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Handling Left-Quadrati Rules WhenCompleting Tree AutomataY. Boihut1, R. Courbis2, P.-C. Héam2 and O. Kouhnarenko2

1INRIA/PAREO615 rue du Jardin Botanique BP-101 F-54602 Villers-Lès Nany Cedexboihut�loria.fr
2INRIA/CASSIS and LIFC / University of Franhe-Comté 16 route de GrayF-25030 Besançon Cedexlastname.firstname�lif.univ-fomte.frAbstratThis paper addresses the following general problem of tree regular model-heking:deide whether R∗(L) ∩ Lp = ∅ where R∗ is the re�exive and transitive losure ofa suessor relation indued by a term rewriting system R, and L and Lp are bothregular tree languages. We develop an automati approximation-based tehnique tohandle this � undeidable in general � problem in the ase when term rewritingsystem rules are left-quadrati. The most ommon pratial ase is handled thisway.Keywords: Rewriting tehniques, tree automata, left-linearity, seurity.1 IntrodutionAutomati veri�ation of software systems is one of the most hallenging re-searh problems in omputer aided veri�ation. In this ontext, regular model-heking has been proposed as a general framework for analysing and verifyingin�nite state systems. In this framework, systems are modelled using regularrepresentations: the systems on�gurations are modelled by �nite words ortrees (of unbounded size) and the dynami behaviour of systems is modelledeither by a transduer or a (term) rewriting system. Afterwards, a systemreahability-based analysis is redued to the regular languages losure ompu-tation under (term) rewriting systems: given a regular language L, a relation

R indued by a (term) rewriting system and a regular set LP of bad on�g-urations, the problem is to deide whether R∗(L) ∩ Lp = ∅ where R∗ is thePreprint submitted to Elsevier July 4, 2008



re�exive and transitive losure of R. Sine R∗(L) is in general neither regularnor deidable, several approahes handle restrited ases of this problem.In this paper we address this problem for tree regular languages by auto-matially omputing over- and under-approximations of R∗(L). Computingan over-approximation Kover of R∗(L) may be useful for the veri�ation if
Kover ∩ Lp = ∅, proving that R∗(L) ∩ Lp = ∅. Dually, under-approximationmay be suitable to prove that R∗(L) ∩ Lp 6= ∅. This approah is relevant ifthe omputed approximations are not too oarse. Another important pointis that in general, there are some restritions on the rewriting systems in or-der to ensure the soundness of the above approah. This paper follows andadapts an expert-human guided approximation tehnique introdued in [18℄for left-linear term-rewriting systems. More preisely, the paper 1) extends thisapproah to term rewriting systems with left-quadrati rules, and 2) illustratesits advantages on examples.Related Work Given a term rewriting system R and two ground terms sand t, deiding whether s →∗

R t is a entral question in automati proof the-ory. This problem is shown deidable for term rewriting systems whih areterminating but it is undeidable in general. Several syntati lasses of termrewriting systems have been pointed out to have a deidable aessibility prob-lem, for instane by providing an algorithm to ompute R∗(L) when L is aregular tree language [15,13,20,23,25,26℄. In [18℄, authors fous on a generalompletion based human-guided tehnique. This tehnique has been suess-fully used (not automatially) to prove the seurity of ryptographi protools[19℄ and reently Java Byteode programs [5℄. This framework was extended in[24℄ to languages aepted by AC-tree automata. Several work on tree regularmodel heking are proposed in [9,1,8,21℄.Layout of the paper The paper is organised as follows. Setion 2 introduesnotations and the basi ompletion approah. Next, Setion 3 presents themain theoretial ontributions of the paper, while Setion 4 desribes a familyof examples and gives related seurity issues. Finally, Setion 5 onludes.2 Preliminaries2.1 Terms and TRSsComprehensive surveys an be found in [16,2℄ for term rewriting systems, andin [12,20℄ for tree automata and tree language theory.Let F be a �nite set of symbols, assoiated with an arity funtion ar : F → N,2



and let X be a ountable set of variables. T (F ,X ) denotes the set of terms,and T (F) denotes the set of ground terms (terms without variables). The setof variables of a term t is denoted by Var(t). A substitution is a funtion σfrom X into T (F ,X ), whih an be extended uniquely to an endomorphismof T (F ,X ). A position p for a term t is a word over N. The empty sequene
ǫ denotes the top-most position. The set Pos(t) of positions of a term t isindutively de�ned by: Pos(t) = {ǫ} if t ∈ X and Pos(f(t1, . . . , tn)) = {ǫ} ∪
{i.p | 1 ≤ i ≤ n and p ∈ Pos(ti)}. If p ∈ Pos(t), then t|p denotes the subtermof t at position p and t[s]p denotes the term obtained by replaement of thesubterm t|p at position p by the term s. We also denote by t(p) the symbolourring in t at position p. Given a term t ∈ T (F ,X ), we denote PosA(t) ⊆
Pos(t) the set of positions of t suh that PosA(t) = {p ∈ Pos(t) | t(p) ∈ A}.Thus PosF (t) is the set of funtional positions of t.A term rewriting system (TRS) R is a set of rewrite rules l → r, where
l, r ∈ T (F ,X ) and l 6∈ X . A rewrite rule l → r is left-linear (resp. right-linear) if eah variable of l (resp. r) ours only one within l (resp. r). ATRS R is left-linear (resp. right-linear) if every rewrite rule l → r of R is left-linear (resp. right-linear). A TRS R is linear if it is right and left-linear. TheTRS R indues a rewriting relation →R on terms whose re�exive transitivelosure is written →⋆

R. The set of R-desendants of a set of ground terms Eis R∗(E) = {t ∈ T (F) | ∃s ∈ E s.t. s →⋆
R t}.2.2 Tree Automata CompletionNote that R∗(E) is possibly in�nite: R may not terminate and/or E may bein�nite. The setR∗(E) is generally not omputable [20℄. However, it is possibleto over-approximate it [18℄ using tree automata, i.e. a �nite representation ofin�nite (regular) sets of terms. We next de�ne tree automata.Let Q be a �nite set of symbols, of arity 0, alled states suh that Q∩F = ∅.

T (F ∪ Q) is alled the set of on�gurations A transition is a rewrite rule
c → q, where c ∈ T (F ∪Q) is a on�guration and q ∈ Q. A normalisedtransition is a transition c → q where c = f(q1, . . . , qn), f ∈ F , ar(f) = n,and q1, . . . , qn ∈ Q. A bottom-up non-deterministi �nite tree automaton (treeautomaton for short) is a quadruple A = 〈F ,Q,Qf , ∆〉, Qf ⊆ Q and ∆is a �nite set of normalised transitions. The rewriting relation on T (F ∪Q)indued by the transition set ∆ of A is denoted →∆. When ∆ is lear fromthe ontext, →∆ is also written →A. The tree language reognised by A in astate q is L(A, q) = {t ∈ T (F) | t →⋆

A q}. The language reognised by A is
L(A) =

⋃

q∈Qf
L(A, q). A tree language is regular if and only if it is reognisedby a tree automaton. 3



Let us now reall how tree automata and TRSs an be used for term reah-ability analysis. Given a tree automaton A and a TRS R, the tree automataompletion algorithm proposed in [18℄ omputes a tree automaton Ak
R suhthat L(Ak

R) = R∗(L(A)) when it is possible (for the lasses of TRSs wherean exat omputation is possible, see [18℄), and suh that L(Ak
R) ⊇ R∗(L(A))otherwise.The tree automata ompletion works as follows. From A = A0

R ompletionbuilds a sequene A0
R,A1

R . . .Ak
R of automata suh that if s ∈ L(Ai

R) and
s →R t then t ∈ L(Ai+1

R ). If there is a �x-point automaton Ak
R suh that

R∗(L(Ak
R)) = L(Ak

R), then L(Ak
R) = R∗(L(A0

R)) (or L(Ak
R) ⊇ R∗(L(A))if R is in no lass of [18℄). To build Ai+1

R from Ai
R, a ompletion step isahieved. It onsists of �nding ritial pairs between →R and →Ai

R
. To de�nethe notion of ritial pair, the substitution de�nition is extended to terms in

T (F ∪ Q). For a substitution σ : X 7→ Q and a rule l → r ∈ R suh that
Var(r) ⊆ Var(l), if there exists q ∈ Q satisfying lσ →∗

Ai
R

q then lσ →∗
Ai

R

q and
lσ →R rσ is a ritial pair. Note that sine R and Ai

R is �nite, there is only a�nite number of ritial pairs. Thus, for every ritial pair deteted between
R and Ai

R suh that rσ 6→∗
Ai

R

q, the tree automaton Ai+1
R is onstrutedby adding a new transition rσ → q to Ai

R. Consequently, Ai+1
R reognises

rσ in q, i.e. rσ →Ai+1

R

q. However, the transition rσ → q is not neessarilynormalised. Then, we use abstration funtions whose goal is to de�ne a set ofnormalised transitions Norm suh that rσ →∗
Norm q. Thus, instead of addingthe transition rσ → q whih is not normalised, the set of transitions Norm isadded to ∆, i.e., the transition set of the urrent automaton Ai

R.We give below a very general de�nition of abstration funtions whih allot toeah funtional position of rσ a state of Q. The role of an abstration funtionremains to de�ne equivalene lasses of terms where one lass orrespondsto one state of Q. An abstration funtion γ is a funtion γ : ((R × (X →
Q)×Q) 7→ N

∗) 7→ Q suh that γ(l → r, σ, q)(ǫ) = q. Thus, given an abstrationfuntion γ, the normalisation of a transition rσ → q is de�ned as follows.Let γ be an abstration funtion, ∆ be a transition set, l → r ∈ R with
Var(r) ⊆ Var(l) and σ : X → Q suh that lσ →∗

∆ q. The γ−normalisation ofthe transition rσ → q, written Normγ(l → r, σ, q), is de�ned by:
Normγ(l → r, σ, q) = {r(p)(βp.1, . . . , βp.n) → β |

p ∈ PosF (r),

β =











q if p = ǫ

γ(l → r, σ, q)(p) otherwise.

βp.i =











σ(r(p.i)) if r(p.i) ∈ X

γ(l → r, σ, q)(p.i) otherwise.4



Example 1 Let A = 〈F ,Q,Qf , ∆〉 be the tree automaton suh that F =
{a, b, c, d, e, f, ω} with ar(s) = 1 with s ∈ {a, b, c, d, e, f} and ar(ω) = 0,
Q = {qb, qf , qω}, Qf = {qf} and ∆ = {ω → qω, b(qω) → qb, a(qb) → qf}.Thus, L(A) = {a(b(ω))}. Given the TRS R = {a(x) → c(d(x)), b(x) →
e(f(x))}, two ritial pairs are omputed: a(qb) →∗

A qf , a(qb) →R c(d(qb))and b(qω) →∗
A b(qω) →R e(f(qω)). Let γ be the abstration funtion suh that

γ(a(x) → c(d(x)), {x → qb}, qf)(ǫ) = qf , γ(a(x) → c(d(x)), {x → qb}, qf )(1) =
qf , γ(b(x) → e(f(x)), {x → qω}, qb)(ǫ) = qb and γ(b(x) → e(f(x)), {x →
qω}, qb)(1) = qb. So, Normγ(a(x) → c(d(x)), {x → qb}, qf) = {d(qb) →
qf , c(qf) → qf} and Normγ(b(x) → e(f(x)), {x → qω}, qb) = {f(qω) →
qb, e(qb) → qb}.Now we formally de�ne what a ompletion step is. Let A = 〈F ,Q,Qf , ∆〉 be atree automaton, γ an abstration funtion and R a left-linear TRS. We de�nea tree automaton CR

γ (A) = 〈F ,Q′,Q′
f , ∆

′〉 with:
• ∆′ = ∆ ∪

⋃

l→r∈R, σ:X 7→Q, lσ→∗
A

q,rσ 6→∗
A

q Normγ(l → r, σ, q),
• Q′ = {q | c → q ∈ ∆′} and
• Q′

f = Qf .Example 2 Given A, R and γ of Example 1, performing one ompletionstep on A gives the automaton CR
γ (A) suh that CR

γ (A) = 〈F ,Q,Qf , ∆
′〉where ∆′ = ∆ ∪ Normγ(a(x) → c(d(x)), {x → qb}, qf) ∪ Normγ(b(x) →

e(f(x)), {x → qω}, qb) = {ω → qω, b(qω) → qb, a(qb) → qf , d(qb) → qf , c(qf) →
qf , f(qω) → qb, e(qb) → qb}. Notie that CR

γ (A) is R-lose, and in fat an over-approximation of R∗(L(A)) is omputed. Indeed, the tree automaton CR
γ (A)reognises the term a(e(e(f(ω)))) when

R∗(L(A)) = {a(b(ω)), a(e(f(ω))), c(d(b(ω))), c(d(e(f(ω))))}.Proposition 3 ([18, Theorem 1℄) Let A be a tree automaton and R be aTRS suh that A is deterministi or R is left-linear, and for every l → r ∈ R,
Var(r) ⊆ Var(l). For any abstration funtion γ, one has:

L(A) ∪R(L(A)) ⊆ CR
γ (A).In addition, an abstration funtions an be de�ned in suh a way only terms,atually reahable, will be omputed. This lass of abstration funtions isalled (A,R)−exat abstration funtions in [3℄.Let A = 〈F ,Q,Qf , ∆) be a tree automaton and R be a TRS. Let Im(γ) =

{q | ∀l → r ∈ R, ∀p ∈ PosF(r) s.t. γ(l → r, σ, q)(p) = q}. An abstrationfuntion γ is (A,R)−exat if γ is injetive and Im(γ) ∩ Q = ∅.By adapting the proof of Theorem 2 in [18℄ to the new lass of abstrations, weshow that with suh abstration funtions, only reahable terms are omputed.5



Theorem 1 ([18, Theorem 2℄) Let A be a tree automaton and R be a TRSsuh that A is deterministi or R is right-linear. Let α be an (A,R)−exatabstration funtion. One has: CR
α (A) ⊆ R∗(L(A)).We now give the general result in [18℄ saying that, if there exists a �x-pointautomaton, then its language ontains all the terms atually reahable byrewriting, at least. (A,R)−exat abstration funtions.Theorem 2 ([18, Theorem 1℄) Let A, R and γ be respetively a tree au-tomaton, a TRS. For any abstration funtion, if there exists N ∈ N and N ≥

0 suh that (CR
γ )(N)(A) = (CR

γ )(N+1)(A), then R∗(L(A)) ⊆ L((CR
γ )(N)(A)).The above method does not work for all TRSs. For instane, onsider a on-stant A and the tree automatonA = ({q1, q2, qf}, {A → q1, A → q2, f(q1, q2) →

qf}, {qf}) and the TRSR = {f(x, x) → g(x)}. There is no substitution σ suhthat lσ →∗
A q, for a q in {q1, q2, qf}. Thus, following the proedure, there isno transition to add. But f(A, A) ∈ L(A). Thus g(A) ∈ R(L(A)). Sine

g(A) /∈ L(A), the proedure stops (in fat does not begin) before providingan over-approximation of R∗(L(A)).3 ContributionsThis setion extends an approximation-based tehnique introdued in [18℄ forleft-linear term-rewriting systems, to TRSs with left-quadrati rules.Let A = (Q, ∆,Qf ) be a �nite bottom-up tree automaton. The automaton
A� = (Q�, ∆�,Q�

f ) is de�ned by:
• Q� = {{q} | q ∈ Q} ∪ {{q1, q2} | q1, q2 ∈ Q} (states of Q� are denoted witha � exponent),
• Q�

f = {{q} | q ∈ Qf},
• ∆� = {f(q�

1 , . . . , q�

n ) → q� | ∀q ∈ q�, ∃q1, . . . , qn ∈ Q, ∀1 ≤ i ≤ n, qi ∈
q�

i and f(q1, . . . , qn) → q ∈ ∆}.To illustrate the de�nition above, let's onsider the automaton A whose �nalstate is qf and whose transitions are A → q1, A → q2 and f(q1, q2) → qf .The states of A� are all pairs of states and singletons over {q1, q2, qf}, andthe transitions are A → {q1}, A → {q2}, A → {q1, q2}, f({q1}, {q2}) → {qf},
f({q1, qi}, {q2, qj}) → {qf} for all i, j ∈ {1, 2, f}. When onsidering only theaessible states, among all the transitions above we just have the transition
f({q1, q2}, {q2, q1}) → {qf} (i = 2 and j = 1).Proposition 4 One has L(A) = L(A�).6



Proof. By de�nition ofA�, if f(q1, . . . , qn) → q ∈ ∆, then f({q1}, . . . , {qn}) →
{q} ∈ ∆�. Consequently, for every term t suh that t →∗

A q, one also has
t →∗

A� {q}. Sine for every qf ∈ Qf , {qf} ∈ Q�

f , L(A) ⊆ L(A�).It remains to prove that L(A�) ⊆ L(A). We will prove by indution on k thatfor every k ≥ 1, for every term t, every state q� of A�, if t →k
A� q�, then forall q ∈ q�, t →k

A q.
• If t →A� q�, then, by de�nition of ∆�, t is a onstant and for all q ∈ q�,there exists a transition t → q of A.
• Assume now that the laim is true for a �xed positive integer k. Let t be aterm and q� ∈ A� suh that t →k+1

A� q�. Consequently, there exists f ∈ Fnsuh that t →k
A� f(q�

1 , . . . . . . , q�

n ) →A� q�. It follows that t = f(t1, . . . , tk)and for all 1 ≤ i ≤ k, ti →
k
A� q�

i . Using the indution hypothesis, ti →
k
A qi,for all qi ∈ q�

i . Consequently, for all q ∈ q�, f(q1, . . . , qn) → q ∈ ∆, provingthe indution.So, L(A�) ⊆ L(A). 2Lemma 5 If C[q1, . . . , qn] →∗
A q and if q�

1 , . . . q�

n are states of A� satisfying
qi ∈ q�

i for all 1 ≤ i ≤ n, then C[q�

1 , . . . , q�

n ] →∗
A� {q}.Proof. We prove by indution on k that for every k ≥ 1, if C[q1, . . . , qn] →k

A qand if q�

1 , . . . q�

n are states of A� satisfying qi ∈ q�

i for all 1 ≤ i ≤ n, then
C[q�

1 , . . . , q�

n ] →k
A� {q}.

• If k = 1, then C[q1, . . . , qn] → q is a transition of A. Therefore, by de�nitionof ∆�, C[q�

1 , . . . , q�

n ] → {q} is a transition of A�.
• Assume now that the proposition is true for all j ≤ k and that C[q1, . . . , qn] →k+1

A

q. There exist q′1, . . . , q
′
ℓ states of A and f ∈ Fℓ suh that C[q1, . . . , qn] →k

A

f(q′1, . . . , q
′
ℓ) →A q. Consequently, C[q1, . . . , qn] is of the form C[q1, . . . , qn] =

f(t1, . . . , tℓ) where the ti's are terms over F ∪ {q1, . . . , qn}. Moreover, forall i, there exists ki ≤ k suh that ti →ki

A {q′i} and ∑

i ki = k. There-fore, by indution hypothesis, t�

i →ki

A� {q′i} where t�

i is the term obtainedfrom ti by substituting qi by q�

i . Now, sine f(q′1, . . . , q
′
ℓ) → q is a tran-sition of A, f({q′1}, . . . , {q

′
ℓ}) → {q} is a transition of A�. It follows that

C[q�

1 , . . . , q�

n ] →k+1
A� {q}, proving the lemma.

2Lemma 6 If t →∗
A q1 and t →∗

A q2, then t →∗
A� {q1, q2}.Proof. If t →∗

A q1 and t →∗
A q2, then there exists a funtion π1 (reps. π2)from positions of t into Q suh that π1(ε) = q1 (resp. π2(ε) = q2) and for7



every position p of t, if tp ∈ Fn, then t(p)(π1(p.1), . . . , π1(p.n)) → π1(p) (resp.
t(p)(π2(p.1), . . . , π2(p.n)) → π2(p)) is a transition of A. Therefore, by de�ni-tion of ∆�, t(p)({π1(p.1), π2(p.1)}, . . . , {π1(p.n), π2(p.n)}) → {π1(p), π2(p)} isin ∆�. It follows that t →∗

A� {q1, q2}. 2Proposition 7 If R is left-quadrati, then R(L(A)) ∪ L(A) ⊆ L(Cγ(A
�)).Proof. Sine L(A) = L(A�) and sine L(A�) ⊆ L(Cγ(A

�)), L(A) ⊆
L(Cγ(A

�)).Let t ∈ R(L(A)). By de�nition there exists a rule l → r ∈ R, a position p of
t and a substitution µ from X into T (F) suh that

t = t[rµ]p and t[lµ]p ∈ L(A) (1)It follows there exist states q, qf of A suh that qf is �nal,
lµ →∗

A q and t[q]p →∗
A qf . (2)Consequently,

lµ →∗
A� {q} and t[{q}]p →

∗
A� {qf}. (3)If rµ →∗

A� {q}, then (3) implies that t[rµ]p →∗
A� {qf}. In this ase, sine

t = t[rµ]p and sine {qf} is by onstrution a �nal state of A�, t is in L(A�),whih is a subset of L(Cγ(A
�)).Now we may assume that rµ 6→∗

A� {q}. Let Pl be the set of variable positionsof l; i.e. Pl = {p | l(p) ∈ X )}. Set Pl = {p1, . . . , pℓ}. Sine lµ →∗
A q, by (2)there exist states q1, . . . , qℓ of A suh that

µ(l(pi)) →
∗
A qi and l[q1]p1

. . . [qℓ]pℓ
→∗

A q. (4)We de�ne the substitution σ from variables ourring in l into 2Q by: σ(xi) =
{qi | l(pi) = xi}. Sine l is left-quadrati, for eah xi, σ(xi) ontains at mosttwo states. We laim that lσ →∗

A� q. Indeed by (4) and by Lemma 6 for eah
xi ourring in l, µ(xi) →∗

A� σ(xi). It follows that lµ →∗
A� lσ. By (4) andusing Lemma 5, lσ →∗

A� {q}, proving the laim. By onstrution of Cγ(A
�),

rσ →∗
Cγ(A�) {q}. Moreover, by de�nition of σ, rµ →∗

A� rσ. It follows that
t = t[rµ]p →∗

A� t[rσ]p →
∗
Cγ(A�) t[{q}]p →

∗
A� {qf},whih ompletes the proof. 2Proposition 8 IfR is right-linear and if α is (A,R)-exat, then L(Cγ(A

�)) ⊆
R∗(L(A)).Proof. This is a diret onsequene of Theorem 1 and Proposition 4. 2

8



4 Example and Appliation Domains4.1 ExampleWe have tested our approah on the following family of examples. We �rstonsider a family of tree automata (An) de�ned as follows: the set of states of
An is {q1, . . . , q2n+2, qf}, the set of �nal state is {qf}, and the set of transitionsis {ω → q1, ω → q2, a(q1) → q1, a(q2) → q2, b(q1) → q1, b(q2) → q2, a(q1) →
q3, a(q2) → q4, a(qi) → qi+2, b(qi) → qi+2, f(q2n+1, q2n+2) → qf}, for i ≥ 3.The automaton An aepts the set of terms of the form f(t1, t2) where t1and t2 are terms over {a, b, ω} suh that t1|1n−1 and t2|1n−1 exist and are in
{a}.{a, b}∗. Roughly speaking, when using word automata, a(b(ω)) denotes
ab, and eah pair (t1, t2) an be viewed as words of L = {a, b}n−1.{a}.{a, b}∗satisfying the ondition above. We seond onsider the term rewriting system
R ontaining the single rule f(x, x) → x, and we want to prove that bn−1a(ω) ∈
R∗(L(An)). Using �nitely many times Theorem 1 diretly onAn may not provethe results. However, to prove the results, one an determinise An beforeusing Theorem 1. But, the minimal automaton of L(An) has 2n states atleast [22℄, [Exerise 3.20, p. 73℄. Then, the ompletion should be applied tothis automaton. Consequently, this automati proof requires an exponentialtime step. Using our approah, one an ompute A� and apply Proposition 8,that provides the proof requiring a polynomial time step.4.2 Left-linearity and Seurity Issues4.2.1 Seurity Protool AnalysisThe TRSs used in the seurity protool veri�ation ontext are often nonleft-linear. Indeed, there is a lot of protools that annot be modeled by left-linear TRSs. Unfortunately, to be sound, the approximation-based analysisdesribed in [19℄ requires the use of left-linear TRSs. Nevertheless, this methodan still be applied to some non left-linear TRSs, whih satisfy some weakeronditions. In [17℄ the authors propose new linearity onditions. However,these new onditions are not well-adapted to be automatially heked.In our previous work [6℄ we explain how to de�ne a riterion on R and A tomake the proedure automatially work for industrial protools analysis. Thisriterion ensures the soundness of the method desribed in [19,17℄. However,to handle protools the approah in [6℄ is based on a kind of onstant typing.In [7℄ we go further and propose a proedure supporting a fully automatianalysis and handling � without typing � algebrai properties like XOR.9



Let us �rst remark that the riterion de�ned in [17℄ does not allow managingthe XOR non-left linear rule. Seond, in [6℄ we have restrited XOR operations totyped terms to deal with the XOR non-left linear rule. However, some protoolsare known to be �awed by type onfusing attaks [14,10,11℄. Notie that ourapproah in [7℄ an be applied to any kinds of TRSs. Moreover, it an opewith exponentiation algebrai properties and this way analyse Di�e-Hellmanbased protools.4.2.2 Bakward Analysis of Java ByteodeA reent work [4℄, dediated to the stati analysis of Java byteode programsusing term-rewriting systems, provides an automati proedure to translate aJava byteode into a term rewriting system modeling the ode exeution onthe Java Virtual Mahine. In this ontext, generated TRSs are left-linear butright-quadrati. In order to ompute approximation re�nements as in [3℄ orto manage bakward analyses that are � in general and in pratie � moree�ient that forward analyses � term rewriting systems have to be turnedleft-right, i.e. left- and right-hand sides of rules have to be permuted. By thispermutation right-quadrati TRSs beome left-quadrati ones.5 ConlusionRegular approximation tehniques have been suessfully used in the ontextof seurity protool analysis. In order to apply them to other appliations,this paper proposed an extension of the ompletion proedure for handling left-quadrati rules. Our ontributions allow analysing some reahability problemsusing polynomial steps omputing A�, rather than automata determinisationsteps that are exponential, even in pratial ases. Notie that the approahpresented only for quadrati rules an be extended to more omplex TRSs.We intend to optimise this tehnique: polynomial is better than exponentialbut may also lead to huge automata in few steps. We have been implementingthe tehniques in an e�ient rewriting tool in order to investigate omplexsystems bakward analyses.Referenes[1℄ Parosh Aziz Abdulla, Bengt Jonsson, Pritha Mahata, and Julien d'Orso.Regular tree model heking. In Ed Brinksma and Kim Guldstrand Larsen,editors, Computer Aided Veri�ation, volume 2404 of Leture Notes in ComputerSiene, pages 555�568. Springer-Verlag, July 27�31 2002.10
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