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Abstract—Tree automata turned out to be a very convenient
framework for modeling and proving properties on infinite
systems like communication protocols, Java programs and also
in the context of XML programming. Unfortunately, these works
are not always supported by efficient verification and validation
tools.

This paper investigates the use of two SAT solvers —
MiniSAT2 and picoSAT — to evaluate queries over tree au-
tomata with global equality and disequality constraints (TAGEDs
for short). Unlike general tree automata, TAGEDs allow to
express constraints useful for e.g., evaluating queries over XML
documents, like ’in the document, two nodes do not have the same
key’. These queries being based on the membership problem
which is NP-complete for TAGEDs, we propose an efficient
SAT encoding of the membership problem forTAGEDs and we
show its correctness and soundness. The paper reports on the
experimental results, and implementation details are given.

I. I NTRODUCTION

Tree automata turned out to be a very convenient way for
modeling and proving properties on infinite systems like com-
munication protocols [1]–[3], multi-threaded Java byte code
programs [4], [5], etc. Moreover, numerous recent works on
analysis of structured XML-like documents and on validation
of their transformations [6]–[9] exploit tree automata fortheir
encoding.

For all above-mentioned applications, it is important to
express constraints like ’in the term, two subterms do not
have the same leaf’. For example, when evaluating queries
over XML documents, it is important to express constraints
like ’in the document, two nodes do not have the same key’.
Unfortunately, tree automata are in general not expressive
enough to express this kind of constraints. To this end some
extensions of tree automata have been proposed, let us quote
hedge tree automata [10], visibly tree automata with memory
and constraints [11], rigid tree automata [12], tree automata
with global equality and disequality constraints (TAGEDs for
short) [13]. Although these recent works provide theoretical
results promising w.r.t. practical applications, they arenot
supported by efficient verification and validation tools.

This paper investigates the use of two SAT solvers —
MiniSAT2 and picoSAT — to evaluate queries over
TAGEDs. Unlike general tree automata,TAGEDs allow ex-
pressing constraints useful e.g., for evaluating queries over
XML documents.TAGEDs are also useful for security protocol
verification [12], and for LTL model-checking of infinite states

systems [5]. When processing and analysing XML documents,
queries exploit the membership problem forTAGEDs. This
problem being NP-complete forTAGEDs, we propose an
efficient SAT-based encoding of the membership problem for
TAGEDs, and we show its correctness and soundness. The
challenge is to evaluate queries over tree automata when con-
sidering both equality and disequality constraints. We present
some experimental results showing the interest of such an
approach.
Layout of the paper.The paper is organised as follows. After
presenting a motivating example in Section II, preliminary
notions on terms and tree-automata are given in Sect. III.
Section IV presents the main contribution – the SAT-based
encoding of the membership problem forTAGEDs, and states
its correctness and soundness. Section V reports on experi-
mental results showing the feasibility and the interest of the
proposed approach, and gives implementation details. Finally,
Section VI concludes and presents related work.

II. M OTIVATING EXAMPLE

This section illustrates on a toy example howTAGEDs can
be used to analyse the structure of XML files.

Let us consider an XML document describing the members
of a University. In this context, auniversity is viewed
as a list of research teams. Eachteam is affiliated to a
researchlaboratory and is composed of researchers, called
members. To simplify the tree automaton encoding, we as-
sume that in the university there are two teams, at least, and
that there are two members in each team, at least . Therefore,
the corresponding XML documents are to be conformed to the
following DTD.

<!ELEMENT university (team,team+)>
<!ELEMENT team (member,member+,laboratory)>
<!ELEMENT laboratory (#PCDATA)>
<!ELEMENT member (#PCDATA)>

Such XML documents are classically encoded by terms: the
binary symbolfteam encodes the list ofteams, and the
binary symbolgteam is a constructor for eachteam: Its first
argument is the list of teammembers and its second argument
is thelaboratory managing the team. The list of members
is encoded using the binary symbolfmemb. Finally, each
letter of the alphabet is a unary symbol encoding itself. There
is a unique constant symbol⊥. For instance, the following



XML file represents twoteams of the Computer Science
(CS) Laboratory: the first team has 3members whose names
are JS, JD and RKT, and the secondteam consists of two
members, calledWH andJFL.
For instance the following XML document

<university>
<team>
<member> JS </member>
<member> JD </member>
<member> RKT </member>
<laboratory> CS </laboratory>
</team>
<team>
<member> WH</member>
<member> JFL </member>
<laboratory> CS </laboratory>
</team>
</university>

is encoded by the termfteam(t1, t2), where t1 =
gteam(h1, h2) and t2 = gteam(h3, h4) with h1 =
fmemb(J(S(⊥)), fmemb(J(D(⊥)), R(K(T (⊥)))), h2 =
C(S(⊥)), h3 = fmemb(W (H(⊥)), J(F (L(⊥))) and h4 =
C(S(⊥)). Note that this term is depicted in Section VII.

Now, assuming that XML files result from a request pro-
viding all teams of a given laboratory, and that a researcher
cannot be affiliated to two different teams, the specifier wants
to check whether the given document satisfies the DTD and
these two constraints. Such verifications can be done using an
extended kind of tree automata, calledTAGEDs and introduced
in the next section. TheTAGED corresponding to the example
is provided in Section VII.

III. PRELIMINARIES

Comprehensive surveys can be found in [14], [15] for tree
automata and tree language theory, and in [16] forTAGEDs.

a) Terms: Let Σ be a finite set of symbols, associated
with an arity functionar : Σ → N and letT (Σ) denote the set
of terms. A positionp for a termt is a word overN. The empty
sequenceǫ denotes the top-most position. The setPos(t) of
positions of a termt is inductively defined byPos(t) = {ǫ}
if t ∈ X and byPos(f(t1, . . . , tn)) = {ǫ} ∪ {i.p | 1 ≤ i ≤
n andp ∈ Pos(ti)} otherwise. Ifp ∈ Pos(t), thent|p denotes
the subterm oft at positionp. We also denote byt(p) the
symbol occurring int at positionp.

b) Tree automata:Let Q be a finite set of symbols, of
arity 0, calledstatessuch thatQ∩Σ = ∅. T (Σ ∪ Q) is called
the set ofconfigurations. A transition is a rewrite rulec → q,
wherec ∈ T (Σ ∪ Q) is of the formc = f(q1, . . . , qn), f ∈ Σ,
ar(f) = n, andq1, . . . , qn ∈ Q.

A bottom-up non-deterministic finite tree automaton(tree
automaton for short) overΣ is a tupleA = (Σ, Q, F,∆),
F ⊆ Q and ∆ is a finite set of transitions. The rewriting
relation onT (Σ ∪ Q) induced by∆ of A is denoted→∆ or
→A. The tree language{t ∈ T (Σ) | t →⋆

A q} is denoted
L(A, q) and called thetree language recognised byA in q.
The languagerecognisedby A, denotedL(A), is the language
⋃

q∈F L(A, q). A run of a tree automatonA = (Σ, Q, F,∆)

on a termt ∈ T (Σ) is a functionρ : Pos(t) → Q such
that ρ(p) = q for all p ∈ Pos(t), whereq ∈ Q and t|p =
f(t1, . . . , tn), ar(f) = n, f(ρ(p.1), . . . , ρ(p.n)) → q ∈ ∆. A
run is successfulif ρ(ǫ) ∈ F .

c) Positive TAGEDs: A TAGED [16] is a tupleA =
(Σ,∆, Q, F,=A, 6=A), where(Σ, Q, F,∆) is a tree automaton
overΣ, =A⊆ Q×Q is a binary reflexive symmetric relation on
a subset ofQ and 6=A⊆ Q×Q is a symmetric relation onQ (1).
The tree automaton(Q,F,∆) is denotedta(A). A successful
run of aTAGEDA = (Σ,∆, Q, F,=A, 6=A) on a termt ∈ T (Σ)
is a successful runρ of ta(A) on t satisfying: for all positions
p1, p2 ∈ Pos(t), (1) if (ρ(p1), ρ(p2)) ∈=A then t|p1

= t|p2
,

and (2) if (ρ(p1), ρ(p2)) ∈6=A then t|p1
6= t|p2

.
ForTAGEDs, the membership problem is NP-complete [16].

Emptiness is known to be decidable for restrictive cases,
whereas universality is undecidable [16, Proposition 5]. Fol-
lowing the respective definitions of runs, it is straightfor-
ward that for every positiveTAGED A, L(A) ⊆ L(ta(A)).
Examples ofTAGEDs and of a successful run are given in
Section VII.

d) Boolean formulas:Let ϕ be a boolean formula over
a setA of atomic propositions. An interpretation of variables
is a functionI from A into {True,False}. An interpretation
I satisfies the formulaϕ, denotedI |= ϕ, if ϕ is true for the
interpretationI of the variables.

IV. ENCODING

This section presents our propositional encoding of the
membership problem, and we informally justify it step by step.
We shall also illustrate our sub-formulæ as we go along by
instantiating them on a small example. For this purpose we
will use the followingTAGED A and termt:

A
def
= (Σ = { a, f } , Q = { q, q̂, qf } , F = { qf } ,

∆, q̂ =A q̂, q̂ 6=A qf ),

where∆
def
= {f(q̂, q̂) → qf , f(q, q) → q, f(q, q) → q̂,

a → q, a → q̂, }

t
def
= f t2

ǫ

f t1
1

at0
11

at0
12

f t1
2

at0
21

at0
22

This smallTAGED accepts{ f(t, t)/ t ∈ T (F) }, which is
a classical non-regular language. Here6=A is redundant and
used purely for illustrative purposes. In the term, subscripts
are positions and superscripts are unique references to the
structure of subterms. For instancet1 corresponds tof(a, a),
which appears at positions1 and2.

Let us enumerate the conditions which must be satisfied in
order for our termt to be accepted byA through a runρ, and
break them down in sub-conditions until we can encode them.

(1)Notice that in [16], this relation is supposed to be irreflexive. In this
paper, it is not required.



1. The run ρ is a successfulrun for the underlying tree
automatonA′ = (Σ,∆, Q, F ).

(a) The runρ is a function mapping positions oft to
states ofA.

i. ρ ⊆ Pos(t) × Q
ii. ∀α ∈ Pos(t), p 6= q ∈ Q, (α, p) ∈ ρ =⇒

(α, q) /∈ ρ
iii. ∀α ∈ Pos(t),∃q ∈ Q, (α, q) ∈ ρ

(b) The runρ must be compatible with the transition
rules of∆.

(c) The runρ must beaccepting, ie. ρ (ε) ∈ F .

2. It must satisfy the global equality constraints in=A.
3. It must satisfy the global disequality constraints in6=A.

Condition (1(a)i) guides the choice of the building blocks of
our formula: they will be variables of the form, say,Xα

q , which
will have the intuitive meaning that at a positionα ∈ Pos(t),
we end up in the stateq ∈ Q. This corresponds to the statement
“ρ exists andρ (α) = q”. Let us now encode, using the above
variables, the fact thatρ is a partial function (1(a)ii), that is
to say, givenα ∈ Pos(t) andp 6= q ∈ Q, we cannot haveXα

p

andXα
q at the same time:

Definition IV-.1 (Partial function constraintΘ9).

Θ9

def
=

∧

α∈Pos(t)
q∈Q



Xα
q =⇒

∧

p∈Q
p6=q

¬Xα
p





Applied to our minimalist example this yields{Xǫ
q ⇒ [¬Xǫ

q̂ ∧
¬Xǫ

qf
]} ∧ {Xǫ

q̂ ⇒ [¬Xǫ
q ∧ ¬Xǫ

qf
]} ∧ · · · ∧ {X22

qf
⇒ [¬X22

q ∧
¬X22

q̂ ]}. We also needρ to be compatible with the transition
rules ofA′ (1b). Let us translate the fact that a transition rule
applies at a given positionα by:

Definition IV-.2 (Rule application constraintΨα(r)). We
define, for any α ∈ Pos(t), and any transition rule
f(q1, . . . , qn) → q ∈ ∆,

Ψα
(

f(q1, . . . , qn) → q
) def

= Xα
q ∧

n
∧

k=1

Xα.k
qk

.

This is fairly straightforward: we are stating that the rule
f(q1, . . . , qn) → q ∈ ∆ applies at positionα. Therefore we
have “ρ (α) = q” as a result of the application of the rule,
and thekth direct subterm is accepted by the stateqk, as the
transition rule requires. Now, in order to express the notion of
compatibility with the transition rules, we assert that, ateach
position in the term, a transition rule applies.

Definition IV-.3. For any f ∈ Σ, we denote by∆f =
{ f(. . . ) → · · · ∈ ∆ } the set of transition rules which apply
to f .

Definition IV-.4 (Rules compatibility constraintΦε(t)).

Φε(t) =
∧

α∈Pos(t)

[

∨

r∈∆t(α)

Ψα(r)

]

.

For instance, on our small example this would be([Xǫ
qf
∧X1

q̂ ∧
X2

q̂ ]∨ [Xǫ
q ∧X1

q ∧X2
q ]∨ [Xǫ

q̂ ∧X1
q ∧X2

q ])∧· · ·∧ (X22
q ∨X22

q̂ ).
Note that if Φε(t) satisfies (1b), then clearlyρ must be a
total function (1(a)iii), since at every positionα ∈ Pos(t),
we must be in some stateq resulting from the application of
some transition rule. Note also that if bothΘ9 and Φε(t)
are satisfied simultaneously, then exactly one rule appliesat
each position. The last thing we need to encode an accepting
run for a tree automaton, is to specify that the run must end
up in a final state at the root of the term (1c); this is directly
translated into

∨

q∈F Xε
q . Now we must add further restrictions

to ensure compatibility with the global equality and disequality
constraints (2 and 3). The variables we have already defined
are not sufficient to translate statements of the form “such
subtree does (or does not) evaluate to such state”; therefore
we need to introduce new variables to link states and subterms
by a relation. Let us useT q

u to denote “the subtermu evaluates
to q”, for any u E t andq ∈ Q. Of course, we need to “glue”
these new variables to the old ones: if we are in a certain state
q at a positionα, then it follows that the subtermt|α evaluates
to q: this is straightforwardly translated into the next formula.

Definition IV-.5 (Structural glue:Θ⇆).

Θ⇆
def
=

∧

α∈Pos(t)
q∈Q

[

Xα
q =⇒ T q

t|α

]

.

On our example, we have:{Xǫ
q ⇒ T q

2 } ∧ {Xǫ
q̂ ⇒ T q̂

2 } ∧
{Xǫ

qf
⇒ T

qf

2 } ∧ · · · ∧ {X22
qf

⇒ T
qf

0 }, where the subscript
“2” of T q

2 designates the subtreef
(

f(a, a), f(a, a)
)

, as given
in the definition oft. Now different kinds of variables being
linked, let us encode the equality constraint. Supposing again
that ρ (α) = q, for the run to be compatible with the equality
constraint, it must be such that no subterm different fromt|α
can evaluate top, wherep =A q. Note that=A is reflexive by
definition, so this includesq itself.

Definition IV-.6 (Compatibility with =A: Θ=A ).

Θ=A
def
=

∧

α∈Pos(t)
q∈Q



Xα
q =⇒

∧

p∈Q
p=Aq

∧

uEt
u6= t|α

¬T p
u





For instance:{Xǫ
q̂ ⇒ [¬T q̂

1 ∧¬T q̂
0 ]}∧{X11

q̂ ⇒ [¬T q̂
2 ∧¬T q̂

1 ]}∧
· · · ∧ {X22

q̂ ⇒ [¬T q̂
2 ∧ ¬T q̂

1 ]}. There remains to encode the
compatibility with the disequality constraint. Let us dealwith
the case where either6=A is assumed to be irreflexive (as
in [16]), or the states involved are different. Suppose thatwe
are at positionα, and thatρ (α) = q; then we cannot have any
subtermt|α evaluate to anyp, whenp 6=A q.

Definition IV-.7 (Compatibility with 6=A (p 6= q): Θ6=A ).

Θ6=A
def
=

∧

α∈Pos(t)
q∈Q






Xα

q =⇒
∧

p∈Q
p6=Aq
p6=q

¬T p
t|α









For instance:{Xǫ
q̂ ⇒ ¬T

qf

2 }∧{Xǫ
qf

⇒ ¬T q̂
2 }∧ · · ·∧{X22

qf
⇒

¬T q̂
0 }. However, for the needs of our test examples, we chose

to alter the definition of6=A by removing its irreflexivity. The
idea is to be able to write statements such asp 6=A p, with
the meaning that no twodistinct subtrees which evaluate to
p may be structurally identical. Formally,ρ satisfies 6=A iff
∀α, β ∈ Pos(t), (α 6= β ∧ ρ (α) 6=A ρ (β)) =⇒ t|α 6= t|β .
This cannot be done solely inΘ6=A , because the formula will
not differentiate between two distinct subterms and the same
subterm, taken twice, which is why the case whereq 6=A q
must be dealt with separately. Indeed, as we do not yet have
any means for linking subterms with positions, a new kind
of variables is needed, of the formSα

u , which encodes the
statement “the subtermu is rooted inα”. The above property
is then encoded using this variable, as follows:

Definition IV-.8 (Compatibility with 6=A (non-irreflexive;
q 6=A q): Ω6=A ).

Ω6=A
def
=

∧

α∈Pos(t)

Sα
t|α

∧
∧

α6=β∈Pos(t)
q 6=Aq

[

Xα
q ∧ Xβ

q =⇒ ¬Sα
t|β

]

We can now state our main result:

Definition IV-.9 (SAT encoding ofTAGED membership prob-
lem ∆A (t)). Let A = (Σ,∆, Q, F,=A, 6=A) be aTAGED and
t ∈ T (Σ); then we define

∆A (t)
def
= Θ9 ∧ Φε(t) ∧

∨

q∈F

Xε
q ∧ Θ=A ∧ Θ6=A ∧ Ω6=A .

Theorem IV-.1 (TAGED membership, correctness and sound-
ness). There exists a successful runρ of theTAGED A on a
term t iff ∆A (t) is satisfiable. Moreover, ifI |= ∆A (t), then
for any α ∈ Pos(t) we haveρ (α) = q ⇐⇒ I |= Xα

q .

The above encoding has been simplified, implemented and
tested. This is the matter of the next section.

V. I MPLEMENTATION AND EXPERIMENTATIONS

In the first part of this section we will quickly go over some
ways in which the formula can be lightened through simple
observations, before discussing some of our experimentations
in the second part.

The above SAT encoding, though sizeable, remains polyno-
mial in the size of our input automatonA and the termt: the
size of∆A (t) (as number of literals) is aO(|t|2 |Q|2). In prac-
tice however, this can often be trimmed down considerably.
Let ρ be a successful run of the underlying tree automaton
A on t, and consider for instance the structural glue:Θ⇆ =
∧

α∈Nt,q∈Q[Xα
q =⇒ T q

t|α
]. The formula considers all possi-

ble couples(α, q), but in general this is unnecessary because
not all states are obtainable at any given position. In orderto
ever haveXα

q , that is to say,ρ (α) = q, there must be some
transition rule of the formt (α) (. . .) → q in ∆, at least. Thus
we letσ (α) be the set ofpossibly obtainable states at position
α: σ (α)

def
= { q ∈ Q/ ∃t(α)(. . . ) → q ∈ ∆ } and, given a po-

sition α, we only need to deal withq ∈ σ(α). Another obser-
vation which can be madea priori is that the only occurrences

of negations of the form¬T q
u occur inΘ=A andΘ6=A , whenq

is in the domain of either6=A or =A. It follows that literals of
the formT q

u can only alter the satisfiability of∆A (t) whenq
is in dom (6=A) ∪ dom (=A). Thus we can reduce the formula
to Θ⇆ =

∧

α∈Nt,q∈σ(α)∩(dom( 6=A)∪dom(=A))[X
α
q =⇒ T q

t|α
].

The same observations can be made inΘ6=A , Ω6=A and
Θ=A . In the case ofΘ=A , we can also argue that in the
subformula

∧

uEt,u6= t|α
¬T p

u it is unnecessary to write¬T p
u

when we know that the subtreeu cannot possibly eval-
uate to the statep. This is clearly the case if the root
symbol u(ε) is not used in any transition rule leading
to p. Thus we letτ(q)

def
= { f ∈ Σ | ∃f(. . . ) → q ∈ ∆ } be

the set of symbols which a subterm may be rooted in,
given that it evaluates to the stateq, and we lighten the
above subformula into

∧

uEt,u6= t|α,u(ε)∈τ(p) ¬T p
u . Lastly, in

the revised formulaΩ6=A , it is clear that the variablesSα
t|α

serve no purpose whatsoever when the subtree inα can-
not evaluate to a stateq such thatq 6=A q. Thus we let
µ(q)

def
= {α ∈ Pos(t) | t(α) ∈ τ(q) } be the set of positions

at which the subtree may evaluate to the stateq, and re-
duce the first part of the subformula to

∧

α∈
S

q 6=Aq µ(q) Sα
t|α

.
In its second part, we arbitrarily order positions and re-
group couples of implications with the same premises:
∧

α<β∈µ(q),q 6=Aq[X
α
q ∧ Xβ

q =⇒ ¬Sα
t|β

∧ ¬Sβ
t|α

]. Note that
reducingΘ9 is much more problematic, but it is possible
to simply do away with this part of the formula altogether
if one replaces

∨

q∈F Xε
q by

∧

q/∈F ¬Xε
q , provided that the

term is accepted by the underlying tree automaton. This can
be checked separately by other, less expensive means, since
the membership problem for tree automata is polynomial.
Of course in that case the second result of theorem IV-.1
does not apply anymore. While computationally inexpensive,
these simplifications can yield significant savings onTAGEDs
with low density and where few states are involved in the
global constraints, which are fairly reasonable assumptions
in the context of XML documents processing. Note that one
could find more drastic simplifications by examining the tree
automaton more closely; for instance one could remove, at
each position, any state which cannot appear in a successful
run. Simplifications of this kind would certainly yield better
results on sizeable and complexTAGEDs, but it is not certain
that the overhead of implementing and computing them would
be compensated by the SAT solving performance gains. For
our tests we implemented the static simplifications described
above, which divided the size of the generated formula by36
in the case of our Laboratory example automaton.

In order to test our encoding, we have been developing
a tool which takes as input aTAGED (in a syntax close
to that of Timbuk [17]) and a term, and generates the
corresponding formula∆A (t). However, most modern SAT
solvers take input in theDIMACS CNF format, and naive
conversion to Conjunctive Normal Form could lead to an
explosion of the size of the formula. In order to avoid
running into this problem we used an existing tool to handle
linear-size conversion to CNF and generation ofDIMACS



CNF files: the BAT(2) [18], which implements an efficient
CNF conversion algorithm [19]. Experiments were run on an
2.53GHz Intel Core2 Duo machine with 2Gb of RAM running
Linux. Figure 1 shows the respective running times of the two
SAT solverspicoSAT andMiniSAT2 on an implementation
of our Laboratory example. Accepted trees of varying sizes
have been generated with random members names of random
length. In the figure the size of the generated trees is given
in terms of the number of teams in the university; the size in
terms of the number of nodes is proportional to these data.
The test shows that while both solvers perform very well on
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Fig. 1: CNF solving time, Laboratory example

this query,MiniSAT2 tends to outperformpicoSAT as the
terms grow, which suggests that the heuristic used for SAT
solving may significantly impact the overall efficiency of our
queries. Figure 2 shows the same experiment, this time with
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Fig. 2: CNF solving time,{ f(t, t)/ t ∈ T (F) }

the smallTAGED accepting{ f(t, t)/ t ∈ T (F) } (introduced
at the beginning of section IV), and for both accepted and

(2)Bit-level Analysis Tool, version 0.2

rejected terms. The size of the terms designates the number of
nodes of the tree. Both solvers display similar performances
for this experiment, withMiniSAT2 being about twice as fast
aspicoSAT on accepted terms. On rejected terms however
both solvers show roughly the same performances, and take
less time than on accepted terms, by a factor of 3 (picoSAT)
and 5 (MiniSAT2) on large terms.

It would have been interesting to increase the size of our
terms until both solvers timed out, but we were unfortunately
limited by the software we used. Our own tool is not optimised
for speed, and CNF conversion with BAT took about4.5
times as much time as formula generation. Moreover, BAT
fails with a stack overflow when the input formula becomes
too large. Despite these practical setbacks, the results remain
fairly encouraging, as the current bottleneck lies on the least
computationally expensive parts of the process: both the
generation of the formula and the conversion to CNF are
quadratic in the worst case. On the other hand, SAT solving
proves quite efficient, even on fairly large formulæ: the order
of magnitude of the largest tested formulæ is of approximately
70′000 variables,120′000 clauses and250′000 literals (in
CNF), for a solving time well under one second.

VI. CONCLUSION AND RELATED WORK

This paper proposes the encoding of the membership prob-
lem for a class of extended tree automata, calledTAGEDs,
in a SAT formula. Therefore, the paper shows that using
SAT-solvers allows to successfully handle this NP-complete
decision problem useful for practical applications in security
protocol verification, Java byte code program analysis, andin
XML document processing. The paper also proposes several
heuristics to reduce the size of generated formulas, and reports
on the experimental results for some of them. The work
continues on the implementation of proposed heuristics. We
also intend to go further by exploiting the proposed SAT-based
approach for larger XML documents.

Related Work.Using SAT-solvers for verification purposes
was introduced in [20]: practical experience shows that many
bugs in programs occur on small length executions. The idea
is then to prove the correctness of a system for bounded execu-
tions. In this context, verification problems are frequently NP-
complete and can be solved using SAT-solvers. For instance,
this approach was successfully used in [21] for hardware
verification, in [22] for program analysis, in [23], [24] for
security protocol verification, in [25] for LTL model-checking,
etc.

Tree automata were intensively studied in the literature, no-
tably for program verification, where they provide abstraction-
based approximations of program configurations. In this di-
rection, several classes of extended automata were defined in
order to have finer approximations. In particular, it appears
that comparing subtrees is a crucial modelling issue that
leads to the definition of several classes of tree automata
with constraints. In [26], [27], the authors studied a class
of automata that allows comparing subterms during runs.
Unfortunately, in this framework, the emptiness problem is



undecidable. However, several subclasses with the decidable
emptiness problem were pointed out (see [14] for more detail).
In order to verify security protocols, a class of tree automata
with memory was introduced in [28]. For a similar class
of applications, [12] introduces the class ofrigid automata,
which is a subclass of theTAGEDclass [16]. In order to
model data base applications, tree automata with Presburger
constraints were used in [29]. In this direction, the recent
work [30] investigates unranked tree automata with equality
and disequality constraints. Several works have also been done
on tree automata with equality modulo an equational theory:
[31] focuses on associative-commutative theories, while [32]
tackles more general cases.

In [8], tree automata and the rewriting theory have been
used for verifying XML updates. Basically, in the context
of XML programming, types can be viewed as hedge tree
automata [10]. Then, given a set of update operations modelled
by rewrite rules, rewriting over languages recognised by those
automata is used to ensure that XML document types are pre-
served along any sequence of updates. Like in our approach,
the results exploit the decidability of the membership problem
and of the emptiness problem for the considered classes of
tree automata.
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VII. A PPENDIX

A. TheTAGED Aexa

We present theTAGED used for the example in Section II.
Aexa = (Σ,∆, Q, F,=A, 6=A) where

⋄ Σ = {fteam, fmemb, gteam,A,B,C, . . . Z,⊥};
fteam, fmemb and gteam are binary symbols,
A, . . . , Z are unary symbols and⊥ is a constant;

⋄ Q = {qChar, qName, qNames, qLab, qTeam, qTeams};
⋄ F = {qTeams};
⋄ ∆ is the following sets of rules. First, all strings can be

reduced to stateqChar.

- ⊥ → qChar,
- A(qChar) → qChar
- B(qChar) → qChar

-
...

- Z(qChar) → qChar

Second, letqLab be the state for the laboratory identifier.
So, there are the rules below:

- A(qChar) → qLab
- B(qChar) → qLab

-
...

- Z(qChar) → qLab

Third, each name of team members reduces toqName.
So, one has the following rules:

- A(qChar) → qName
- B(qChar) → qName

-
...

- Z(qChar) → qName

Now one can encode the list of team members using the
stateqNames and the rules

- fmemb(qName, qName) → qNames
- fmemb(qName, qNames) → qNames

To finish, one has to encode the list of teams by the
following rules:

- gteam(qNames, qLab) → qTeam
- fteam(qTeam, qTeam) → qTeams
- fteam(qTeam, qTeams) → qTeams

At this stage, a term can be reduced toqTeams iff it
encodes an XML document satisfying the DTD.

⋄ It remains to encode that all teams are affiliated to the
same laboratory, and that all members are pairwise dif-
ferent. The first constraint is encoded by the=A relation:

=A= {(qLab, qLab)}.

The second constraint is encoded by the6=A relation:

6=A= {(qName, qName)}.

Notice that theTAGED used in Section V is slightly differ-
ent.

B. Encoding an XML Document

We consider the following XML document depicted in
Section II.

<university>
<team>

<member> JS </member>
<member> JD </member>
<member> RKT </member>
<laboratory> CS </laboratory>

</team>
<team>

<member> WH</member>
<member> JFL </member>
<laboratory> CS </laboratory>

</team>
</university>

It is encoded by the following term.

fteam

gteam gteam

fmemb C

J fmemb

S

⊥

J

D

⊥

S

⊥

R

K

T

⊥

fmemb C

S

⊥

W

H

⊥

J

F

L

⊥

C. A Successful Run

We present a successful run ofAexa on the term above.



Using transitions

- ⊥ → qChar,
- A(qChar) → qChar
- B(qChar) → qChar

-
...

- Z(qChar) → qChar

the term can be rewritten into

fteam

gteam gteam

fmemb C

J fmemb

qChar J

qChar

qChar

R

qChar

fmemb C

qCharW

qChar

J

qChar

Now using

- A(qChar) → qName
- B(qChar) → qName

-
...

- Z(qChar) → qName
- A(qChar) → qLab
- B(qChar) → qLab

-
...

- Z(qChar) → qLab

one can obtain

fteam

gteam gteam

fmemb qLab

qNamefmemb

qNameqName

fmemb qLab

qNameqName

Using the rules

- fmemb(qName, qName) → qNames
- fmemb(qName, qNames) → qNames

one obtains

fteam

gteam gteam

qNames qLab qNames qLab

Using the rules

- gteam(qNames, qLab) → qTeam
- fteam(qTeam, qTeam) → qTeams

allows us to reduce the term toqTeams, which is the final
state.

It remains to verify that the constraints imposed by=A and
6=A are satisfied. In the considered run, all subterms reducing
to qName are distinct; so, the constraint induced by6=A is
satisfied. Now, all the subterms reducing toqLab in this run are
equal toC(S(⊥)): the constraint induced by=A is satisfied,
too.


