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Abstract—In this paper, we study the problem of optimizing the
throughput for micro-factories subject to failures. The challenge
consists in mapping several tasks onto a set of machines.
The originality of our approach is the failure model for such
applications in which tasks are subject to failures rather than
machines. If there is exactly one task per machine in the mapping,
then we prove that the optimal solution can be computed in
polynomial time. However, the problem becomes NP-hard if
several tasks can be assigned to the same machine. Several
polynomial time heuristics are presented for the most realistic
specialized setting, in which tasks of a same type can be mapped
onto the same machine. Experimental results show that the
best heuristics obtain a good throughput, much better than the
throughput obtained with a random mapping. Moreover, we
obtain a throughput close to the optimal solution in the particular
cases on which the optimal throughput can be computed.

I. INTRODUCTION

Distributed systems provide a support to tolerate faults

but their correct management also implies to take faults

into account. Standard distributed systems mainly focus on

processor dependent faults. We commonly assume that faults

are generated by the execution platform and thus that the fault

model must be linked to the processors, or more generally to

the resources that perform the tasks. In this case, a stochastic

fault model that defines the fault probability is usually attached

to the processor. This model fits distributed computing envi-

ronments such as parallel platforms where failures come from

the nodes of the platform.

If we look however at a more general definition of a

distributed system, we can note that this model does not always

fit. In some distributed platforms the fault model may be

attached to the task rather than to the processor or node. For

example, in production systems, a task may be complex to

perform - for instance due to some hard manipulation - with

an impact on its success ratio. If the same robot is able to

perform different tasks, it may generate less faults on simple

tasks than on difficult ones.

In this paper we are interested in studying the impact of a

fault model linked to the tasks. The application context is more

a production system than a distributed computing system. Our

specific use case is a micro-factory but the results presented

in this paper are more generally applicable to distributed

production systems or to distributed systems where the fault

probability is attached to tasks instead of resources.

Micro-factories are production units designed to produce

pieces composed of micro-metric elements [?]. Today’s micro-

factories are composed of micro-robots able to carry out

basic operations through elementary actuators as piezo-electric

beams (e.g. for gripping), stick-slip systems, etc. As these

robots are usually teleoperated by a human operator only

simple tasks can be done. To perform more complex operations

and to improve their efficiency, micro-factories need to be

automated and robots grouped in cells. Then cells will be

put together and they will cooperate to produce complex

assembled pieces, as it is done for macroscopic productions.

Due to the pieces, actuators and cells size, it is however

impossible for human operators to directly interfere with the

physical system. So it needs a highly automated command.

The complexity of this command makes it mandatory to

develop a distributed system to support this control. So, the

cell group results in a distributed system that is very similar

to a distributed computing platform. However, at this scale

the physical constraints are not totally controlled so there is a

need to take faults into account in the automated command. As

previously explained, the fault model that we consider in this

work differs from the standard fault model used in computing

systems.

The main issue for fault tolerant systems [1] is to overcome

the failure of a node, a machine or a processor. To deal

with those faulty machines the most common method used

in distributed systems is to replicate [2] the data. Those

models assume that failures are attached to a machine. So the

probability to get one product as a result is highly increased

when the task is replicated on several machines. Once all the

replicated jobs are done, a vote algorithm [3] is often used

to decide which result is the right one. In real time systems,

another model called Window-Constrained [4] model can be

used. In this model one considers that, for y messages, only x
(x ≤ y) of them will reach their destination. The y value

is called the Window. The looses are not considered as a

failure but as a guarantee: for a given network a Window-

Constrained Scheduling [5], [6] can guarantee that no more

than x messages will be lost for every y sent messages. In

this paper, the Window-Constrained based failure model is

adapted to a distributed system, the micro-factory. So the issue

is to guarantee the output of a given number of products.

With failures attached to tasks, we can compute the number



of products needed as input of the system and guarantee the

output for the desired number of products.

The paper is organized as follows. Section II gives the

characteristics and a more formal presentation of the context of

micro-factories and of the failure model. Section III presents

the optimization problems tackled in the paper. The complexity

study and results are given in Section IV. Heuristics to solve

the problem are proposed in Section V and simulation results

for these heuristics are given and commented in Section VI.

Finally, we conclude in Section VII.

II. FRAMEWORK

We outline in this section the characteristics of the applica-

tive framework and target platform. Finally, we describe and

motivate the failure model that we use in this work.

A. Applicative framework

We consider a set N of n tasks: N = {T1, T2, . . . , Tn}.

Each task Ti (1 ≤ i ≤ n) is applied successively on a set

of products, numbered from 1 to xin. We wish to produce

xout products as an output, and the total number of products

xin being processed may depend on the allocation (xin ≥
xout, losses due to failure as explained later in Section II-C).

Note that all products are identical. When the context is not

ambiguous, we may also design task Ti by i for clarity, as for

instance in the figures.

A type is associated to each task as the same operation may

be applied several times to the same product. Thus, we have a

set T of p task types with n ≥ p and a function t : [1..n] → T
which returns the type of a task: t(i) is the type of task Ti,

for 1 ≤ i ≤ n.

The application is a directed acyclic graph (DAG) in which

the vertices are tasks, and edges represent dependencies be-

tween tasks. An example of application with n = 5 tasks is

represented on Figure 1. In the top branch of the DAG, we

need to finish the processing of task T1 on one product before

proceeding to task T2. The join to task T4 corresponds to the

merge of two products, which produces a new unit of product

composed of the two. Typically one instance of product from

each predecessor in the graph is required to process with

the joining task. Note that forks cannot be considered in this

context as the output of one task is a physical component that

cannot be split in two. Unlike data that can be easily replicated

at every step of a DAG, an instance of a physical component is

the result of all the preceding tasks and cannot be duplicated

as it is material.

1 2

3

4 5

Figure 1. Example of application.

B. Target platform

The platform consists in a set M of m machines: M =
{M1,M2, . . . ,Mm}. All machines can be interconnected: the

platform graph is a complete graph. A machine handles some

of the tasks at a given speed: machine Mu can perform the

task Ti onto one product in a time wi,u. We also consider

that tasks of the same type have the same execution time on

a given machine, since they correspond to the same action to

be performed on the products. Thus, we have:

∀i, i′ ∈ [1, n], ∀u ∈ [1,m], t(i) = t(i′) ⇒ wi,u = wi′,u

We neglect the communication time required to transfer a

product from one machine to another. If a communication

may not be negligible, we can always model it as a particular

task with a dedicated machine (the machine responsible of the

transfer of the product).

We are interested in producing the desired number of prod-

ucts rather than producing a particular instance of a product.

So we consider that products are not identified: two products,

on which the same sequence of tasks has been done, are

exactly similar and we can use one or the other indifferently

for further operations.

C. Failure model

An additional characteristic of our framework is that tasks

are subject to failure. It may happen that a product is lost

or damaged while a task is being executed on this product.

For instance electrostatic strength may be accumulated on the

actuator, and thus the piece will be pushed away rather than

caught. Indeed, we work at a scale such that these electrostatic

strengths are stronger than gravity.

Due to our application setting, we deal only with transient

failures, as defined in [7]. The tasks are failing for some of

the products, but we do not consider a permanent failure of

the machine responsible of the task, as this would lead to a

failure for all the remaining products to be processed and the

unability to finish them.

One classical technique used to deal with failures is replica-

tion [2]. However, while replication is very useful for hardware

failures of machines, we cannot use it in our framework since

the products are not a data such as a numerical image that

we need to process, but it is a physical object. Thus, the only

solution consists in processing more products than needed, so

that at the end, the required number of finished products are

output.

The failure rate of task Ti is characterized by the percentage

of failure for this task. More precisely, the failure is denoted

fi =
ai
bi

, where ai is the number of products that fail each

time bi products have been processed. ri = bi − ai is the

number of successful products, and bi is also called period of

task Ti.

We enforce that two tasks of similar type are likely to fail

at the same rate with the following equation:

∀i, i′ ∈ [1, n] t(i) = t(i′) ⇒ fi = fi′ .

Since we advocate the computation of more products than

needed, we explain in the following how to compute the
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Figure 2. Example of a linear chain application with failure.

number xin of products that should be processed in order

to get xout products as an output, and we illustrate it on the

example of Figure 2. For instance task T2 has one failure every

6 products that are being processed by this task. Given these

failure rates, the number of products that should be given as

an input to task Ti in order to have xout products out of the

system is denoted xi. Thus, xin = max1≤i≤n xi.

The computation of xi is done backward: if we know the

number of products that should be output by task Ti and its

failure rate, we can compute the number of input products

that should be given to this task to guarantee this output. As

we work only with linear chain and in-trees, each task has

an unique outgoing edge, thus the number of products to be

output by Ti is xi+1 (or xout for T4 in the example).

To determine xi, we need to sum both the number of

products which will be successfully processed (i.e., xi+1), and

the number of products which fail during the processing phase.

Thus we must compute the number of periods of the task Ti,

which is an integer number being greater than the number of

output products divided by the number of successful products

computed each period:

⌈

xi+1

ri

⌉

. In the worst case, failures

occur for the first ai products of the period, thus the number

of products to be computed and which will fail is ai×

⌈

xi+1

ri

⌉

.

Finally we can deduce the total number of products that

should be computed:

xi = xi+1 + ai ×

⌈

xi+1

ri

⌉

(1)

As an extension of this formula, we can also deduce the

completion time Lxi+1,i needed to exit xi+1 products out of

task Ti, once it has been assigned to a machine, Mu. The

completion time Lxi+1,i is the maximum between the time

needed to compute xi products on task Ti (i.e., xi×wi,u) and

the sum of the time to output xi product out of the task Ti−1

(i.e., Lxi,i−1) and the completion time of the last product on

task Ti (i.e., wi,u).

Lxi+1,i = max (Lxi,i−1 + wi,u, xi × wi,u) (2)

III. OPTIMIZATION PROBLEMS

Now that the framework has been clarified, we formalize in

this section the various optimization problems that we wish to

solve. Our goal is to assign tasks to machines so as to optimize

some key performance criteria. The solution to a problem is

thus an allocation function a : [1..n] → [1..m] which returns

for each task the machine on which it is executed. Thus,

if a(i) = u, task Ti is executed on machine Mu, and the

processing of one product for this task takes a time wi,u.

We first discuss the objective criteria that we want to

optimize. Then we introduce the different rules of the game

that can be used in the definition of the allocation function a.

Finally, Section III-C gives a summary of all problem variants,

combining framework characteristics and rules of the game.

The complexity of these various problems is discussed in

Section IV.

A. Objective function

In our framework, several objective functions could be

optimized. For instance, one may want to produce a mapping

of the tasks on the machines as reliable as possible, i.e.,

minimize the total number of products to input in the system,

xin. Rather, we consider that products are cheap, and we

focus on a performance criteria, the throughput. The goal is

to maximize the number of products processed per time unit,

making abstraction of the initialization and clean-up phases.

This objective is important when a large number of products

must be produced.

Rather than maximizing the throughput of the application,

we rather deal with the period, which is the inverse of the

throughput. First we need to introduce the fractional number

xi, which is the average number of products required to

output one product out of the system for task Ti. Similarly

to the computation of the xi performed in Section II-C, we

can compute the xi recursively for any application DAG,

setting the number of final products xout = 1. Indeed, if

task Ti needs to output xi+1 products, then xi =
bi
ri

× xi+1

(the fraction represents the number of products needed per

successful product). Starting from the nodes with no successor

(and thus xi+1 = xout = 1), we can then compute xi for all i.
Note that xi ≤ xi since xi is an upper integer part which

accounts for the worst case failures.

The computation of xi and xi for the example of Figure 2

is illustrated in Table I. For instance, x4 = 9/(9−2) = 9/7 ≃
1.3.

Table I
VALUES OF xi AND xi FOR THE EXAMPLE OF FIGURE 2, WITH xout = 1.

Task number 1 2 3 4

xi 7 5 4 3

xi ≃ 2.2 ≃ 1.8 ≃ 1.5 ≃ 1.3

We are now ready to define the period of a machine: it is

the time needed by a machine to execute all the tasks allocated

onto this machine in order to produce one final product out of

the system. Formally, we have

period(Mu) =
∑

a(i)=u

xiwi,u (3)

The period of machine Mu is the sum, for each task allo-

cated to that machine, of the average number of products (xi)

needed to output one product, multiplied by the speed (wi,u)

of that task onto that machine. The slowest machine will slow

down the whole application, thus we aim at minimizing the

largest machine period. The machines realizing this maximum



are called critical machines. If Mc is a critical machine, then

period = period(Mc) = maxMu∈M period(Mu).
Note that minimizing the period is similar to maximizing the

throughput.

B. Rules of the game

In this section, we classify several variants of the opti-

mization problem that has been introduced. For one-to-one

mappings, we enforce that a single task must be mapped

onto each machine. Then we consider the case of specialized

machines: several tasks of the same type can be mapped

onto the same machine; such mappings are called specialized

mappings. Finally, general mappings have no constraints: any

task (no matter the type) can be mapped on any machine.

1) One-to-one mappings: In this first class of problems,

a single task is mapped on each machine. This rule of the

game is enforced with the following constraint, meaning that

a machine cannot compute two different tasks:

∀1 ≤ i, i′ ≤ n i 6= i′ ⇒ a(i) 6= a(i′)

(a) (b)

2

(c)

1

2

3
3

1

M2

M4

M3M2

M1 M1 M4

M3

Figure 3. One-to-one mapping.

On Figure 3, we have an application graph (a) that must be

mapped on a platform graph (b). The result is shown in (c)
where we can see that one machine can handle only one task.

Thus this mapping is quiet restrictive because we must have

at least as many machines as tasks.

2) Specialized mappings: We have dedicated machines

that can realize only one type of tasks. But task types are

not dedicated to machines, so two machines may compute

different tasks of the same type.

For instance, let us consider five tasks T1, T2, T3, T4, T5 with

the following types: t(1) = t(3) = t(5) = 1 and t(2) = t(4) =
2. If the machine M3 computes task T1, it could also execute

T3 and T5 but not T2 and T4. As types are not dedicated to

machines, T5 could also be assigned to another machine, for

instance M1. This situation is described on Figure 4.

The following constraint expresses the fact that a machine

cannot compute two tasks of different types:

∀1 ≤ i, i′ ≤ n t(i) 6= t(i′) ⇒ a(i) 6= a(i′)

3) General mappings: A machine can compute any task

regardless of its type, thus there are no constraints.

An example of this case is shown on Figure 5.
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Figure 4. One machine can do different tasks if they are of the same type.
Here the type of tasks are the following : t(1)=t(3)=t(5)=1 and t(2)=t(4)=2.
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Figure 5. One machine can handle any task. Here the type of tasks are the
following : t(1)=t(3)=1, t(2)=t(4)=2 and t(5) = 3.

C. Problem classification

We summarize in this section the optimization problems

which arises from our application. The two important param-

eters of a problem are :

• the rules of the game (one-to-one or specialized or

general mapping);

• and the degree of heterogeneity of machines and tasks:

the time to compute one product of task Ti on machine

Mu may be identical for each task/machine (w), depend

only on the task (wi) or the machine (wu), or be fully

general (wiu).

IV. COMPLEXITY RESULTS

Complexity results are classified depending on the mapping

rules. We start with one-to-one mappings, then we focus on

specialized and general ones. Finally, we compare one-to-one

mappings with general and specialized ones.

A. Complexity of one-to-one mappings

Theorem 1. Given an application and a set of machines, find-

ing the one-to-one mapping which maximizes the throughput

can be done in polynomial time.

Proof: We can compute the average number of products

xi needed to output one product out of task Ti, as explained

in Section III-A. Since the mapping is required to be one-to-

one, we create a bipartite graph with one node per task on

one side, one node per machine on the other side. The cost

of an edge from task Ti to machine Mu is then set to xiwi,u,

which corresponds to the period of machine Mu if task Ti is

assigned to this machine. Since the period of the mapping is

the maximum of the periods of each machine, the problem is

equivalent to a maximum weight matching in bipartite graphs,

which can be found in polynomial time, for instance using the

Hungarian method [8], [9].



B. Complexity of specialized and general mappings

Theorem 2. Finding the optimal specialized or general map-

ping is NP-hard, even with constant processing costs w.

Proof: We consider the following decision problems:

given a period K, is there a general/specialized mapping

whose period does not exceed K? The problem is obviously in

NP: given a period and a mapping, it is easy to check in poly-

nomial time whether it is valid or not. The NP-completeness

is obtained by reduction from 2-PARTITION [10]. Let I1
be an instance of 2-PARTITION: given a set {a1, ..., an} of

n integers, does it exist a subset I such that
∑

i∈I ai =
1
2

∑

1≤j≤n aj? We construct the instance I2 with n tasks

ordered as a linear chain, 2 machines, and w = 1. All tasks

are of the same type, thus there is no difference between

general and specialized mappings, and both problems are

tackled simultaneously. We assume that a1 ≥ a2 ≥ ... ≥ an
(the sort can be done in polynomial time), and then we fix:

• fn = an−1
an

; ∀1 ≤ i ≤ n− 1, fi =
ai−ai+1

ai

;

• K = 1
2

∑

1≤j≤n aj ;

First we prove by induction that xi = ai for 1 ≤ i ≤ n. For

i = n, we have xn = 1× bn/rn = an. For 1 ≤ i ≤ n− 1, if

xj = aj for j > i, then xi = xi+1×bi/ri = ai+1×ai/ai+1 =
ai.

The size of I2 is polynomial in the size of I1. Suppose

that I1 has a solution I . We construct the allocation function

a such that: ∀i, a(i) = 1 ⇐⇒ i ∈ I . Since w = 1 and

xi = ai for all i, the period of the mapping is thus P =
max{

∑

i∈I ai,
∑

i/∈I ai}, that means P = K and I2 has a

solution.

Suppose now that I2 has a solution. Let I = {ai|a(i) = 1}.

By hypothesis, we have
∑

i∈I ai ≤ K and
∑

i/∈I ai =
2K −

∑

i∈I ai ≤ K. We can conclude that
∑

i∈I ai =
1
2

∑

1≤j≤n aj . Then, I1 has a solution. This concludes the

proof.

C. Comparison of mapping rules

In this section, we compare the three mapping strategies,

namely one-to-one, specialized and general mappings. The

first thing that we want to point out is that one-to-one

mappings are a particular case of specialized mappings, which

are themselves a particular case of general mapping. Thus, an

optimal one-to-one mapping cannot be better than an optimal

specialized mapping, which itself cannot be better than a

general mapping.

Why not restrict to general mappings? The problem of these

general mappings is that they are not realistic, because if a

machine is processing tasks of different types, one needs to

reconfigure the machine between operations, and this cost is

unaffordable in most micro-factories. Thus, in the following,

an emphasis is given to one-to-one and specialized mappings.

Since the optimal one-to-one mapping can be found in

polynomial time (see Theorem 1), why not restrict to such

mappings? The problem arises when m ≤ n, i.e., there are

many tasks and not so many machines. In such cases, it is

mandatory to execute several tasks on the same machine.

When there are enough machines (m ≥ n), one-to-one

allocations are a good way to tackle the problem (see the

following theorem), but they can be arbitrarily worse than a

specialized allocation in the general case.

Theorem 3. If m ≥ n, and for problems with wi (wi,u = wi

for 1 ≤ u ≤ m), there is an optimal specialized or general

mapping which performs a one-to-one allocation of tasks onto

machines. In other words, one-to-one mappings are dominant

in this case.

Proof: The proof is simply done by an exchange argu-

ment. Suppose that there is an optimal mapping which is not a

one-to-one mapping. For instance, tasks Ti and Tj are mapped

onto the same machine, Mu. Since m ≥ n, there is at least

one free machine, say Mv , and the period can be decreased

from xiwi + xjwj to max(xiwi, xjwj) if task Tj is assigned

to Mv instead of Mu. This concludes the proof.

Note that this is not true if the completion time also depends

on the processor. For instance, consider a problem with wu

(wi,u = wu for 1 ≤ i ≤ n) in which there is one machine

with w1 = 1 and a second one with w2 = K, where K
is arbitrary large. If the application consists in two tasks of

same type with no failures, then the optimal throughput can

be obtained by mapping both tasks onto machine 1, resulting

in a period of 1 + 1 = 2, while a one-to-one mapping must

use machine 2 and thus its period cannot be better than K,

which can be arbitrarily greater than 2.

V. HEURISTICS

As explained in Section IV-C, general mappings are not

realistic in the context of micro-factories, because of the

unaffordable reconfiguration costs. When the number m of

machines is greater than the number p of task types, it is

always possible to find a specialized mapping, since each

machine is able to process all the tasks of a same type. The

key point is thus to find m (or less) groups of tasks of the same

type to be assigned to the m machines of the platform. The

best solution may be a one-to-one mapping (cases in which

such mappings are optimal, see Theorem 3).

As shown before, finding the optimal specialized mapping is

NP-hard (see Theorem 2). Thus, we present in the following

five heuristics that returns a mapping, by grouping tasks of

same type onto machines.

H1: Random heuristic — The m groups are made by

using a random assignment function. We randomly

choose p tasks, such that t(i) 6= t(i′) for all chosen

tasks Ti and Ti′ , and we randomly assign them to p
machines of the platform (recall that p is the number

of task types). Then we can randomly assign the rest

of the tasks Tj either on a machine which is free or

already specialized to the same task type t(j).
H2: Task group heuristic — p groups are made by

assigning all the tasks of the same type to the same

group. While the number of groups is less than m,

the number of machines, the group which consists

in the larger number of tasks is divided into two



groups to balance the workload. Then, an assignment

of groups to machines is performed using the one-

to-one mapping algorithm.

H3: Binary search heuristic 1 — This heuristic aims at

optimizing the potential of the machines, i.e., the

goal is to assign to each machine a set of tasks for

which it is efficient. Thus, we start by sorting, for

each machine Mu, the set of wi,u, for 1 ≤ i ≤ n, in

ascending order. Then, ranki,u represents the rank

of Ti in the ordered set for Mu.

The heuristic performs a binary search on the pe-

riod between 0 (best case) and the time required

to perform sequentially all the tasks on a machine

(worst case). For each value of the search, all tasks

are assigned greedily (from T1 to Tn) to machines.

For task Ti, we try to assign it to a machine such

that ranki,u is minimum. If the rank equals one,

this means that the potential of Mu for this task

is optimal. In case of equality (several machines of

identical rank for Ti), machines are sorted by non-

decreasing values of wi,u. Of course, the assignment

can be done only if the machine was not already

specialized to a type which is different from t(i),
and if the fixed period is not exceeded. Otherwise

we try to assign Ti to the next machine, according

to their priority order for this task. If no machine is

able to process Ti, then no assignment is found and

we try a larger period. If all tasks can be correctly

assigned, we try a smaller period.

H4: Binary search heuristic 2 — Similarly to the previ-

ous heuristic, H4 performs a binary search on the

period. However, the greedy assignment procedure

is different. For each task Ti, the heuristic tries to

assign it to the machine Mu which minimizes wi,u,

if the machine is not already specialized to a type

which is different from t(i), and the period is not

exceeded. No ranking is computed, the idea is to

forget about the potential of the machines, but simply

try to execute each task as fast as possible, thus using

efficient machines.

H5: Binary search heuristic 3 — This heuristic is the

same as H4 except that, for the assignment, the

machines are sorted by their heterogeneity level in

descending order. The idea is to preserve homoge-

neous machines for the last tasks. The heterogeneity

level of Mu is computed as the standard deviation

of its wi,u values. Each task is assigned to the

most heterogeneous machine capable of handling

it. Note that for this heuristic, slow machines may

be used instead of powerful ones, because of their

heterogeneity level.

The next section presents experimental results that compare

these heuristics.

VI. EXPERIMENTS

In this section, we compare together the 5 heuristics that

give sub-optimal solutions to the specialized mapping problem

with wi,u. The performance of each heuristic is measured by

its period in ms (see Section III-A). Only the most significant

results are presented in this paper. The full set of experiments

is available in [11].

Recall that m is the number of machines, p the number of

types, and n the number of tasks. Each point in the figures is an

average value of 50 simulations where the wi,u are randomly

chosen between 100 and 1000 ms, for 1 ≤ i ≤ n and 1 ≤
u ≤ m. Similarly, failure rates fi (1 ≤ i ≤ n) are randomly

chosen between 0.5 and 2 % (i.e., 1/200 and 1/50).

A. First set of experiments: m and p fixed

In the first set of experiments, m and p are fixed, and we

plot the period for each heuristic as a function of the number of

tasks n. Figure 6 shows that the random heuristic H1 returns

very large periods, compared to the 4 other heuristics. This

remains true for all experiments: H1 shows very poor perfor-

mance. Thus H1 is removed from the curves for readability.

To analyze the impact of the platform heterogeneity ratio,

the same experiments (m = 10 and p = 5) have been run

with a smaller duration interval (wi,u between 100 and 200

ms) in order to simulate less heterogeneous platforms. Results

of these simulations are presented in Figures 7 and 8. In both

results, H3 is clearly the best and the performances of H2,

H4 and H5 are equivalent. These two results are slightly alike

except for the scale. We can though deduce that the hetero-

geneity ratio of the platform has little influence concerning

the comparison of these heuristics. In the following, we thus

present results only in the heterogeneous setting with wi,u

varying between 100 and 1000.

Figures 9 and 10 show that the performance of H2 is very

similar to that of H4 and H5 when the difference between the

number of machines (respectively 20 and 100) and the number

of types (respectively 18 and 90) is small. Indeed, H2 tries to

use all the machines and thus it splits the groups until it has as

many groups as machines. In these experiments, the way the

groups are split does not influence the performance so much

because only 2 (respectively 10) extra groups will be created.

H3 is clearly the best heuristic in such a case. With H3, we

optimize the potential of each machine so we make the best

use of a given platform.

On the contrary, when the number of machines m is much

greater than the number of types p, the performance of H2

decreases, as we can see in Figures 11 and 12. In these

experiments, H3 and H4 are both reaching a satisfying period,

while H5 is slightly less good.
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Behavior of H1.
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Heterogeneous setting: 100 < wi,u < 1000.
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Homogeneous setting: 100 < wi,u < 200.
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m close to p.
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m close to p.
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m much greater than p.



 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 60  70  80  90  100  110  120  130  140  150

p
er

io
d
 i

n
 m

s

number of tasks

H5
H4
H3
H2

Figure 12. m = 50, p = 5.

m much greater than p.
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Experiment with fixed m and n.

B. Second set of experiments: m and n fixed

In the last experiment (Figure 13), we fix m = n = 100,

and we plot the period as a function of the number of

types p. Moreover, we randomly chose values wi,u such that

the duration of a task is machine-independent (wi,u = wi,u′

for 1 ≤ u, u′ ≤ m). In this case, we know that there is an

optimal one-to-one mapping (see Theorem 3) and we are able

to compute it (see Theorem 1). Thus we are able to assess the

absolute performance of the heuristics by computing the op-

timal period, obtained with a one-to-one mapping (Hungarian

algorithm).

C. Summary

The results show that H3 and H4 return a mapping whose

period is very close to the optimal, which is a very good

result. Indeed, we expect this behavior to be similar in a more

heterogeneous context, thus assessing the performance of our

heuristics. H5 is always returning greater period, thus showing

that faster machines must be considered first to find a good

mapping (recall that H5 selects machines by heterogeneity

level instead of speed, and may use slower machines).

VII. CONCLUSION

In this paper, we have investigated a throughput optimiza-

tion problem in the context of micro-factories subject to

failures. The problem consists in assigning tasks to machines,

either performing a one-to-one mapping (one task per ma-

chine), or a specialized mapping (several tasks of the same

type per machine), or a general mapping. On the theoretical

side, we proved that the optimal one-to-one mapping can be

found in polynomial time, while the problem becomes NP-hard

for specialized and general mappings. Since general mappings

are not usable in practice because of reconfiguration costs, we

focused on specialized mappings and proposed several poly-

nomial heuristics to solve the problem. Experimental results

suggest that some heuristics return mappings with a throughput

close to the optimal, and the sophisticated heuristics return

results much better than a random mapping.

As future work, we plan to investigate other mapping rules,

as for instance the mapping of one task onto several machines.

In such a case, different instances of the task would be handled

by different machines. This would allow to obtain a better

throughput when a task is time consuming (bottleneck). Also,

it would be interesting to consider a failure model in which the

failure rate is also machine-dependent (rates fi,u depending

on both the task Ti and the machine Mu on which the

task is mapped). Finally, other objective functions could be

considered, as for instance the total time required to obtain

a given number of products, or the average time needed to

output one product.

REFERENCES

[1] V. P. Nelson, “Fault-tolerant computing: Fundamental concepts,” Com-

puter, vol. 23, no. 7, pp. 19–25, 1990.
[2] W. Cirne, F. Brasileiro, D. Paranhos, L. F. W. Góes, and W. Voorsluys,
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