replaced with f 1 Ω where 1 Ω (x) = 1 if x ∈ Ω and 1 Ω (x) = 0 if not; then the convolution product in R:

Consider a smooth function ρ such as in the proof of Lemma 6. Consider α > 0 and define ρ α (x) = αρ( x α ). Then consider θ(x, t) = ρ α (x)ρ α (t).

We next apply Lemma 6 with φ = v ⋆ θ where v is chosen to be successively u ε xx ⋆ θ, I(u ε ⋆ θ) and G ′ ε (u ε ⋆ θ). After direct computations, we can let α → 0 and get the desired estimates.