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Abstract—In this paper we consider the scheduling of a batch
of workflows on a service oriented grid. A job is represented
by a directed acyclic graph without forks (intree) but with
typed tasks. The processors are distributed and each processor
have a set of services that carry out equivalent task types. The
objective function is to minimize the makespan of the batch
execution. Three algorithms are studied in this context: an on-
line algorithm, a genetic algorithm and a steady-state algorithm.
The contribution of this paper is on the experimental analysis
of these algorithms and on their adaptation to the context. We
show that their performances depend on the size and complexity
of the batch and on the characteristics of the execution platform.

Keywords—Batch scheduling, grid computing, heterogeneous
platform, on-line scheduling, steady state scheduling, genetic
algorithm.

I. INTRODUCTION

Processing workflows of images is a very processor consum-

ing activity therefore, when the size of the image set grows up

it is mandatory to use a distributed execution platforms such

as Grids. In this paper, the targeted application is a workflow

that generates datas such as medical images. Each image is

computed from a set of existing data on which we applied

different operations: extracting data from an image, applying

filters to enhance the image quality, calculating correlation

between two images, merge of images to highlight some

property and so on. After acquiring a set of images or data,

we apply on them the same workflow, i.e. the same set of

operations, to get the final result. However, the execution

of such workflows on grids is not simple as the platform

is heterogeneous from the performances viewpoint as well

as from the deployed services viewpoint. Misplacement of

execution may lead to very poor execution performances while

certain medical applications need almost interactive results

(not more than a few minutes). Thus, the schedule of the set

of workflows must be carefully defined.

Different approaches can be used in this context to minimize

the response time of such executions. Traditional schedul-

ing techniques includes on-line approaches and off-line ap-

proaches. Our aim is to evaluate the efficiency of these

approaches depending on the workflow and grid platform

characteristics, then to use these results as input data to

implement efficient scheduling policies in grid middlewares as

DIET. As grid experiments are very costly to deploy and not

repeatable due to the dynamic behavior of other applications,

we started our evaluation by simulating the grid and the

algorithms. The simulations have generated a first set of results

presented here.

In this paper we compare the performances of three ap-

proaches. A simple on-line algorithm which schedules tasks

depending on the computers and tasks availability and two

off-line algorithms which are implemented to maximize the

flow and makespan criterion. On one hand, we show that both

the workflow’s and platform’s characteristics have an impact

on the performances, this impact may be up to 50%, and, on

the other hand, that the criteria to optimize must rather be

makespan oriented when the number of workflows to perform

is less than 100 and flow oriented when this number is above

250.

In the following section of this paper we define the ap-

plication model, the platform’s characteristics and the related

works. In the third section we present the algorithms, their

properties and different adaptations we did to well known

algorithms to better fit our context. Then, in the forth section,

we detail the implementation of these algorithms in a grid

simulator. The fifth section is dedicated to the results and their

analysis. A conclusion is given in the last section of the paper.

II. CONTEXT

Defining the context and the characteristics of the appli-

cation execution is a very important step in the scheduling

problem resolution. Indeed, scheduling researchers are actives

since a long time and have addressed lots of scheduling issues.

Therefore, the choice of scheduling algorithms must be done

in regard to a particular platform model and a particular

application model. In order to clearly define the platform’s

and application’s characteristics, we first give a more formal

model of the platform and of the workflows. Then we present

the works related to the workflows scheduling on grids.

A. Platform model

Executing an application on the grid usually consist in

asking a grid administrator, human or not, for nodes allocation.

Then the system respond with a set of nodes that are availiable

and the start time of the reservation. However, on Service

Oriented Architecture Grids (SOA Grids) this model can vary

as the request for nodes depends on the services deployed on

the nodes. In some grid middlewares such as Diet or Ninf, the

user asks for computing nodes that provides a set of services.
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Different types of services can be installed on the same node.

In this context, nodes are selected according to the services

the workflow needs.

In our model, nodes and processors are equivalent, the

execution platform is modeled as a set of processors, inter-

connected by network links. It is represented as an undirected

graph: PF = (P,L), where the vertices are the n nodes pi
(pi ∈ P : i ∈ [1..n], n = |P |) and the edges are the network

links li between these nodes.

Each node pi implements a limited set of services or

functions to carry out the different parts of the workflows.

We define as Fi the set of functions that the processor pi is

able to perform.

Fig. 1 gives an example of a grid with the communication

links. The communication graph is complete as the commu-

nications usually use the internet network. On this figure, the

letters A, B, C and D represents the services deployed on

the nodes of the grid; different services are deployed on the

nodes.

TABLE I: Exec. platform performances

p1 p2 p3 p4

T
y

p
e

A 20 - - 15
B 10 10 - -
C - 10 10 -
D - - 10 10

Table 1 gives an example of the performances that charac-

terize the platform. The given values correspond to the number

of time units necessary to carry out a given service on a given

processor, such values can be obtained by extrapolation of

unary execution tests. When no value is given, the processor

is not able to process the given service. For instance, processor

p4 can process functions A and D but cannot process functions

B and C.

B. Application model

The defined platform model executes a batch of workflows.

Usually a workflow is defined as a global task composed of

sub-tasks. Each of these sub-tasks has to be executed in a

constrained order. The workflow is done once all of it’s subtask

are computed.

Our target application is a set of images and data onto which

we apply the same operations, the workflow, composed of

filters or analysis operations. The whole set of images to be

executed is available at some starting time t and the workflows

are identical.

A batch B of length m is defined as a set of m identical

instances Jj of the job (workflow) J such as B = {Jj :
j ∈ [1..m]}. The job J is composed of several tasks with

dependency constraints and is represented by a directed acyclic

graph (DAG): J = (T,D) where the vertices T are the tasks

tk and the edges D are the dependency constraints between

the tasks. Note that there will be several instances of task tk
belonging to different instances Jj of job J .

Let F be the set of all the functions used by the job J thus

∪iFi = F where i ∈ [1..N ]. The time T needed to execute

a task Tk on different nodes pi is not uniform: T (Tk, pi) 6=
T (Tk, p

′

i).

Fig. 2 gives an example of a job we have to schedule M
times. The job is composed of five tasks. The arrows indicate

the dependency constraints. Note that this job needs several

time the same service A.

C. Related works

Scheduling problems have been studied extensively in the

literature. In general, DAG scheduling is an NP-Complete

problem [1].

[1] is a survey for scheduling DAG in a static context

considering homogeneous platforms. Therefore, this problem

is also NP-Complete in a Heterogeneous Computing (HC)

environment. So, requiring of good heuristics is mandatory

in this domain. Classical solutions to optimize the makespan

of a set of tasks use heuristics such as Earliest Finish Time [2]

or Critical Path [3]. A more complete study evaluates eleven

heuristics in [4] for example: Min-min, Max-min or Sufferage.

These 3 heuristics are based on the Minimum Completion

Time (MCT). Genetic based scheduling algorithms [4], [5]

gives good results in HC but these approaches are very time

consumming compared to classical solutions. In the context

of the Grid, [6] presents a modification of the 3 previous

heuristics to take into account input and output data transfert

times in the computation of MCT. [7] studies dynamic map-

ping heuristics considering a class of independent tasks in HC

environment. When the tasks are multiple DAGs, problem of

fairness between DAGs are studied in [8]. These approaches

compute a off-line scheduling considering the whole set of

tasks. If the number of tasks scales up, the computation time

becomes too long due to the complexity of the algorithm.

The strategies applied to schedule workflows onto the grid are

presented in [9] with the description of real life medical appli-

cation. Another example of a scientific application workflow

is given in [10] about Ocean-Atmosphere modeling.

This study deals with static workflows scheduling in HC

environment considering a few hundred of identical DAGs and

limited resources. Finding an optimal schedule in this case is

not possible with direct method. Two solutions are suitable

in this context: (1) either use a scalable heuristic to compute

a suboptimal schedule or (2) use the results of an optimal

solution to a problem close to ours. So, three approaches match

this context: makespan optimization heuristic using genetic

algorithm, steady state techniques, and on-line techniques.



The suboptimal schedule strategy we evaluate is a static

genetic based scheduling algorithm adapted to our context:

GATS [11]. The algorithm explained the the next section is

able to schedule a large number of DAGs.

The second approach optimize the throughput of the work-

flow in the HC environment. This Steady-state techniques

achieve an optimal makespa n for an infinite number of

identical jobs [12]. The resulting schedule is composed of an

sub-optimal initialization stage that allow to enter the optimal

steady-state stage and a sub-optimal termination stage that

performs the remaining tasks. This schedule will tend towards

optimality when the size of the batch increases, as the weight

of the initialization and termination stages decreases in the

global schedule. When the number of batches is too small,

the sub-optimal stages overhead leads however to an inefficient

schedule. So, the question is to evaluate for which number of

batches the steady-State scheduling becomes interesting.

The third approach is an on-line oriented techniques that

schedule tasks on the fly during the jobs execution. They take

the state of the system into account to assign new tasks to

processors. These techniques are very easy to implement and

give rather good results. They give however no guarantee on

the quality of the schedule.

In our context, we can note that only the Steady-State

techniques benefit from the knowledge that the executed jobs

are identical.

III. SELECTED SOLUTIONS

Three algorithms are selected and adapted to our context

characteristics to allow us to schedule a workflow of identical

jobs. They represent different approaches and all of them give

good results in our context. The first chosen algorithm is list-

based on-line scheduling algorithm. This algorithm is used to

give us a reference makespan to ease the comparison between

the three algorithms. The second one is a static scheduling

algorithm for graphs of aperiodic tasks on a heterogeneous

platform. It is a genetic based approach that improves a

list-based scheduling heuristic. It allows us to evaluate the

performances of an algorithm designed for a set of tasks

to schedule a workflow. The last algorithm we evaluate in

this paper is a steady-state oriented scheduling algorithm

well adapted to workflow and periodic jobs scheduling. A

linear program allows us to optimize the throughput of the

workflow regarding the constraints given by the platform and

the periodic DAG to schedule. This solution is optimal in the

steady-state period of time when the both initialization and

termination stages are negligible [12]. It allows us to evaluate

an algorithm initially designed for an unlimited workflow

when the number of jobs are limited to a few hundred.

A. On-line Scheduling with knowledge

The workflow that we have to schedule is a set of DAGs

but not a unique connected graph of tasks. Therefore, it is

not possible to implement the well known EFT scheduling

algorithm because it is not possible to identify the tasks with

the earliest deadline: several tasks are ready at the same time

but do not have any precedence constraint between them. So

we implement a list-like scheduling algorithm which principle

is to schedule a ready task as soon as possible on the processor

that will perform it the first. No heuristic is used to select

the task to schedule unlike a classical list based scheduling

algorithms [2], [13]. This mechanism shortens the traversal

time of a job. The best processor is selected using the Earliest

Finish Time (EFT) heuristic [2].

B. GATS

Genetic Algorithm for Task Scheduling (GATS) [11] is

a genetic based algorithm that improves about 7% to 10%

a classical scheduling algorithm for aperiodic tasks on a

heterogeneous platform. The GATS approach enhances the

schedule computed first with a list based scheduling heuristic.

The initial population is created at the first step: the first

individual represents the result of a list-based schedule which

favors the tasks on the critical path of J . Then one individual

per processor represents a random schedule where all the tasks

are affected to the given processor and the remain of the

population represents random schedules.

GATS individuals represent tasks-processors allocations.

Thus, the scheduling is computed by a decoding step of

each individual. This reconstruction phase has to take into

account the dependencies between tasks while respecting

the allocation. The fitness f of each individual is deduced

from the decoded schedule thanks to the formula: f =
1/Makespan(schedule). The classical genetic operations on

individuals such as mutations or cross-overs are easy to

compute because of the simple chromosome representation

without time informations and precedence constraints. Indeed,

one task can be moved from one slot to another. Once the

initial population is created, GATS performs a limited number

of loops that compute the fitness of the individuals, a rank-

based selection, mutations and cross-overs. The termination

criterion used is this fixed number of loops. In the worst case,

the computed schedule is at least equal to the initial list-based

solution.

C. Steady-state scheduling

In our context, the optimization of the scheduling is to

maximize the throughput of of the workflow we have to

compute. But, we also have to respect the constraints due

to the platform characteristics. These constraints ensure that

jobs are fully computed. So, this optimization problem can

be written as a linear program. When the system enters the

steady-state stage, the solution is easy to compute because

the linear program variables are rational thanks to the peri-

odic scheduling approach. Indeed, the solution of this linear

program gives the ratio of time spent by each processor for

each task of the jobs and the proportion of time spent by

each network link to send task results for each inter-tasks

dependencies. This solution is translated into a weighted sum

of allocation, where an allocation represents the traversal of a

job in the platform (task/processor associations). The steady-

state scheduling computes a period in which the allocations are



interleaved according to their weight. The steady-state stage

is the concatenation of the adequate number of these periods

to compute the whole size of the workflow.

Before entering the steady state stage, the platform has

to be initialized by computing every tasks needed to enter

the steady-state. After the last period, a termination stage is

also necessary to finish all the DAGs initiated by previous

periods. In the original algorithm, the initialization is not

optimized. The master computes itself every tasks without

parallelism facility. As the initialization, the termination stage

is performed by the master in a sequential way. Its role is

to terminate every task staying in the platform after the last

steady-state period.

IV. SIMULATION

The targeted applications are very time consuming. For

this reason, we make the assumption that the bandwidth of

PF allows us to neglect the communication time for all the

computation steps of each instance Ji of the job J .

Building a mathematical model of the algorithms is not

realistic due to the complexity of the problem. Their imple-

mentation on a grid cannot give reproducible results. So we

use a grid simulator to evaluate the three algorithms.

The simulator is implemented above SimGrid and its MSG

API [14], [15]. The algorithms are implemented with the

master/slave paradigm. A master node runs the scheduling

algorithms and dispatch the tasks to process to slaves node

according to the scheduler decisions.

Slaves node runs two threads, the first one is in charge of

receiving requests from others nodes. When the requests is a

tasks computation, the task to perform is put on a FIFO queue.

Other requests (for example query about queue length, time

when the processor will be idle) are answered in place.

The second threads iteratively removes a task from the

queue and execute it. The computing power of an host is not

shared, tasks are executed with full computational resources

one after another without preemption.

Two of the three algorithms are off-line scheduler, for

them the simulator is just a tool to validate the computed

schedule. Indeed an off-line scheduler has a full knowledge

of the platform before the actual execution and it’s computed

schedule is just played back on the execution platform.

The third algorithm is an on-line scheduler, thus it is closely

tied to the simulator. For each of it’s scheduling decisions this

scheduler has two query each of the processors for tasks queue

length and the time when there will be able to finish a given

task.

Two evaluate the simulated algorithms performances we

introduce the notion of efficiency as the ratio between the opti-

mal makespan over the simulated makespan. As the scheduling

problem is NP-Hard and the size of the problem is important,

we are not able to evaluate the optimal makespan. However

the number of jobs to process (N ) divided by the steady-state

throughput (ρ) is a good optimal lower bound.

efficiency = makespano/makespanr

A B
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Fig. 3: Simple problem
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Fig. 4a: Gant diagram with infinite buffers

efficiency = N/(ρ×makespanr)

• makespano: lower bound

– makespano: N/ρ,

– reference time

• makespanr: makespan resulting from experience,

V. ALGORITHMS ADAPTION

1) On-line: The on-line algorithm is a simple list scheduler.

The task selection is performed by selecting the first task that

is ready to be scheduled. The processor selection is based on

the earliest finish time heuristic.

When scheduling multiple instances of the same job this

approach is problematic. In the example of Fig. ?? the on-line

algorithm produces the gant in Fig. 4a for 10 instances. All

of the tasks A are scheduled first because at time 0 there are

ready. Then at time 10 the first task B is ready but all the slot

are reserved for A.

This schedule has a makespan of 150 (5×A+10×B on p1)

and during the last 100 time units, p2 is idle. Our solution is to

limits the size of the processors input buffer, for example with

a limit of 1 the gant diagram is shown in Fig. 4b. Because of

this buffer limit some tasks B are available concurrently with

tasks A, the makespan is lower (110 time units) and processors

p2 is idle only for 20 time units.

2) GATS: The original GATS algorithm is not designed

to schedule multiple instances of the same job. One simple

method to make GATS able to solve this problem is to

schedule all the job instances as a single job. This method

increases however the time and the physical memory necessary

for GATS to compute the schedule. So we use a hybrid method

that schedules the tasks in successive intervals of x jobs and

appends the set schedules.

This method introduces a new problem: the concatenation

of two successive intervals leaves some processors idle so, we

overlap intervals as shown on Fig. 5. The interval Intervali

B B B B B B B B B BA

Ap2 A A A A A A A A

p1

Fig. 4b: Gant diagram with buffers of size 1



p
0

p
1

time

p
0

p
1

p
0

p
1

I
i (a) interval

i
(b) interval

i+1
(c) interval overlapping

I'
i+1 I

i+1

time time

I'
i+1

I
i+1

I'
i+1

I
i+1I

i

Fig. 5: Overlapping of Intervali and Intervali+1.

ends when the processor P1 finishes its task (fig.(a) Ii+1).

The processor P0 is idle between I
′

i+1 and Ii+1 (fig. (b)). The

interval overlapping re-uses this idle time in the next interval.

The interval Intervali+1 starts at I
′

i+1 instead of Ii+1 with

the information that P1 is not available until Ii+1. Figure (c)

shows the overlapping of Intervali and Intervali+1.

3) Steady state: As explained in III-C, the objective of the

steady-state algorithm is to maximize the throughput. A side

effect is that the makespan-minimization for finite number of

instances is not an objective. The original algorithm execute

initialization and termination sequentially, in this study, we

parallelize these non-optimal stages with the on-line algo-

rithm.

VI. ALGORITHMS COMPARISON

In this part we compare the performances and the behavior

of the chosen algorithms according to different parameters:

platform characteristics, number of workflows to compute, etc.

We study this behavior for different complexity and size of

workflows.

The workflows are given by Fig. 6, Fig. 8 and Fig. 10. The

letter inside the vertices of the workflow graph are the task type

(i.e. the service) to be executed at this step of the workflow.

The platforms are presented in Table 2. For instance, in this

table, for the PF3 platform, the processor p4 needs 10 time

units to perform a task A (p4(A) = 10).

A. Small jobs

The first example is a very simple workflow composed of

two tasks A and B where B use the result of A, see Fig. 6.

We execute several instances of this job. The idea here is to

show, using this very simple job, one of the drawbacks we

have identified.

A B

Fig. 6: Small job J1

We execute this workflow on different homogeneous plat-

forms, with equivalent execution time for the same function,

or on heterogeneous platforms. The platforms described in

Table 2 are the platforms used for Fig. 6 but we did more

simulations to identify the possible issues. As a first result, we

can note that even on homogeneous platforms the efficiencies

of the algorithms may depend on the characteristics and very

different results may be obtained as shown on Fig. 7a, Fig. 7b

and Fig. 7c.

TABLE II: Simulation platform PF1 to PF3

Type PF1 PF2 PF3

p1 p2 p3 p4 p1 p2 p3 p1 p2 p3

A 10 - 100 1000 10 50 40 100 100 100

B - 10 10 - 100 - - 20 - -
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Fig. 7a: Simulation with platform PF1 and job J1

On these figures we can observe three different behaviors

for the algorithms. First, on Fig. 7a GATS generates nearly

optimal results which tends toward an efficiency of 1 around

250 workflows.

On the opposite, the steady-state gives poor efficiencies, two

times less than the GATS when the number of jobs is less than

200. Then the efficiency slowly increases. The reason of these

poor efficiencies is that this approach try to use as much as

possible the whole platform capabilities to optimize the flow:

so it uses p4 for executing A tasks while it cost almost 100

times more than on other machines. To use p4, the algorithm

generate a very long period of 110 workflows, 220 tasks. Due

to its conception, the algorithm first generates all the tasks

needed to enter the steady-state period: 110 A tasks in the case

of platform PF1 and workflow J1. This means that before

entering the steady-state period the algorithm must perform

110 A tasks and, when the number of jobs is less than 110,

the schedule does not start a period. Then, we have to execute

110 workflows more to realize a period. This means than under

220 workflows no complete period is realized. For sets of

workflows bigger than 220, the steady-state will progressively

makes up the difference with the other algorithms and tends

toward optimal. So, a first drawback of this algorithm is that,

by using all the resources available on the platform, it may

generate poor schedules.

Another important remark on the steady-state schedule for

the PF1/J1 case is that it starts by an initialization phase

that generates all the needed tasks to enter the period. For

these tasks, the aim is not to find the best schedule of the

workflows implied in the initialization phase but rather to reach

the period. We can illustrate that with the case of platform

PF1 and job J1. Each period computed by the steady-state

algorithm will generate 110 tasks. So to enter this period, we

need to generate 110 A tasks that have precedence constraints

with the 110 B tasks that will be executed in the period.

Obviously, looking at the PF1 platform, it does not lead to a

good schedule to first executes all these A tasks. This is the

reason why the schedule behaves so badly in this case.
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Fig. 7b: Simulation with platform PF2 and job J1
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Fig. 7c: Simulation with platform PF3 and job J1

For the on-line scheduling, the efficiencies are stable around

0.9 which is rather good, but as good as for the GATS. The

explanation is the short view of this algorithm: at each step

it just schedules the ready tasks without taking the rest of the

workflows that has to be done. So it does not benefit form a

global view on the schedule. We can consider that this result

is rather good compared to the simplicity of the algorithm.

On Fig. 7b, for platform PF2 and the same job J1, all the

algorithms gets near optimal results. We can note that, in this

case, the solution was obvious: the scheduling algorithms do

not have an other choice than executing B tasks on processor

p1 and these tasks are critical as it it possible to execute A
tasks more quickly either on processor p2 or processor p3.

In this case, the short view of the on-line algorithm, is not a

drawback as there is nothing else to do than executing as fast

as possible these B tasks.

On Fig. 7c, for PF3 platform and the same J1 job, we can

note that the GATS algorithm decreases its efficiencies when

the number of workflows to execute increases. The on-line

algorithm is stable almost the same as on Fig. 7a while steady-

state algorithm quickly tends toward an optimal efficiency. The

reason of these behavior is the choice that has to be done on

processor p1. To get good efficiencies, the three processors

must be used to execute A tasks and sometimes processor p1
must be used to execute B tasks. The steady-state algorithm

find the optimal flow, with a period of 200 where p1 start

by executing 5 B tasks, for 100 and then execute one A
while the other processors execute 2 A tasks each. In this

case, GATS cannot find an optimal schedule when the size of

the worksflows set is greater than 200. This results is closely

linked to the size of the GATS period which is set to 400 tasks

in this case, so 200 workflows. For the on-line algorithm, the

results are explained as for Fig. 7a: the short view cannot

anticipate to optimize.

In general, for small jobs, the scheduling decision is often

simple and all the algorithms get good efficiencies, very close

to the optimal. When the number of workflows is less that

hundred, the GATS often gets the best efficiencies. However,

the results are not reliable in the sense that on some particular

values it may perform very badly. The standard list algorithm

performs rather well but does not always reach the optimality:

it may stay around 0.9 even when the number of workflows

increase. The steady-state scheduling has to make up its

initialization and termination stages.

From the three figures, Fig. 7a, Fig. 7b and Fig. 7c,

we can also conclude that the architecture/characteristics of

the platform impact on the algorithm behavior as, for the

same simple job, the efficiencies may vary according to the

following observations:

• the heterogeneity of the platform will extend the period

and leads to longer initialization/termination phases and

thus to an higher cost. So this algorithm will have no

interest until a high number of workflows.

• the complexity of the platform may generate poor results

for the GATS algorithm. This is probably linked to its

division into intervals.

• the short view of the on-line algorithm may lower its

efficiencies in some cases, in particular when the critical

task must be executed on one processor and that other,

earlier tasks, may be also affected to this processor.

In the following we study the behavior of the algorithms

with much complex workflows.

B. Medium jobs

In this part we study the execution of jobs J2 and J3 (see

Fig. 8 on the same platform PF4 (see Table 3). The aim here

is, on the one hand, to see if the behaviors differ when the

complexity and size of the workflow is higher and, on the other

hand, to analyze these behaviors regarding to the heterogeneity

of the platform.

A

B
C D(J2)

A
B

A
A(J3)

Fig. 8: Medium jobs

On the platforms given in Table 3 and compared to the

platforms of Table 2 the heterogeneity is lower for both

the execution times and the application available one the

platforms.

TABLE III: Simulation platforms PF4

Type PF4

p1 p2 p3 p4

A 20 - - 20

B 10 10 - -

C - 10 10 -

D - - - 10



 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

50 100 250 500 1000

E
ff

ic
ie

n
cy

Batch size

On−line
Steady state

GATS

Fig. 9a: Simulation with platform PF4 and job J2
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Fig. 9b: Simulation with platform PF4 and job J3

The results shown on Fig. 9a can be compared to Fig. 7a,

where the steady-state slowly improve its efficiencies, and the

results shown on Fig. 9b can be compared to Fig. 7c.

C. Big/complex jobs

This last part presents results with bigger jobs. To evaluate

the impact of the dependency on the efficiencies, we use the

same set of tasks but with different dependencies. Note that,

as explained before, we have no communication cost in the

experiments so that the deviations between the algorithms

efficiencies is just linked to the dependencies characteristics.

A B C D A B C D A(J4)

A
A B C D

B C D A
(J5)

A B C D

A B C D

A
(J6)

(J7)
B

C

D

A

B

A C

D

A

Fig. 10: Complex jobs

We execute these jobs on two different platforms PF5 and

PF6 given in Table 4. Platform PF5 is very simple and have

homogeneous execution time. We added two more processors

on platform PF6. These processors have heterogeneous exe-

cution times for the different services.

Globally, the results in these cases are good as must of

them are no more worst than 10% from the optimal. So

the response of the algorithms to the complexity of the

workflow is good. There no need to presents the results of the

algorithms on platform PF5 as all the algorithms find nearly

TABLE IV: Simulation platforms PF5 and PF6

Type PF5 PF6

p1 p2 p3 p4 p1 p2 p3 p4 p5 p6

A 10 - - - 10 - - - 100 1000

B - 10 - - - 10 - - 10 -

C - - 10 - - - 10 - 10 10

D - - - 10 - - - 10 - -
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Fig. 11a: Simulation with platform PF6 and job J4

optimal solutions for these workflows, whatever the number

of workflows is. The difference between the algorithms results

are limited to the initialization phase and are lower than 2%

from the optimal.

For platform PF7, just adding two more processors gives

very different results as shown on Fig. 11a and Fig. 11b. On

Fig. 11b, all the algorithms performs well while on Fig. 11a,

on-line and steady-state are 10% away from optimal, even for

500 jobs, and GATS decreases with the number of jobs.

The on-line algorithm and the steady-state algorithm per-

forms equivalently due to the size of the steady-state period.

The size of the period 100 and it terminates 37 jobs during

this period. This means that the initialization phase have to

execute a little bit less than 37×8 partial jobs before reaching

the steady-state period. As a consequence, most of the 500
jobs are executed outside the period and the results are no so

good.

For “chain like” jobs as J4 and J6, GATS performs well

until 250 jobs but its efficiency collapses for bigger sets of

jobs, while for J7 jobs the results are close to the optimal

(see Fig. 11b). For J5, the efficiencies start to be unstable from

250 jobs. This probably depends on the interval size used. The

explanation is in the length of the longest path in the workflow

graph: the longest the path is the worst GATS behaves. When

we have long path in the workflow’s graph then the time spent

by one workflow instance in the system increases. So the cost,
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Fig. 11b: Simulation with platform PF6 and job J7



TABLE V: Schedule computation costs

Size On-line scheduler Steady-state GATS

100 0.04s 0.05s 60.53s

200 0.10s 0.11s 85.46s

500 0.29s 0.23s 239.25s

750 0.79s 0.75s 439.25s

1000 1.09s 0.90s 617.43s

in term of idle time on processors, of using several intervals

for GATS also increases. One solution to this problem could

be to use bigger periods to limit these waste of time, however

this increases the computing complexity of the schedule as

shown is the next part.

D. Computation time of the schedules

In this part we compare the time costs to compute a

schedule. As the workflows are executed on a grid, what we

want is to execute them as soon as we get the resource or

the nodes from the reservation service. So the time spent to

compute the schedule is of importance as during this time we

cannot execute the workflows.

The Table 5 shows the average time needed on an Intel Xeon

running at 3.2 GHz to compute the schedules depending on the

number of workflows to execute. Both the on-line algorithm

and the steady-state algorithm are very fast to compute the

schedule. GATS gets reasonable execution time for less than

200 jobs but clearly does not support on the fly execution

above this value.

VII. CONCLUSION AND FUTURE WORKS

The paper presents a study on three different scheduling

algorithms for a set of jobs on SOA grids. Our application

context focus on workflows applied to data and a typical use

case of this work is the processing of sets of data for medical

analysis and image rendering. The originality of the work is,

on the one hand, the schedule of identical jobs which allows

to use algorithms designed for flow optimization and, on the

other hand, the SOA grid context where not all applications

or services are available on all servers. Each of the three

compared algorithm is suited for a specific need: the on-line

algorithm is simple, the steady-state algorithm guaranties an

optimal flow and the GATS algorithm generates schedules with

good makespan.

This study exhibit several results: the impact of the platform

and of the workflow characteristics on the efficiencies and

some drawbacks in the algorithms design. The on-line algo-

rithm suffers from a short view and use processors that will be

needed in the close future for critical tasks. The steady-state

algorithm has too long sub-optimal stages when the platform

is heterogeneous or when the workflows are complex. The

GATS algorithm becomes costly and instable or generates

poor schedules in some cases when the number of workflows

increases.

Our future works will concentrate on improving these

algorithms to fill these deficiencies. For the on-line algorithm,

we will try to extend its view by defining a scheduling

window where critical tasks could be identified. For the GATS

algorithm, we clearly need to reduce its cost. A possible

way is to better tune the genetic parameters and adapt the

interval size depending on the platform. Finally, the steady

state scheduling can be improved by optimizing the period

size and the initialization stage.
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