
HAL Id: hal-00563303
https://hal.science/hal-00563303v1

Submitted on 4 Feb 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Steady-State for Batches of Identical Task Graphs
Sékou Diakité, Loris Marchal, Jean-Marc Nicod, Laurent Philippe

To cite this version:
Sékou Diakité, Loris Marchal, Jean-Marc Nicod, Laurent Philippe. Steady-State for Batches of Iden-
tical Task Graphs. Euro-Par’09, 2009, Netherlands. pp.203–215. �hal-00563303�

https://hal.science/hal-00563303v1
https://hal.archives-ouvertes.fr


Steady-State for Batches of Identical Task Graphs

Sékou Diakité1, Loris Marchal2, Jean-Marc Nicod1 and Laurent Philippe1

1 Laboratoire d’Informatique de Franche-Comté

Université de France Comté, France
2 Laboratoire de l’Informatique du Parallélisme

CNRS - INRIA - Université de Lyon, France

Abstract In this paper, we focus on the problem of scheduling batches of iden-

tical task graphs on a heterogeneous platform, when the task graph consists in a

tree. We rely on steady-state scheduling, and aim at reaching the optimal through-

put of the system. Contrarily to previous studies, we concentrate upon the schedul-

ing of batches of limited size. We try to reduce the processing time of each in-

stance, thus making steady-state scheduling applicable to smaller batches. The

problem is proven NP-complete, and a mixed integer program is presented to

solve it. Then, different solutions, using steady-state scheduling or not, are eval-

uated through comprehensive simulations.

1 Introduction

Computing Grids gather large-scale distributed and heterogeneous resources, and make

them available to large communities of users [8]. Such platforms enable large applica-

tions from various scientific fields to be deployed on large numbers of resources. These

applications come from domains such as high-energy physics [4], bioinformatics [12],

medical image processing [9], etc. Distributing an application on such a platform is a

complex duty. As far as performance is concerned, we have to take into account the

computing requirements of each task, the communication volume of each data transfer,

as well as the platform heterogeneity: the processing resources are intrinsically het-

erogeneous, and run different systems and middlewares; the communication links are

heterogeneous as well, due to their various bandwidths and congestion status.

Applications are usually described by a (directed) graph of tasks. The nodes of this

graph represent the computing tasks, while the edges between nodes stand for the de-

pendencies between these tasks, which are usually materialized by files: a task produces

a file which is necessary for the processing of some other task. In this paper we con-

sider Grid jobs made of a collection of input data sets that must all be processed by the

same application. We thus have several instances of the same task graph to schedule.

Such a situation arises when the same computation must be performed on independent

data [10] or independent parameter sets [14]. Moreover, the targeted applications we

plan to schedule do not include any replication phases in the process. Hence, DAGs

considered in this paper have no fork nodes, and consists in chains or in-trees. This cor-

responds to application like medical [11] or media [13] image processing workflows.

The problem consists in finding a schedule for these task trees which minimizes the

overall processing time, or makespan. This problem is known to be NP-hard. To over-

come this issue, some of us proposed to use steady-state scheduling [1]. In steady-state



scheduling, we assume that instances to be performed are so numerous that after some

initialization phase, the flow of computation will become steady in the platform. By

characterizing resource activities in this steady state, we are able to derive a periodic

schedule that maximizes the throughput of the system, that is the number of task graph

instances completed within one time unit. As for makespan minimization, this sched-

ule is asymptotically optimal. This means that for a very large number of instances

to process, the initialization and clean-up phases that wrap the steady-state phase be-

come negligible, and the makespan of the steady-state schedule becomes close to the

optimal. However, when the number of instances is important but bounded, existing

steady-state approaches do not give optimal performances – initialization and clean-up

phases cannot be neglected when scheduling a finite number of instances – and lead

to a huge number of ongoing instances. In this paper, we propose an adaptation of the

steady-state scheduling that allows to use it on batches of jobs of finite size, without

compromising its asymptotically optimality.

The rest of the paper is organized as follows. In Section 2 we give a short reminder

on the steady-state techniques and their drawbacks. In Section 3 we formalize the prob-

lem we are dealing with, and asses its complexity. In Section 4, we propose an exact

solution to this problem. Simulations showing its impact are reported in Section 5.

2 Steady-state scheduling for task graphs

2.1 Platform and application model

In this section, we detail the model used in the following study. First, we denote by

GP = (VP , EP ) the undirected graph representing the platform, where VP = {P1, . . . , Pp}
is the set of all processors. The edges of EP represent the communication links between

these processors. The time needed to send a unit-size message between processors Pi

and Pj is denoted by ci,j . We use a bidirectional one-port model: if processor Pi starts

sending a message of size S to processor Pj at time t, then Pi cannot send any other

message, and Pj cannot receive any other message, until time t+ S × ci,j .

The application is represented by a directed acyclic graph (DAG) GA = (VA, EA),
where VA = {T1, . . . , Tn} is the set of tasks, and EA represents the dependencies

between these tasks, that is, Fk,l = (Tk, Tl) ∈ EA is the file produced by task Tk and

consumed by task Tl. The dependency file Fk,l has size datak,l. We use an unrelated

computation model: computation task Tk needs a time wi,k to be entirely processed by

processor Pi.

We assume that we have a large number of similar task graphs to compute. Each

instance is described by the same task graph GA, but has a different input data from the

others. This corresponds to the case when the same computation has to be performed

on different input data sets.

2.2 Principle

In this section, we briefly recall steady-state techniques and their use for task graph

scheduling. The steady-state approach has been pioneered by Bertsimas and Gamarnik [2].



The present study is based on a steady-state approach for scheduling collections of iden-

tical task graphs proposed in [1]. The steady state is characterized using activities vari-

ables: αk
i represent the average number of tasks Tk processed by processor Pi within

one time unit in steady state. We similarly define activities for data transfers: β
k,l
i,j rep-

resent the average number of files Fk,l sent by Pi to Pj within one time unit in steady

state.

By focusing in the steady state, we can write constraints on these activity variables,

due to speed limitation of the processors and links. We also write “conservation laws”

to state that files Fk,l have to be produced by tasks Tk and are necessary to the process-

ing of tasks Tl. We obtain a set of constraints that totally describe a valid steady-state

schedule. We add the objective of maximizing the throughput, that is the overall number

of DAGs processed by time unit, to get a linear program. Solving this linear program

over the rational numbers allows us to compute the optimal steady-state throughput.

Then, from an optimal solution of this linear program, we construct a periodic

schedule that achieves this optimal throughput. The construction of this schedule is

complex, especially for handling communications, and we refer the interesting reader

to [1] for a detailed description. In the solution of linear program, the average number

of tasks (or files) processed (or transfered) in a time unit may be rational. However, we

cannot split the processing of a task, or the transfer of a file, into several pieces. Thus,

we compute the lowest common multiple L of all denominators of these quantities. We

then multiply all quantities by L, to get a period where every quantities of tasks or files

is integer. A period describes the activity of each processor (how many task of each

types is performed) and of each link: communications are assembled into groups that

can be scheduled simultaneously without violating the one-port model constraints. In

the following, we will consider these communications groups as one special task, as-

signed to a fictitious processor Pp+1; a dependency between a task T and a file F is

naturally transformed into a dependency between T and the special task representing

the group of communication which contains the file transfer F .

Platform graph

P1

P3

P2

F1,2

T2

T1

Task graph

A1A2

Allocations

T2

T1

T2

T1

Figure 1. Handling dependencies

Although bounded, the length L of the period may be large. The steady-state sched-

ule is made of a pipelined succession of periods, as described in Figure 1. Dependencies

between files are taken into account when reconstructing the schedule: a file Fk,l pro-

duced by Tk during period 1 will be transfered to another processor during period 2



and then used by task Tl during period 3. Figure 1 describes a steady-state schedule ob-

tained for a simple task graph: in a period both processors P1 and P2 process a task T1,

while P3 processes two tasks T2, achieving a throughput of 2 instances every L time

units. In the periodic schedule, each task or file transfer is provided with its instance

number in superscript, and dependencies are materialized with arrows for instances 2n
and 2n+ 1.

Once the periodic schedule is built, it can be used to process any number of tasks.

A final schedule consists in three phases:

1. an initialization phases, where all the preliminary results needed to treat a period

are pre-computed;

2. the steady-state phase, composed of several periods;

3. a clean-up phase, where all remaining tasks are processed so that all instances are

completed.

2.3 Shortcomings

We have seen that the length of the period of the steady-state schedule may be quite

large, and that a large number of periods may be needed to process a single task graph

in steady state. This induces a number of drawbacks:

Long latency. For a given task graph, the time between the processing of the first task

and the last task, also called latency, may be large since several periods are neces-

sary to process the whole instance. This may be a drawbacks for interactive appli-

cations.

Large buffers. Since the processing time of each instance is large, a large number of

instances must be started before the first one is completely processed. Thus, at every

time step, a large number of ongoing jobs have to be stored in the system, and the

platform must provide large buffers to handle all temporary data.

Long initialization and clean-up phases. Since the length of the period is large and

contains many task graph instances, the number of tasks that must be processed be-

fore entering steady state is large. Thus, the initialization phase will be long. Sim-

ilarly, after the steady-state phase, many tasks remain to be processed to complete

the schedule, leading to a long clean-up phase. As these phases are done using some

heuristic scheduling algorithms, their execution time might be far from the optimal,

leading to poor performance of the overall schedule.

In spite of these drawbacks, we have shown in [6] that steady-state scheduling is of

practical interest as soon as the number of task graph instances is large enough. In this

study, we aim at reducing this threshold, that is to obtain a steady-state schedule which

is also interesting for small batches of task graphs.

One could envision two solutions to overcome these drawbacks: (i) decrease the

length of the period, or (ii) decrease the number of periods necessary to process one

instance. However, there is limited hope that the first solution could be implemented if

we want to reach the optimal throughput: the length of the period directly follows from

the solution of the linear program. In this study, we focus on the second one, that is on

reducing the latency of the processing of every instances.



3 Problem formulation and complexity

3.1 Motivation

We aim at scheduling identical DAGs (in-trees) on an heterogeneous platform with un-

related machines. Our typical workload consists in a few hundreds of DAGs. When the

period of the steady-state is small compared to the length of the steady-state phase,

initialization and clean-up phases are short, and steady-state scheduling is a very good

option. When the period obtained is large compared to the steady-state phase, it is ques-

tionable to use steady-state as initialization and clean-up may render the advantage of

steady-state unprofitable. The overall metric is the time needed to process all the DAGs

(total makespan). By using steady-state scheduling, we focus on throughput maximiza-

tion. It is possible to get a solution with optimal throughput [1]; our goal is to refine this

solution to make it profitable for small batches of DAGs.

The solution proposed in [1] consists in a periodic schedule. The length of the period

of this schedule is a key parameter for our objective. However, since we want to keep

an optimal throughput, we do not try to reduce this length, but we prohibit any increase

in the period length, which would go against our final objective.

T 2n
1

T 2n+1
1

T 2n
2

Steady-state schedule

F 2n
1,2

F 2n+1
1,2

T 2n+1
2

T 2n+2

1 T 2n+4

1

T 2n+3

1 T 2n+5

1

F 2n−2

1,2

F 2n−1

1,2

F 2n+2

1,2

F 2n+3

1,2

T 2n−2

2 T 2n−1

2T 2n−3

2T 2n−4

2

Figure 2. A periodic schedule with inter-period and intra-period dependencies

We have seen that a large number of periods may be needed to completely process

one instance. More precisely, after building the steady-state period, each dependency

in the task graph can be satisfied within a period, or between two consecutive period,

as illustrated in Figure 2. In this figure, we have taken the period of Figure 1, and we

have modified its utilization of the schedule, so that one dependency can be satisfied

within a period: in the new schedule, the results of file transfer F1,2 can by used by

task T2 immediately, in the same period, instead of waiting for the next period. This

is done by reorganizing the period: the “first” transfer F1,2 of a period is now used to

compute the “second” task T2. We say that F1,2 → T2 is an intra-period dependency,

contrarily to other dependencies that are inter-period. Of course, this single modifica-

tion has little impact on the total makespan, but if we could transform all inter-period

dependencies into intra-period dependencies (or a large number), our objective would

be greatly improved.



The number of inter-period dependencies, that is the dependencies which originate

in one period and terminate in the following one, is an important factor. The number

of periods needed to completely process an instance (and thus the latency) strongly

depends on the number of such dependencies. As for the makespan, the number of

instances that have to be started in the initialization phase, and finished in the clean-up

phases is exactly the number of inter-period dependencies. Thus, reducing the number

of such dependencies is an important goal in order to overcome the drawbacks of the

original steady-state implementation. Note that in the original version of the steady-state

schedule, the number of these dependencies is huge: all dependencies are inter-period

dependencies.

In order to get a practical implementation of steady-state scheduling for bounded

sets of task graphs, we choose to forget about direct makespan minimization. We start

from a period with optimal throughput (computed as in [1]), and focus on reducing the

number of period dependencies in the schedule.

3.2 Formalization of the problem

We start from the description of a steady-state period. A period consists in q instances

of the task graph GA. The uth instance of task Tk is denoted Tu
k . We call σ(Pi) the set

of instances of tasks processed by processor Pi. For sake of simplicity, we denote by

wu
k the duration of Tu

k , that is wu
k = wi,k, with Tu

k ∈ σ(Pi).
Dependencies between task instances naturally follows the edges of the task graph:

for each edge Tk → Tl ∈ EA, for all u = 1, . . . , q, we have a dependency Tu
k → Tu

l .

The period is provided with a length L, which must not be smaller than the occupa-

tion time of any processor:
∑

Tu

k
∈σ(Pi)

wu
k ≤ L for all Pi.

The solution to our problem consists in starting times t (Tu
k ) for each instance of

task Tu
k . We must ensure that two tasks scheduled on the same processor do not overlap:

∀Pi, ∀T
u
k , T

v
l ∈ σ(Pi), with t (Tu

k ) 6= t (T v
l ) ,

t (Tu
k ) ≤ t (T v

l )) ⇒ t (Tu
k ) + wu

k ≤ t (T v
l ) (1)

The number of inter-period dependencies for a given solution can be easily com-

puted. A dependency Tu
k → Tu

l is an intra-period dependency if and only if Tu
k finishes

before the beginning of Tu
l , that is if

t (Tu
k ) + wu

k ≤ t (Tu
l ) with Tu

l ∈ σ(Pi). (2)

Thus, inter-period dependencies are all dependencies that do not satisfy this criterion.

3.3 Complexity of the problem

In this section, we assess the complexity of the problem presented in the previous sec-

tion, namely the ordering of the tasks on each processor, with the objective of minimiz-

ing the number of inter-period dependencies.

We first define the decision problem associated to the minimization of the number

of inter-period dependencies.



Definition 1 (INTER-PERIOD-DEP). Given a period described by σ, consisting in q

instances of a task graph GA (which is a tree), on p processors, with computation times

given by w, and an integer bound B, is it possible to find starting times t (Tu
k ) for each

task instance such that the resultant number of inter-period dependencies is not larger

than B?

This problem is NP-complete. The proof of this result, based on a reduction from the

3-PARTITION problem, is available in the companion research report for details [7].

4 Optimal algorithm with MIP formulation

In this section, we present a linear program to solve the problem presented in Section 3.

This linear program makes use of both integer and rational variables, hence it is a Mixed

Integer Program. Solving a MIP is NP-complete, however efficient solvers exists for this

problem [5], which makes it possible to solve small instances.

In the following, we assume that we have only one instance of the task graph in the

period, for sake of readability. Furthermore, we denote by wj the processing time of

Tj on the processor which executes it. Our approach can be extended to an arbitrary

number of instances, at the cost of using more indices.

For any pair of tasks (Tj , Tk) executed on the same processor (that is such that

Tj , Tk ∈ σ(Pi) for some Pi), we define a binary variable yj,k. We will ensure that

yj,k = 1 if and only if Tj is processed before Tk.

We also add one binary variable ej,k for each dependency Tj → Tk. This binary

variable expresses if the dependency is an intra-period dependency (ej,k = 1) or an

inter-period dependency (ej,k = 0).

Finally, we use the starting time tj of each task Tj as a variable. We now write

constraints so that these variables describe a valid period.

– We ensure that the y variables correctly define the ordering of the tj’s:

∀Pi, ∀Tj , Tk ∈ σ(Pi), tj − tk ≥ −yj,k × L (3)

yj,k + yk,j = 1 (4)

– We also check that a given dependency is an intra-period dependency if and only if

ej,k = 1:

∀Tj → Tk, tk − (tj + wj) ≥ (ej,k − 1)× L (5)

– We make sure that no task is processed during the processing of task Tj , that is

during [tj , tj + wj ]:

∀Pi, ∀Tj , Tk ∈ σ(Pi), tk − (tj + wj) ≥ (yj,k − 1)× L (6)

– Finally, we check that all tasks are processed within the period:

∀Tj , tj + wj ≤ L (7)



Together with the objective of minimizing the number of inter-period dependencies

(i.e., maximizing the number of intra-period dependencies), we get the following MIP:

{

Maximize
∑

ej,k
under the constraints (3), (4), (5), (6) and (7)

(8)

We can prove that the previous linear program computes a valid schedule with a

minimal number of inter-period dependencies (see the companion research report for

details [7]).

5 Experimental results

In this Section, we present experimental results that show how minimizing the inter-

period dependencies improves the original steady-state algorithm. We compare four

algorithms that schedule batches of identical jobs on a heterogeneous platform. The

first algorithm is the original steady-state implementation and the second algorithm the

steady-state implementation with the optimization using mixed integer programming

to minimize the number of inter-period dependencies described above (called steady-

state+MIP). The third algorithm is also a steady-state implementation with inter-period

dependencies minimization, but we replace the MIP optimization with a simple greedy

algorithm; we do not detail this algorithm, called steady-state+heuristic, but refer the

interested reader to the extended research report [7]. The fourth algorithm is a classical

list-scheduling algorithm based on HEFT [15]: as soon as a task or a communication is

freed of its dependencies, the algorithm schedules it on the resource that guarantees the

Earliest Finish Time (EFT). The EFT evaluation depends on the load of the platform

and takes both the computation time and the communication time into account. Note

that in steady-state strategies, the initialization and clean-up phases are implemented

using this list-scheduling technique.

5.1 Simulation settings

In the following, we report simulation results obtained with a simulator implemented

above SimGrid and its MSG API [3]. The experiences consist in the simulation of 245

platform/application scenarios for batches from 1 to 1000 jobs. The platforms are ran-

domly generated; parameters allows platforms from 4 to 10 nodes. Each nodes can

process a subset of the 10 different task types with a computing cost between 1 and 11

time units. Network links generation ensures that the platform graph is connected, links

bandwidth are homogeneous. The applications are also randomly generated, generation

parameters allows in-trees with 5 to 15 nodes. Nodes types are selected between the

10 different task types. Dependency generation ensures that the application graph is an

in-tree, dependency file sizes vary from 1 to 2.

For some of the scenarios, large periods and large numbers of dependencies may

arise and the optimal dependency reduction with the MIP becomes too costly to com-

pute, even though an efficient MIP solver is used (CPLEX [5]). In the following, we

thus distinguish two cases: SIMPLE scenarios are the ones when we are able to solve

the MIP (139 scenarios), and GENERAL scenarios gathers all cases, and we do not

include MIP results (245 scenarios).



5.2 Number of inter-period dependencies

In the simulations, we count the number of inter-period dependencies that the differ-

ent strategies (MIP or heuristic) are able to transform into intra-period dependencies.

When we are able to solve the MIP, it suppresses 39% of the inter-period dependencies,

whereas the heuristic is able to suppress only 29% to 30% of them (29% in all cases,

and 30% in SIMPLE cases). This shows that both the MIP and the heuristic strategies

achieve a good performance for our metric. As we have outlined in the introduction, this

does not necessarily result into an improvement for the global behavior of the schedule.

Thus, we also compare the performance of these strategies on other metrics, namely the

obtained throughput and the number of running instances.

5.3 Scheduling efficiency

Figure 3(a) shows the performance of the four scheduling algorithms on a given sce-

nario. The efficiency, that is the ratio of the optimal throughput, obtained by each al-

gorithm is given for different batch sizes. The list-scheduling heuristic has a constant

behavior, as soon as the size of the batch exceeds a few tens, whereas the performance

of the steady-state strategies evolves with this size: the more jobs to schedule, the more

efficient these strategies. With a very large size of batch, these strategies would all reach

an efficiency of 100%, i.e., they would give the optimal steady-state throughput. In this

study, we focus on batches with medium size. On this particular example, all steady-

state strategies achieve 90% of the optimal throughput as soon as there are 300 jobs to

schedule.

0 200 400 600 800 1000

Number of jobs

40%

50%

60%

70%

80%

90%

100%

E
ffi

ci
en

cy
(r

at
io

to
o
p
ti

m
al

th
ro

u
g
h
p
u
t)

List-scheduling heuristic
Steady-state
Steady-state + heuristic
Steady-state + MIP

(a) Efficiency for batches of increasing

size.

N
u

m
b

er
o

f
jo

b
s

b
ei

n
g

p
ro

ce
ss

ed

2000000 2500000

Simulation time (in seconds)

0

10

20

30

40

50

60

70

80

0 500000 1000000 1500000

List-scheduling heuristic
Steady-state + MIP
Steady-state + heuristic
Steady-state

(b) Evolution of the number of running in-

stances.

Figure 3. Examples of results for efficiency and number of running instances.

Figures 4(a) and 4(b) display the proportion of scenarios where the algorithms reach

90% of the optimal throughput, depending on the size of the batch, both in the SIMPLE

and GENERAL cases. We notice that the list-scheduling algorithm behavior does not

depend on the batch size, and reaches a good performance (90% of the optimal through-

put) only for 43% of the cases (in general). On the contrary, steady-state strategies give



much better performance, reaching a good throughput in 60% of the cases for batches

with more than 400 jobs. Here, we are interested in comparing the performance of the

different steady-state strategies. We notice that the performance of steady-state+MIP

and steady-state+heuristic is better than steady-state: for medium-size batches, the num-

ber of jobs needed to get a good performance is smaller than in the original steady-

state algorithm. This gap is noticeable even if it is not very large. In the SIMPLE case,

(Figure 4(a)), we are able to compare steady-state+MIP with steady-state+heuristic: al-

though the MIP strategy always gives better results, the heuristic performs very well,

and the gap between both strategies is not always noticeable.

0 200 400 600 800 1000

Number of jobs

50%

60%

70%

80%

90%

100%

E
x

p
er

im
en

ts
w

it
h

ef
fi

ci
en

cy
ab

o
v
e

9
0

%

List-scheduling heuristic
Steady-state
Steady-state + heuristic
Steady-state + MIP

(a) Cumulated efficiency (SIMPLE)

0 200 400 600 800 1000

Number of jobs

40%

50%

60%

70%

E
x

p
er

im
en

ts
w

it
h

ef
fi

ci
en

cy
ab

o
v
e

9
0

%
List-scheduling heuristic
Steady-state
Steady-state + heuristic

(b) Cumulated efficiency (GENERAL)

Figure 4. Cumulated efficiency

5.4 Number of running instances

Figures 3(b) presents the evolution of the number of running job instances on a given

platform/application scenario. At a given time t, a running instance is a job which has

been started (some tasks have been processed), but is not terminated at time t. Thus,

temporary data for this instance have to be stored in some buffers of the platform.

This figure illustrates the typical behavior of the steady-state algorithms. During the

initialization phase, the number of job instances grows: instances are started to prepare

the next phase. During the steady-state phase, the number of job instances is roughly

constant. Finally, in the termination phase, remaining instances are processed and the

number of running instances drops to zero.

One of the drawbacks of steady-state scheduling presented in Section 2.3 is illus-

trated here: compared to another approach like list-scheduling, it induces a large num-

ber of running instances (on this example, 54 instead of 8). This example also shows

that reducing the number of inter-period dependencies reduces the number of running

instances for steady-state scheduling: with the MIP optimization, we get a maximum

of 29 running instances, and 31 with the heuristic. We compared the maximum num-

ber of running instances in steady-state for the optimized versions (MIP and heuristic)

and the original one: on average, steady-state+MIP induces a decrease of 35% and

steady-state+heuristic reaches a decrease between 22% and 26% (respectively in the



GENERAL and SIMPLE cases). Thus, our optimization makes steady-state scheduling

more practical as it reduces the size of the required buffers.

5.5 Running time of the scheduling algorithms

Figures 5(a) and 5(b) present the average time needed to compute the schedule of a

batch depending on its size, in the SIMPLE and GENERAL cases. We first notice that

the list-scheduling heuristic is extremely costly when the size of the batch is above a

few hundreds. Its supra-linear behavior is due to the complexity of finding a ready task

to schedule in a number of considered tasks that grows linearly in the size of the batch.

In the SIMPLE cases, the time needed to optimally solve the inter-period depen-

dency minimization using the MIP is negligible, and the time needed to compute the

periodic schedule is always below 2 seconds for all strategies. In the GENERAL cases,

the period of the schedule is larger, and it induces more computation: initialization and

termination phases are longer (and may increase with the size of the batch), thus the

computation of their schedule takes some time. The optimization of the steady-state

phase by the heuristic is also time-consuming. Anyway, the computation of the sched-

ule with steady-state approaches never exceeds 20 seconds.

0 200 400 600 800 1000

Batch size

0

10

20

30

40

50

60

70

80

C
P

U
ti

m
e

in
se

co
n

d
s Steady-state + MIP

Steady-state
Steady-state + heuristic
List-scheduling heuristic

(a) Scheduling time (SIMPLE)

0 200 400 600 800 1000

Batch size

0

10

20

30

40

50

60

70

80

90

C
P

U
ti

m
e

in
se

co
n

d
s

Steady-state
Steady-state + heuristic
List-scheduling heuristic

(b) Scheduling time (GENERAL)

Figure 5. Scheduling time in seconds

6 Conclusion

In this study, we have presented an adaptation of steady-state scheduling techniques

for scheduling batches of task graphs in practical conditions, that is when the size of

the batch is limited. The optimization we propose consists in a better usage of the pe-

riod of the steady-state schedule. Instead of directly targeting the minimization of the

makespan, we choose to reduce the number of inter-period dependencies. This prob-

lem is NP-complete, which justifies a solution based on Mixed Integer Programming.

Our simulations show that this objective was relevant: when decreasing the number of

inter-period dependencies, the throughput of the solution on medium-size batches is

improved. Furthermore, the obtained solution requires less buffer space, since fewer

instances are processed simultaneously, making the schedule even more practical. In



future work, we plan to concentrate on small-size batches: since the optimal throughput

is not reachable for these batches, it would be interesting to study non-conservative ap-

proaches, i.e., periodic schedules based on sub-optimal throughput, but which are more

convenient to use thanks to their short period.

References

1. O. Beaumont, A. Legrand, L. Marchal, and Y. Robert. Steady-state scheduling on heteroge-

neous clusters. Int. J. of Foundations of Computer Science, 16(2):163–194, 2005.

2. D. Bertsimas and D. Gamarnik. Asymptotically optimal algorithms for job shop scheduling

and packet routing. J. Algorithms, 33(2):296–318, 1999.

3. H. Casanova, A. Legrand, and M. Quinson. SimGrid: a Generic Framework for Large-Scale

Distributed Experiments. In 10th IEEE International Conference on Computer Modeling

and Simulation, Mar. 2008.

4. A. Chervenak, I. Foster, C. Kesselman, C. Salisbury, and S. Tuecke. The data grid: Towards

an architecture for the distributed management and analysis of large scientific datasets. Jour-

nal of Network and Computer Applications, 23, Issue 3:187–200, July 2000.

5. ILOG CPLEX: High-performance software for mathematical programming and optimiza-

tion. http://www.ilog.com/products/cplex/.

6. S. Diakité, J.-M. Nicod, and L. Philippe. Comparison of batch scheduling for identical multi-

tasks jobs on heterogeneous platforms. In PDP, pages 374–378, 2008.

7. S. Diakité, L. Marchal, J.-M. Nicod, and L. Philippe. Steady-state for batches of identical

task graphs. Research report, LIP, ENS Lyon, France, Jan. 2009. available at http://

graal.ens-lyon.fr/˜lmarchal/RR2009.pdf.

8. I. T. Foster and C. Kesselman, editors. The Grid 2: Blueprint for a New Computing Infras-

tructure. Morgan Kaufmann Publishers, 2004.

9. C. Germain, V. Breton, P. Clarysse, Y. Gaudeau, T. Glatard, E. Jeannot, Y. Legré, C. Loomis,

I. Magnin, J. Montagnat, J.-M. Moureaux, A. Osorio, X. Pennec, and R. Texier. Grid-

enabling medical image analysis. Journal of Clinical Monitoring and Computing, 19(4-

5):339–349, Oct. 2005.

10. S. Lee, M.-K. Cho, J.-W. Jung, and J.-H. K. nd Weontae Lee. Exploring protein fold space

by secondary structure prediction using data distribution method on grid platform. Bioinfor-

matics, 20(18):3500–3507, 2004.

11. S. J. Ludtke, P. R. Baldwin, and W. Chiu. EMAN: Semiautomated Software for High-

Resolution Single-Particle Reconstructions. Journal of Structural Biology, 128:82–97, 1999.

12. T. M. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger, R. M. Greenwood, T. Carver,

K. Glover, M. R. Pocock, A. Wipat, and P. Li. Taverna: a tool for the composition and

enactment of bioinformatics workflows. Bioinformatics, 20(17):3045–3054, 2004.

13. L. Peng, K. S. Candan, C. Mayer, K. S. Chatha, and K. D. Ryu. Optimization of media pro-

cessing workflows with adaptive operator behaviors. In Multimedia Tools and Applications,

volume 33 of Computer Science, pages 245–272. Springer, June 2007.

14. J. Pitt-Francis, A. Garny, and D. Gavaghan. Enabling computer models of the heart for high-

performance computers and the grid. Philosophical Transactions of the Royal Society A,

364(1843):1501–1516, June 2006.

15. H. Topcuoglu, S. Hariri, and M.-Y. Wu. Task scheduling algorithms for heterogeneous pro-

cessors. In Proceedings of HCW ’99, page 3, Washington, DC, USA, 1999. IEEE CS.


