
HAL Id: hal-00563285
https://hal.science/hal-00563285

Submitted on 4 Feb 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Comparison of Batch Scheduling for Identical
Multi-Tasks Jobs on Heterogeneous Platforms

Sékou Diakité, Jean-Marc Nicod, Laurent Philippe

To cite this version:
Sékou Diakité, Jean-Marc Nicod, Laurent Philippe. Comparison of Batch Scheduling for Identical
Multi-Tasks Jobs on Heterogeneous Platforms. PDP 2008, 16th Euromicro Int. Conf. on Parallel,
Distributed and network-based Processing, 2008, France. pp.374–378. �hal-00563285�

https://hal.science/hal-00563285
https://hal.archives-ouvertes.fr

1

Comparison of Batch Scheduling for Identical

Multi-Tasks Jobs on Heterogeneous Platforms
Sékou Diakité, Jean-Marc Nicod and Laurent Philippe

Abstract—In this paper we consider the scheduling of a batch
of the same job on a heterogeneous execution platform. A job
is represented by a directed acyclic graph without forks (intree)
but with typed tasks. The execution resources are distributed
and each resource can carry out a set of task types. The
objective function is to minimize the makespan of the batch
execution. Three algorithms are studied in this context: an on-
line algorithm, a genetic algorithm and a steady-state algorithm.
The contribution of this paper is on the experimental analysis
of these algorithms and on their adaptation to the context. We
show that their performances depend on the size of the batch
and on the characteristics of the execution platform.

Index Terms—Batch scheduling, grid computing, heteroge-
neous platform, on-line scheduling, steady state scheduling,
genetic algorithm.

I. INTRODUCTION

In this paper we are interested in scheduling one batch

of identical jobs on a heterogeneous computing grid. Each

job of the batch is an application described by a Directed

Acyclic Graph (DAG) without forks (intree) and executed

independently from the others jobs. The originality of the

work is that each host is able to perform only a subset of

the application tasks but several hosts are able to carry out

the same task. An example is a work-flow to process a set

of data in several steps –each step could be a filter applied

to an image– on a grid where the softwares installed on the

hosts differs –only some filters are available on a host. Our

objective is to minimize the makespan of the batch execution,

but, as there is no direct optimal solution to the problem, we

evaluate different solutions by simulating them.

In this context, the main contribution of this paper is the

comparison of three scheduling techniques for medium sized

batches: a simple on-line scheduler, a steady-state scheduling

technique and a standard heuristic based algorithm, designed

for DAG scheduling. We also show that the platform architec-

ture may affect the performances of the schedule.

The organization of the paper as follow. The second section

gives a formal definition of the context and of the scheduling

problem. The third section is dedicated to the related works.

Then, in the forth section, we select three algorithms and we

explain how we adapt them to our context. The algorithms

comparison is done experimentally, so the simulation imple-

mentation is described in the fifth section. The results and the

comments on the different scheduling techniques are given in

the sixth section, before the conclusion.

LIFC/ INRIA GRAAL, 16 route de Gray 25000 Besançon, France,
[diakite,nicod,philippe]@lifc.univ-fcomte.fr

II. CONTEXT DEFINITION

The platform is composed by a set of processors which

communicate through network links. It is represented by an

undirected graph: PF = (P,L), where the vertices are the n
processors pi (pi ∈ P : i ∈ [1..n], n = |P |) and the edges are

the network links li between these processors.

On this platform, we execute one batch of identical jobs. A

batch B of length m is defined as a set of m identical instances

Jj of the job J such as B = {Jj : j ∈ [1..m]}. The job J is

composed of several tasks with dependency constraints and is

represented by a DAG: J = (T,D) where the vertices T are

the tasks Tk and the edges D are the dependency constraints

between the tasks. Note that there will be several instances of

task Tk belonging to different instances Jj of job J .

Tasks cannot be executed on every processor. Each proces-

sor Pi implements a limited set of functions (libraries) to carry

out the tasks. We define the set of function Fi as the set of

tasks Tk that the processor Pi is able to perform. Let F be

the set of all the functions used by the job J thus ∪iFi = F
where i ∈ [1..N]. The time T needed to execute a task Tk on

different processors Pi is not uniform: T (Tk, Pi) 6= T (Tk, P
′

i).

The targeted applications on the grid are very time con-

suming. For this reason, we make the assumption that the

bandwidth of PF allows us to neglect the communication time

for all the computation steps of each instance Ji of the job J .

According to the α|β|γ [5] classification of scheduling prob-

lems, this problem is defined by Ur|batch of intrees|Cmax:

the platform is heterogeneous thus the execution times are

unrelated and we optimize the makespan Cmax of a batch of

intree. Finding an optimal schedule for a batch of jobs on a

heterogeneous platform with limited resources is known to be

an NP-complete problem, so there is no direct method. Two

solutions may be used: either use a heuristic to compute a

suboptimal schedule or use the results of an optimal solution

to a problem close to ours.

III. RELATED WORKS

Three approaches match this context.

Steady-state techniques achieve an optimal use of the re-

sources for an infinite number of identical jobs [1]. The

resulting schedule is composed of an initialization stage before

entering in steady-state where it becomes optimal. This result

will tend towards optimality when the size of the batch

increases, as the weight of the initialization stage decreases

in the global schedule. When the size of the batch is too

small, the initialization stage overhead leads however to an

2

inefficient schedule. So, the question is “from what batch size

steady-state scheduling becomes interesting?”.

Classical solutions to optimize the makespan of a set of

tasks relay on heuristics such as Earliest Finish Time [10]

or Critical Path [7]. These heuristics approaches compute a

schedule off-line with the assumption that no other jobs will be

run on the platform. These techniques schedule the whole set

of tasks, so they do not suffer from the initialization problem.

However, if the number of tasks scales up, the computation

time becomes too long due to the complexity of the algorithm.

On-line oriented techniques generate the schedule during the

jobs execution. They take the state of the system into account

to assign new tasks to processors. These techniques are very

easy to implement and give rather good results. They give

however no guarantee on the optimality of the schedule.

Other works exist on scheduling multiple DAGs. Most of

them describe real-time schedulers for periodic tasks [8],

[9]. Real-time schedulers are not adapted to our context

because their objectives is to ensure that the tasks deadlines

are met. Iverson and Özgüner [6] use a different technique

where multiple DAGs compete for the available computational

resources. In the paper, schedulers have limited informations

on processors and no informations on future jobs to schedule.

This is not the case in our context where a centralized entity

schedules all the jobs.

IV. SELECTED SOLUTIONS

In this section we present the selected algorithms and

their adaptation to the context characteristics. represents one

of the three possible approaches and provide good results

in our context. The first algorithm is a static scheduling

algorithms for graphs of aperiodic tasks on a heterogeneous

platform. It allows us to evaluate the performances of an

algorithm designed for a set of tasks to schedule middle

size batches of jobs. The second algorithm is a simple list-

based on-line scheduling algorithm that we use to obtain

a reference makespan. The third algorithm is a steady-state

oriented scheduling algorithm. This algorithm uses a linear

program to optimize the number of jobs executed per time

unit in steady-state, and produces an optimal schedule[1]. It

allows us to evaluate the performance of an optimal steady-

state algorithm, designed for an unlimited number of jobs, in

the context of middle sized batch.

A. GATS

Genetic Algorithm for Task Scheduling (GATS) is a ge-

netic algorithm that produces 7% to 10% shorter schedule

than classical scheduling techniques for aperiodic tasks on a

heterogeneous platform [4]. It uses the genetic metaheuristic

to enhance the schedule obtained by a list-based scheduling

heuristic. The first step is to create an initial population: the

first individual represents the result of a list-based schedule

which favors the tasks on the critical path of J . Then one

individual per processor represents a random schedule where

all the tasks are affected to the given processor and the remain

of the population represents random schedules.

GATS individuals do not represent total schedules but only

processors-tasks associations. A decoding step translates each

individual to a schedule that respects all the dependencies.

The decoded schedule is used to compute the fitness f of an

individual as: f = 1/Makespan(schedule). The representa-

tion without time informations allows fast computations of

mutations and cross-overs since tasks are directly movable

from one slot to another. Once the initial population is created,

GATS performs a loop that computes the fitnesses of the

individuals, a rank-based selection, mutations and cross-overs

until the termination criteria are met. The termination criterion

used is a fixed number of loops. The computed schedule is at

least equal to the initial list-based solution.

The original GATS algorithm is not designed to schedule

multiple instances of the same job. One simple method to make

GATS able to solve this problem is to schedule all the job

instances as a single job. This method increases however the

time and the physical memory necessary for GATS to compute

the schedule. So we use a hybrid method that schedules the

tasks in successive intervals of x jobs and appends the set

schedules.

p
0

p
1

time

p
0

p
1

p
0

p
1

I
i (a) interval

i
(b) interval

i+1
(c) interval overlapping

I'
i+1 I

i+1

time time

I'
i+1

I
i+1

I'
i+1

I
i+1I

i

Fig. 1: Overlapping of Intervali and Intervali+1.

This method introduces a new problem: the concatenation

of two successive intervals leaves some processors idle so, we

overlap intervals as shown on figure 1. The interval Intervali
ends when the processor P1 finishes its task (fig.(a) Ii+1).

The processor P0 is idle between I
′

i+1 and Ii+1 (fig. (b)). The

interval overlapping re-uses this idle time in the next interval.

The interval Intervali+1 starts at I
′

i+1 instead of Ii+1 with

the information that P1 is not available until Ii+1. Figure (c)

shows the overlapping of Intervali and Intervali+1.

B. On-line Scheduling with knowledge

Algorithm 1 onlineScheduler(processors, job, count)

job← job multiply(job, count)
while not isEmpty(job) do

free← update free list(job, free)
Tbest ← remove first(free)
Pbest ← smallest EFT (processors, Tbest)
send(Tbest, Pbest)
if isEmpty(free) then
Wait for a task to be free

end if
Wait for a processor to be idle

end while

The algorithm 1 is a simple implementation of an on-line

scheduler. When the on-line scheduler is asked to execute

count jobs, it creates a single job (job) that groups the count
jobs to be scheduled. The algorithm manages a free tasks

list that contains tasks with no dependency. At each loop

3

of the algorithm, the first task of the list is selected to be

scheduled. This algorithm does not use a heuristic to select

the task to schedule contrary to other list based scheduling

algorithms [10], [11]. This mechanism shortens the traversal

time of a job. Tbest is used to select the best processor

(Pbest) using the Earliest Finish Time (EFT) heuristic [10].

The selected task is sent to the selected processor then the

algorithm waits for, at least, one free task and one idle

processor, until all the jobs are carried out.

C. Steady-state scheduling

The steady-state scheduling technique uses a linear program

to compute an optimal schedule when the system enters a

steady-state. The objective function of the linear program is

to maximize the number of jobs computed per time unit. The

constraints of the linear program force the solution to respect

the computation abilities of each processor. These constraints

also ensure that jobs are fully computed.

The solution of this linear program gives the ratio of time

spent by each processor for each task of the jobs and the pro-

portion of time spent by each network link to send task results

for each inter-tasks dependencies. As the execution context is

a steady-state, the proportion can be computed as a rational

number. This solution is translated into a weighted sum of

allocation, where an allocation represents the traversal of a

job in the platform (task/processor associations). The steady-

state scheduling computes a period in which the allocations are

interleaved according to their weight. The steady-state stage

is the concatenation of the adequate number of these periods

to compute the number of desired jobs.

The scheduling needs an initialization stage before entering

in steady-state and a termination stage to finish after the last

period. The initialization stage computes every task needed

to enter into the steady-state stage. In the original algorithm,

the initialization is not optimized. The master computes itself

every tasks without parallelism facility. As the initialization,

the termination stage is performed by the master in a sequential

way. Its role is to terminate every task staying in the platform

after the last steady-state period.

V. SIMULATION

Building a mathematical model of the algorithms is not

realistic due to the complexity of the problem. Their imple-

mentation on a grid cannot give reproducible results. So we

use a grid simulator to evaluate the three algorithms.

The simulator was implemented above SimGrid and its

MSG API [2], [3]. it is based on the master/slave paradigm.

Algorithms are implemented in the master node and dispatch

tasks to slave nodes according to the scheduling decisions.

Figure I shows the platforms and figure 2 shows the jobs

used in the simulation discussed in the next section. For

instance, in the platform PF0, the processor p1 needs 10 time

units to perform a task A (p1(A) = 10).

The processor and algorithms performances are expressed

in time units as there are obtained by simulation and not by

experiments. These results may be applied to different time

units: seconds, minutes, etc.

Task PF0 PF1

p1 p2 p3 p4 p1 p2 p3 p4 p5 p6

A 10 - - - 10 - - - 100 1000

B - 10 - - - 10 - - 10 -

C - - 10 - - - 10 - 10 10

D - - - 10 - - - 10 - -

Task PF2 PF3 PF4

p1 p2 p3 p1 p2 p3 p1 p2 p3 p4

A 10 50 40 100 100 100 20 - - 20

B 100 - - 20 - - 10 10 - -

C - - - - - - - 10 10 -

D - - - - - - - - 10 10

TABLE I: Simulation platforms

A

A B C D A B C D A

A B C D

B C D A

(J1)

(J2)

(J3)
B

C

D

A

B

A C

D

A

A B C D

A B C D

A
(J4)

A B(J5)

A

B
C D(J6)

A
B

A
A(J7)

Fig. 2: Simulation jobs

VI. RESULTS

The results presented in this section are obtained by schedul-

ing the different batches of jobs (fig. 2 (J1, ..., J7)) on the

different platforms (fig. I (PF0, ..., PF4)).

Table II gives the simulations results for small (50), medium

(100) and big (500) batches. The capacity (Cap.) is a lower

bound of the time needed to execute one job: the size of the

period the steady-state algorithm divided by the number of

jobs produced during the period. Since the schedule computed

by the steady-state algorithm is optimal, this value is a lower

bound for the time needed to execute one job. The results

given in table II are obtained using the following expression:

performance = capacity × batch size/makespan. So, this

value represents the ratio of their makespan and the lower

bound.

A. Performances

GATS is the best algorithm for small and medium batches

with an average performance of 0.99. On-line scheduling and

the steady-state scheduling are the seconds with an average

performance of 0.93. For big batches (500 jobs), the steady-

state algorithm gives the best results, on-line scheduler is the

second and GATS has very poor performances.

The on-line algorithm is always good and stable around 0.94
with a minimum value of 0.86 and the two others are less

reliable as, in some cases, they have very bad performances

with 0.46 for steady-state and 0.22 for GATS. Each of these

two algorithms has however its own domain of stability: GATS

in small and medium sizes and steady-state in larger sizes.

Another result not shown by this table, is that our adapta-

tions on the algorithms – parallelizing the initialization and

4

Small batch : 50 jobs Medium batch : 100 jobs Big batch : 500 jobs

Plat. Job Cap. On-line Stead. GATS On-line Stead. GATS On-line Stead. GATS

PF0 J1 30 1 0.99 1 1 1 1 1 1 1

PF0 J2 30 1 0.99 1 1 1 1 1 1 1

PF0 J3 30 1 1 1 1 1 1 1 1 1

PF0 J4 30 1 1 1 1 1 1 1 1 1

PF0 J5 10 0.98 1 0.98 0.99 1 0.99 1 1 1

PF1 J1 27.03 0.9 0.89 0.94 0.9 0.9 0.94 0.9 0.94 0.22

PF1 J2 27.03 0.9 0.89 0.97 0.9 0.9 0.97 0.9 0.89 0.45

PF1 J3 27.03 0.9 0.9 0.99 0.9 0.9 0.97 0.9 0.94 0.64

PF1 J4 27.03 0.9 0.82 0.99 0.9 0.83 0.96 0.9 0.94 0.3

PF1 J5 9.09 0.89 0.46 0.97 0.9 0.46 0.98 0.91 0.8 0.99

PF2 J5 100 0.91 1 1 0.91 1 1 0.93 1 0.93

PF3 J5 40 0.86 0.91 0.98 0.89 0.95 0.99 0.89 0.99 0.54

PF4 J6 12.5 0.89 0.8 0.95 0.91 0.89 0.96 0.91 0.98 1

PF4 J7 30 1 0.99 1 1 0.99 1 1 1 0.54

Average 0.93 0.93 0.99 0.94 0.94 0.99 0.94 0.97 0.61

TABLE II: Performance of On-line, Steady-state and GATS against platform capacity.

������

��
��
��
��

����
��
��
��
���� �

�
�
�
��
��
��
��

�
�
�
�
���� ����

��
��
��

�
�
�

�
�
�

��
��
��
��
��
��
��

��
��
��

�
�
�

�
�
�

���
���
���
���

�
�
�
�
��
��
��
��

�
�
�
�
���� ������ �� �

�
�
�
�� �
�
�
�

��
��
��
��

�
�
�
�
��
��
��
��

�
�
�

�
�
�

���
���
���
���

��
��
��
��
��
��
��
��

����
��
��
��

�� �
�
�
�
�
�
�
�
������
��
��
��
��
��
��
��

��
��
��
��

�
�
�
�
��
��
��
��

�
�
�

�
�
�

������

�
�
�
�
���� �

�
�
�
���� �

�
�
�
����
��
��
��

��
��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�
�

�
�
�
�

��
��
��
��
��

��
��
��
��
��

�
�
�
�
�
�

�
�
�
�
�
�

 0
 20000
 40000
 60000
 80000

 100000
 120000
 140000
 160000
 180000
 200000

10 50 100 150 200 250 300 400 500 600 700 800 900 1000

T
im

e
u
n
it

Batch size

Capacity x batch size
On−line scheduler
Steady−state scheduler
GATS

Fig. 3a: Simulation with platform PF1 and job J4

������

�
�
�
�
������
��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

��
��
��
��
��

��
��
��
��
��

�
�
�
�
�
�

�
�
�
�
�
�

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
����

���
���
���

��������
�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
����

���
���
���

�
�
�
� �� �

�
�

�
�
�

��
��
��
��

��
��
��
��

��
��
��

��
��
��

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��������

����
��
��
��
���� ��������

��
��
��
��
��
��

��
��
��

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

��
��
��
��
��

��
��
��
��
��

 0

 2000

 4000

 6000

 8000

 10000

 12000

10 50 100 150 200 250 300 400 500 600 700 800 900 1000

T
im

e
u
n
it

Batch size

Capacity x batch size
On−line scheduler
Steady−state scheduler
GATS

Fig. 3b: Simulation with platform PF1 and job J5

termination stages of the steady-state algorithm and using

limited buffer size in the on-line algorithm – generate sig-

nificant performances improvements. For instance, for on-line

algorithm, the mean result for small batches is improved by

16% and, for steady-state algorithm, it has been improved by

52%.

B. Batch size

The main drawbacks of the steady-state scheduler are its

initialization and termination stages. Figure 3a shows an

experiment where the steady-state period takes 1000 time units

(one period) to execute 37 jobs. The initialization executes

148 partial jobs (740 tasks) and the termination cleans up

148 partial jobs (592 tasks). In this experiment, the steady-

state algorithm makes up its handicap for a batch of 500
jobs where it becomes better than the two other algorithms.

However, figure 3b shows that this is not always true. In

this experiment the steady-state period takes 1000 time units

to execute 110 jobs, the initialization and the termination

executes 110 partial jobs and the scheduling is not able to

make up its handicap even for 1000 jobs. The difference

between these two experiments is in the parallelism of the

initialization and the termination stage. In (a) a high level

of parallelism is possible as tasks of types A, B, C and

D are scheduled in initialization and termination while, in

(b), the initialization stage manages only tasks of type A and

termination tasks of type B.

GATS is very sensitive to the batch size, for small and

medium batches (50 and 100) GATS has an average perfor-

mance of 0.99 but it falls to 0.61 for big batches (500). One

of the reasons of this performance loss may be the scheduling

intervals presented in IV-A: GATS does not enhance the whole

schedule but just partial schedule intervals of 200 tasks. Note

that some of the results, on PF0 for example, are not affected

by this, so intervals are note the only reason. We propose

another explanation in the next section.

The on-line scheduler performances does not change with

the batch size. This is not surprising as the algorithm takes

jobs one after another and thus does not depend on the batch

size.

C. Platform / Job

We can observe that the performances depend on the plat-

form characteristics. On platform PF0, where no parallelism is

possible for a task type, the three algorithms perform well. On

platform PF1, the three algorithms choose where to schedule

A, B, C tasks as several processors can execute them. This

leads to poor performances for GATS on batches bigger than

500 because the search space is too large. For the steady-state

scheduler, the number of jobs per steady-state period becomes

larger leading to longer initialization and termination stages

and so to bad performances.

The on-line scheduler performs well in general as shown

on figure 4a. The only identified drawback is that the algo-

rithm does not take the graph dependencies into account. For

instance, in the case of the platform PF2 (fig. 4b), the first

processor is the fastest at producing A tasks and the only

one able to carry out B tasks. For a set of jobs composed of

two tasks of type A and B with B depending on A, the on-

line scheduler first balances the load of A tasks between all

5

������

��
��
��
��

�
�
�
�
�������� �

�
�
�
��
��
��
��

����
��
��
��

������ ����
��
��
��

��
��
��

��
��
��

�
�
�
�

���
���
���
���

�
�
�
�
���� ������ �

�
�
�
���� �

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��

�
�
�

�
�
�

��
��
��
��

�
�
�

�
�
�

���
���
���
���

��
��
��
��
���� ������ �

�
�
�
�� ��������

��
��
��
�������� �

�
�
�

��
��
��
��

�
�
�

�
�
�

������

�
�
�
�
��
��
��
��

����
��
��
��

�� �
�
�
�
����

����
��
��

��
��
��

�
�
�
�
��
��
��

��
��
��

�
�
�
�

�
�
�
�

��
��
��
��
��

��
��
��
��
��

�
�
�
�
�
�
�

�
�
�
�
�
�
�

 0

 50000

 100000

 150000

 200000

 250000

10 50 100 150 200 250 300 400 500 600 700 800 900 1000

T
im

e
u
n
it

Batch size

Capacity x batch size
On−line scheduler
Steady−state scheduler
GATS

Fig. 4a: Simulation with platform PF1 and job J1

������

���� ��
��
��
��
��

��
��
��
��

�
�
�
�

��
��
��

��
��
��

�
�
�
�

�
�
�
�

��
��
��
��
��

��
��
��
��
��

�
�
�
�
�

�
�
�
�
�

��
��
��
��
��
��

��
��
��
��
��
��

�
�
�
�
�
�
�

�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

���
���
���
���

����
��
��
��

��
��
��
��

��
��
��

�
�
�
�

��
��
��
��

��
��
��
��

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

��
��
��
��
��
��
��

��
��
��
��
��
��
��

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

���
���
���
���

��������
�
�
�
�

��
��
��
��

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

������

������ �
�
�
�
���� �� �

�
�

�
�
�

��
��
��

��
��
��

�
�
�
�

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

��
��
��
��
��

��
��
��
��
��

�
�
�
�

�
�
�
�

��
��
��
��
��

��
��
��
��
��

�
�
�
�
�

�
�
�
�
�

 0

 20000

 40000

 60000

 80000

 100000

 120000

10 50 100 150 200 250 300 400 500 600 700 800 900 1000

T
im

e
u
n
it

Batch size

Capacity x batch size
On−line scheduler
Steady−state scheduler
GATS

Fig. 4b: Simulation with platform PF2 and job J5

processors, as they are the only free tasks. Then, when tasks

B are freed, the first processor has to finish the execution

of all its A tasks before executing B tasks. This leads to a

performance loss as shown on figure 4b or on table II when

scheduling 50 jobs J5 on PF1.

As explained in the previous subsection the steady-state

algorithm may suffer from its initialization and termination

stages. These two stages closely depend on the period size and

on the number of jobs in the period. The period depends on the

platform and the job. For example, on table II, scheduling job

J5 on platform PF1 leads to a period of 1000 time units for

110 jobs. On the opposite scheduling job J5 on platform PF0

leads to a period of 10 time units for 1 job. The steady-state

algorithm performs poorly when the platform/job association

leads to large number of jobs in a period, in particular for small

to medium batches. This is shown by the results of job J5:

on platform PF0 the schedule is always optimal, whereas, on

PF1, the performances increase with the batch size to make

up the delay generated by the initialization and termination

stages.

As a genetic algorithm, GATS explores the possible sched-

ules space to find a good schedule. This space grows when

processors are able to execute different types of tasks and

when the jobs contain tasks of the same type like in the

experiments involving platform PF1 or PF5 (Table II). In such

big spaces, GATS is not able to converge to a good schedule

and its performances fall when the size of the batch increases,

as shown in figure 4a. This is also significant on table II when

scheduling jobs on platform PF1 compared to platform PF0.

D. Computation time of the scheduling stage

The table III shows the average time needed on an Intel Core

2 Duo running at 1.6 GHz to compute the schedule of 1000

On-line scheduler Steady-state scheduler GATS

35.04s 0.08s 1799.68s

TABLE III: Average time spent by the micro-processor to

compute the schedule of 1000 jobs.

jobs using the three different algorithms. We can note that the

steady-state scheduler is the fastest. The on-line scheduler is

also very fast, but, on real experiments we must take care as

it does not provide any guaranties on real time use. GATS

is very slow, this is acceptable to schedule a batch, but the

computation overhead is too important to launch an execution

on the fly.

VII. CONCLUSION AND FUTURE WORKS

In this paper, we have presented a performance comparison

with three scheduling algorithms for bounded batches of jobs

on heterogeneous platforms. On-line scheduling is a good

algorithm, but it does not reach optimal performances when

the size of the batches increases. Steady-state suffers from

its initialization and termination stages. it could be improved

by parallelizing these two stages. Another point to look at

is the steady-state period, the number of jobs to perform in

the initialization and the termination is directly linked to the

number of jobs per steady-state period. Futures works should

try to find a balance between the period jobs count and the

number of jobs to schedule. GATS obtains excellent perfor-

mances for small batches but degrades with the batch size.

Future work should investigate the performances degradation

and find solutions to avoid them. The computation time needed

to obtain the schedule from GATS cannot be improved by

a great magnitude, code optimization will reduce it, but the

inner time complexity of GATS forces it to be computation

intensive.

Future studies will generalize the problem by introducing

communication costs and DAG with forks. The forks on DAG

will increase the complexity of the steady-state scheduling,

future experiments should tell us if it is significant. Fault tol-

erance is also an issue of interest : off-line algorithms (steady-

state and GATS) will probably suffer from the unpredictable

platform behavior while the on-line scheduler should not need

any adaptations as it is based on dynamic informations.

REFERENCES

[1] O. Beaumont, A. Legrand, L. Marchal, and Y. Robert. Assessing the

impact and limits of steady-state scheduling for mixed task and data

parallelism on heterogeneous platforms. IEEE Computer Society Press,
2004.

[2] H. Casanova. Simgrid: A toolkit for the simulation of application
scheduling. ccgrid, 00:430, 2001.

[3] H. Casanova, A. Legrand, and L. Marchal. Scheduling distributed
applications: the simgrid simulation framework. In 3rd IEEE Intl

Symposium on Cluster Computing and the Grid, 2003.

[4] M. Daoud and N. Kharma. Gats 1.0: A novel ga-based scheduling
algorithm for task scheduling on heterogeneous processor nets. In
Genetic And Evolutionary Computation Conference, 2005.

[5] R.L. Graham and al. Optimization and approximation in deterministic
sequencing and scheduling: a survey. Ann. Discrete Math., 4:287–326,
1979.

[6] M. Iverson and F. Özgüner. Dynamic, competitive scheduling of multiple
dags in a distributed heterogeneous environment. In 7th Heterogeneous

Computing Workshop, pages 70 – 78, 1998.

[7] Y. Kwok and I. Ahmad. Dynamic critical-path scheduling: An effective
technique for allocating task graphs to multi-processors. In IEEE Trans.

on Parallel and Distributed Systems, pages 506 – 521, 1996.

[8] Y. Li and W. Wolf. Hierarchical scheduling and allocation of multirate
systems on heterogeneous multiprocessors. In European conference on

Design and Test, pages 134 – 139, 1997.

6

[9] X. Qin and H. Jiang. A dynamic and reliability-driven scheduling
algorithm for parallel real-time jobs executing on heterogeneous clusters.
Journal of Parallel and Distributed Computing, 65(8):885–900, 2005.

[10] H. Topcuouglu, S. Hariri, and M. Wu. Performance-effective and low-
complexity task scheduling for heterogeneous computing. In IEEE

Trans. on Parallel and Distributed Systems, pages 260 – 274, 2002.
[11] M. Wu, W. Shu, and H. Zhang. Segmented min-min: A static mapping

algorithm for meta-tasks on heterogeneous computing systems. In 9th

Heterogeneous Computing Workshop, pages 375 – 385, 2000.

