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Abstract

Component interoperability is one of the essential issues in the component based development, since it
allows the composition of reusable heterogenous components developed by different people. In this paper,
we propose an approach to formally verify component interoperability at signature, semantics, and protocol
levels. It is based on the use of the B formal method for specifying component interfaces and finite transition
systems for specifying component protocols. The verification is done with the B theorem prover and the
verification of the simulation relation between transition systems. This approach allows to decide whether
two components can interoperate if assembled together and whether a component can be replaced by another
component.
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1 Introduction

The component based development is widely used in software engineering. Its aim

is to develop software systems by assembling a collection of pieces that are inde-

pendently produced. These pieces are called components. The advantages of this

approach are the reusability of software components which involves a reduction of

the development cost, and the flexibility of developed systems.

A component is a unit of composition with contractually specified interfaces and

explicit dependencies [22]. An interface describes the services offered or required

by a component without disclosing the component implementation. It is the only

access to the information of a component. The offered services by a component are

described by an offered interface and the required services are described by a used

interface.

The component interoperability is an essential issue in the component based

development. The success of applying the component based approach depends
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on the interoperability of the connected components. The interoperability can be

defined as the ability of two or more entities to communicate and cooperate despite

differences in their implementation language, the execution environment, or the

model abstraction [11,24]. In the verification of component interoperability, it is

necessary to consider two cases:

• verification of component compatibility: verify whether two software components

can be related.

• verification of component substitutability: verify whether a defective component

can be replaced by another component.

So, the verification of component interoperability involves the verification of

the interface compatibility or interface equivalence on the components that will be

connected or the component that will be replaced.

The specification of the interfaces plays an important role in the verification of

their compatibility. Most current interface modelling languages (IDLs), used in sev-

eral component oriented platforms like JavaBeans [21], CORBA [16], or COM [14],

are limited for expressing signature (operation names, types, parameters) informa-

tion. They provide insufficient information about component behaviors. Hence, one

cannot insure trust in component based systems.

The design by contract approach proposed by B. Meyer [13] is the first evolution

toward a specification approach that proposes a way to insure trust in components.

B. Meyer proposes to annotate interface specifications with assertions that provide

pre and postconditions of the operations. Several other works [9,1] have proposed to

enhance component interfaces by providing information at signature, semantics (the

meaning of operations) and protocol (order in which the operations of a component

are called) levels. Despite these enhancements in the interface specification, we

believe that there is not enough information in component interfaces to perform a

formal verification of the interface compatibility.

In this paper we deal with the formal specification of the interfaces and the

verification of their compatibility at the signature, semantics, and protocol levels.

We propose to specify interfaces with the B method and to enhance them by the

specification of protocols using the automata theory language [18]. The B method

allows an abstract specification of systems to be developed step by step using the

refinement until the implementation. Therefore we consider that the B specification

of an interface is an abstraction of a component implementation.

The B theorem prover is used to verify a step of the interface compatibility. We

also exploit the B specifications of the interfaces and their protocol specifications

in order to model the behavior of software components with transition systems [4].

Thus, we verify the simulation relation between the transition systems, which is the

final step of the verification of the interface compatibility.

In the following section we give an overview of the B method. In Section 3 we

present the specification of component interfaces and illustrate it by the example

of the car wiping system. In Section 4 we present the verification approach of the

component interoperability. In Section 5 we present related work. In section 6 we

terminate the paper by a conclusion.
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2 The B method

The B method [2] is a formal software development approach allowing to develop

software for critical systems. It covers the entire development process from abstract

specifications to an implementation. The B method is based on the set theory. The

basic building block of a B specification is the abstract machine that is similar to a

module or a class in an object oriented development. A B specification is composed

of one or many abstract machines (examples of B machines are given in Section 3),

each of them describes a set of variables, invariance properties (also called safety

properties) relating to these variables, an initialization which is a predicate that

initializes the variables, and a list of operations. The specification of an operation

consists of a precondition part and a body part. The precondition expresses the

requirement that must be met whenever the operation is called. The body expresses

what the operation achieves, it is expressed with a generalized substitution. The

states of a specified system are only modifiable by operations that must preserve

an invariant.

With the B method, a system is developed by refinement. The refinement is used

to transform step by step an abstract specification into a concrete representation. At

each refinement step, you have to prove that the refined specification is correct with

its abstraction. Therefore the implementation must refine its abstract specification.

The verification with the B method is automated. The B theorem prover, Atelier

B [20], allows the verification of invariance properties and the refinement relation.

3 Specification of component interfaces

Our goal is to propose an approach to specify component interfaces in order to

verify the interface compatibility. This work takes place in the context where com-

ponents are specified as black boxes, then deployed without knowing details of their

implementation. In this context, the specification of component interfaces plays an

important role because it is the only description of the component.

We propose to specify components interfaces with the B method and augment

the interface specifications with protocol specifications that must be respected by

the order of the operation calls. We apply this approach to a case study.

3.1 Specification structure

Traditional approaches of interface specification provide signature of operations and

their pre and postconditions. In many cases there are not sufficient information in

interfaces specifications in order to detect the problems of components

3.1.1 Interface Specification with the B method

A B specification of an interface is composed of the following information:

• The name of the B machine: it is the name of the associated interface.

• The variables of the interface: the set of variables used in the operation definition.

• The initialisation: the initial value of the variables.
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• The invariant: describes the property that a component must satisfy in each

state.

• The operations: each operation is specified by a precondition and a body which

expresses the transformation performed on states by an operation.

3.1.2 Protocol specification

In the B method, it is not possible to specify a particular order of operation calls.

Therefore we use the regular language to specify component protocols. We specify

a protocol as a set of finite words that are made up over an alphabet which is a set

of the called operation names.

A protocol is described by the following formula:

(((operation name1).(operation name′1). . . .)
∗ + . . .

+((operation namei).(operation name′i). . . .)
∗+ . . .), using the following operators:

• ′′.′′ expresses the sequencing in the operation calls. For example

(operation name1 . operation name2) means that the operation name1 will be

called before the operation name2,

• ′′+′′ expresses the choice. For example (operation name1 + operation name2)

means that either the operation name1 or the operation name2 will be called,

• ′′∗′′ is used to express the repetition. For example

(operation name1 . operation name2)
∗ means that the operation name1 and the

operation name2 will be called a finite number of times.

3.2 Case Study: a car windscreen wiping system

We illustrate our approach by considering a car windscreen wiping system [12].

This system receives messages from an environment, a car driver, and activates the

windscreen wiper. It has two operational modes:

• manual: the car driver selects the speed for the windscreen wiper. Then the

wiping system receives messages from the car driver and sends messages in order

to activate the windscreen wiper with the selected speed,

• automatic: the wiping system is activated by the car driver and the selection

of the speed for the windscreen wiper is done automatically according to the

quantity of the detected rain.

The wiping system can send messages to activate the windscreen wiper with

three different speeds: the first speed, the intermediate speed and the second speed.

In order to construct this system, we dispose of three components provided by

different software designers. The components are:

• the control lever CLever component,

• the windscreen wiper WWiper component,

• the rain sensor RSensor component.
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3.2.1 The CLever component

It allows to detect the mode of the wiping system selected by the car driver, au-

tomatic or manual. In the first mode, the component CLever sends a message to

activate the automatic mode for the wiping system. In the second mode, the car

driver can select two speeds for the windscreen wiper:

• speed1: the component CLever sends a message to the environment in order to

activate the first speed for the windscreen wiper,

• speed2: the component CLever sends a message to the environment in order to

activate the second speed for the windscreen wiper.

Remark 3.1 Note that the component CLever does not offer the possibility to

select the intermediate speed for the wiping system.

The component CLever has three interfaces: the offered interfaces OIManual

and OIAutoCL, and the used interface UICLever. We only describe the offered

interface OIManual. The B specification of this interface is given in figure 1.

MACHINE OIManual

SETS

CL Position = {sp1, sp2, stop};

VARIABLES

cl pos

INVARIANT

cl pos ∈ CL Position (Io)

INITIALISATION

cl pos := stop

OPERATIONS

Cl Speed1 =̂ PRE (cl pos = sp2 ∨ cl pos = stop)

THEN cl pos := sp1 END;

. Cl Speed2 =̂ PRE cl pos = sp1

THEN cl pos := sp2 END;

Cl Stop =̂ PRE cl pos = sp1

THEN cl pos := stop END

Fig. 1. B machine corresponding to the interface OIManual of the component CLever

The operations defined in the interface OIManual are:

• Cl Speed1: the car driver activates the first speed for the wiping system.

• Cl Speed2: the driver activates the second speed for the wiping system.

• Cl Stop: the driver stops the wiping system.

The protocol that must be respected by the operation calls in the interface

OIManual is:

(Cl Speed1.(Cl Speed2.Cl Speed1)∗.Cl Stop)∗.
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3.2.2 The WWiper component

It receives messages from the environment and activates (with the first, the second

or the intermediate speed) or stops the windscreen wiper.

This component has three interfaces, the used interfaces UIManual and UIAu-

toWW, and the offered interface OIWWiper. We only describe the used interface

UIManual. The B specification of this interface is given in figure.2.

MACHINE UIManual

SETS

CL Position = {sp1, sp2, spi, stop};

VARIABLES

cl pos

INVARIANT

cl pos ∈ CL Position (Iu)

INITIALISATION

cl pos := stop

OPERATIONS

Cl Speed1 =̂ PRE (cl pos = sp2 ∨ cl pos = spi ∨ cl pos = stop)

THEN cl pos := sp1 END;

. Cl Speed2 =̂ PRE cl pos = sp1

THEN cl pos := sp1 END;

Cl Speedi =̂ PRE cl pos = stop

THEN cl pos := spi

Cl Stop =̂ PRE (cl pos = sp1 ∨ cl pos = spi)

THEN cl pos := stop END

Fig. 2. B machine corresponding to the interface UIManual of the component WWiper

The operations defined in the interface UIManual are:

• Cl Stop, Cl Speed1, Cl Speed2: these operations have the same description as

those described in the interface OIManual,

• Cl Speedi: the driver activates the intermediate speed for the wiping system.

The protocol that must be respected by the operation calls in this interface is:

((Cl Speedi.Cl Stop)∗.

(Cl Speed1.(Cl Speed2.Cl Speed1)∗.Cl Stop)∗.

(Cl Speedi.Cl Stop)∗).

3.2.3 The RSensor component

It is operational in the automatic mode of the wiping system. It allows to detect

the quantity of rain and to send messages to its environment in order to activate

the windscreen wiper with the appropriate speed. it can detect three cases: there

is no rain, there is little rain and there is big rain. This component is described by

the offered interface OIAutoRS and the used interface UIAutoRS.
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3.2.4 The wiping system

The architecture of the wiping system using these three components is proposed in

figure 3. It is described using UML 2 notations [8].

WW

OIManualUIManual UICLever

OIAutoCL

UIAutoRSOIAutoRS

UIAutoWW

CLever

RSensor

iper

OIWWiper

Fig. 3. Component architecture of the wiping system

4 Verification of component interoperability

In order to verify the component interoperability, it is necessary to treat two cases:

• verification of component compatibility: verify whether two software components

can be related.

• verification of component substitutability: verify whether a component can be

replaced by another component.

4.1 Verification of component compatibility

To determine whether two components can interoperate, we propose a compatibility

verification between offered and used interfaces because components interoperate via

these interfaces.

We use the B theorem prover, and the operational semantics of the interface

specifications (transition systems) of offered and used interfaces to perform the

verification. We split the verification approach into two steps:

• Invariant verification: since we define an invariant in the interfaces, we must verify

that the invariant provided in the used interface is satisfied by the specification

of the appropriate offered interface.

• Verification of interface compatibility at signature, semantics and protocol lev-

els between an offered and used interfaces: to verify that required services de-

scribed by a used interface are compatible with offered services described by an

offered interface, it is necessary to verify the compatibility between these inter-

faces. Therefore, we verify that the component behavior described by an offered

interface simulates the component behavior described by the corresponding used

interface.
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We illustrate our verification approach by checking whether the component

CLever interoperates with the component WWiper via the interfaces OIManual

and UIManual.

4.1.1 Invariant verification

In order to insure that the component CLever can interoperate with the compo-

nent WWiper via the offered interface OIManual and the used interface UIManual,

we must prove that the operations specified in the interface OIManual satisfy the

invariant Iu specified in the interface UIManual. Since we specify interfaces us-

ing the B method, we use the B theorem prover to perform this verification. The

verification will be performed on a new B specification obtained by modifying the

OIManual specification and taking into account information provided by UIManual.

So, we describe below two steps allowing to construct a B specification where the

invariant Iu is specified and also the operations of the offered interface OIManual

are specified. This new specification is obtained as follows:

• We modify the invariant of the interface OIManual : The invariant of the new

specification is Io ∧ Iu, where Io is the invariant of the interface OIManual.

• We add in the specification of OIManual variables and sets of UIManual which are

not defined in OIManual. If there exists a set S which is defined in the interface

OIManual and in the interface UIManual with more variable values, then we

replace the set S in OIManual by the set S of UIManual (see the example below).

Finally, initialize the new variables defined in the specification of OIManual.

After carrying out these two steps, we obtain a new B specification presented in

figure 4 in which the value spi has been added in the set CL Position. We did not

change the invariant of the interface OIManual because this interface has the same

invariant as the one defined in UIManual.

MACHINE NewOIManual

SETS

CL Position = {sp1, sp2, spi, stop}; (new value spi )

VARIABLES

cl pos

INVARIANT

cl pos ∈ CL Position

INITIALISATION

cl pos := stop

OPERATIONS

Cl Speed1 =̂ PRE (cl pos = sp2 ∨ cl pos = stop)

THEN cl pos := sp1 END;

. Cl Speed2 =̂ PRE cl pos = sp1

THEN cl pos := sp2 END;

Cl Stop =̂ PRE cl pos = sp1

THEN cl pos := stop END

Fig. 4. The new B specification obtained from OIManual and the invariant of UIManual
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The verification with the B theorem prover shows that the new B specification

is valid, which means that the operations preserves the invariant. Therefore the

operations of the offered interface OIManual satisfy the invariant provided by the

used interface UIManual.

4.1.2 Verification of interfaces compatibility at signature, semantics and protocol

levels

The verification of the compatibility between the offered interface OIManual and

the used interface UIManual is based on verifying that the component behavior

described by the B specification of the offered interface and its protocol simulates

the component behavior described by the B specification of the used interface and

its protocol.

The steps which compose this verification approach are:

• Construction of the transition systems that capture the component behavior de-

scribed in the specification of offered and used interfaces: we exploit the protocol

specifications and the B specification of the interfaces to construct these transition

systems.

• Verification of the interface compatibility by defining and verifying the relation

of simulation between the transition systems obtained in the above step.

Construction of the transition systems corresponding to the interface

specifications: The protocols specified in the interfaces OIManual and UIManual

are respectively:

• (Cl Speed1.(Cl Speed2.Cl Speed1)∗.Cl Stop)∗.

• ((Cl Speedi.Cl Stop)∗.

(Cl Speed1.(Cl Speed2.Cl Speed1)∗.Cl Stop)∗.

(Cl Speedi.Cl Stop)∗).

These protocols are specified with a finite regular language which has the al-

phabet composed of operation names specified in the interfaces. According to the

Kleene theorem [18], we can model these protocols with finite transition systems

[4].

The transition systems do not express the total behaviors described in the inter-

faces, because the values of their states are not significant. Indeed, they only present

the information at the levels of operation signature and protocols but not at the

level of the semantics of the operation (their pre and postconditions). Therefore,

we enhance these transition systems by changing the values of their states. We use

the B specification of the interfaces in order to decorate the states of the transition

systems by a set of atomic propositions that correspond to pre and postconditions

of the operations. The approach of constructing the transition systems is presented

as follows:

• From the clause Initialization of the B specification of an interface, we decorate the

initial states of the transition system that model the protocol by a set of atomic
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propositions which are the equality between the variables and their values.

• From the operations of the B specification of an interface, we decorate the other

states by a set of atomic propositions which are the equality between the variables

and their new values. The values of variables in a state si, such that t
def

= si−1
op
→

si is a transition, are obtained by applying the generalised substitution of the

operation op on the variables of the state si−1.

By applying our approach on the previous example, we obtain the transition

systems TSo (see figure 5) and TSu (see figure 6) that model both behaviors of

software components described respectively by the offered interface OIManual and

the used interface UIManual. These transition systems allow to know all the au-

thorized behaviors for the component CLever corresponding to the specification of

the interfaces OIManual and UIManual.

The transition system TSo
def

= 〈S0o, So,→o, Lo, Fo〉 is composed of the following

information:

• the initial states: S0o = {s0}

• the set of states: So = {s0, s1, s2}

• the transition relation →o expressed by the following set of transitions:

{s0
Cl Speed1

→ s1, s1
Cl Speed2

→ s2, s2
Cl Speed1

→ s1, s1
Cl Stop
→ s0}

• the labelling function Lo defined by: Lo(s0) = {cl pos = stop}, Lo(s1) =

{cl pos = sp1}, Lo(s2) = {cl pos = sp2}

• the set of the final states: Fo = {so}.

Cl_Speed1

Cl_Stop

Cl_Speed2

Cl_Speed1

s2 s1 s0

Fig. 5. The transition system TSo corresponding to the interface OIManual

The transition system TSu
def

= 〈S0u, Su,→u, Lu, Fu〉 is composed of the following

information:

• the initial states: S0u = {s′0}

• the set of states: Su = {s′0, s
′
1, s

′
2, s

′
3}

• the transition relation →u expressed by the following set of transitions:

{s′0
Cl Speed1

→ s′1, s
′
1

Cl Speed2
→ s′2, s

′
2

Cl Speed1
→ s′1, s

′
1

Cl Stop
→ s′0, s

′
0

Cl Speedi
→

s′3, s
′
3

Cl Stop
→ s′0}

• the labelling function Lu is defined as follows: Lu(s′0) = {cl pos = stop}, Lu(s′1) =

{cl pos = sp1}, Lu(s′2) = {cl pos = sp2}, Lu(s′3) = {cl pos = spi}

• the set of the final states: Fu = {s′o}.

Verification of the relation of simulation: We define a relation of simulation

between two transition systems as an adaptation of the definition of the simulation
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s’1 s’3s’2 s’0

Cl_Stop

Cl_Speedi

Cl_Speed1

Cl_Stop

Cl_Speed2

Cl_Speed1

Fig. 6. The transition system TSu corresponding to the interface UIManual

relation of Milner [15]. A transition system TS0 simulates a transition system TS1

according to the Milner definition if and only if the system behavior described by

TS1 is included in the system behavior described by TS0.

In our case, we need to take into account the transition labels in order to verify

components compatibility. In Milner’s definition the transition are not labelled.

Definition 1 Let TSo = 〈S0o, So,→o, Lo, Fo〉 and TSu = 〈S0u, Su,→u, Lu, Fu〉 be

two transition systems. Let R be a relation between Su and So, R ⊆ So × Su. R is

a relation of simulation iff for each couple of states (si, s
′
i) ∈ So × Su we have:

• if (si, s
′
i) ∈ R, then Lu(si) ⊆ Lo(s

′
i)

• if (si, s
′
i) ∈ R and s′i

a
→ s′i+1 ∈→u, then there exists si+1 ∈ So such that s1

a
→

si+1 ∈→o and (si+1, s
′
i+1) ∈ R.

After defining the relation of simulation between the states of transition sys-

tems, we define what it means that a transition system simulates another transition

system.

Definition 2 Let TSo = 〈S0o, So,→o, Lo, Fo〉 and TSu = 〈S0u, Su,→u, Lu, Fu〉 be

two transition systems. Let R be a relation of simulation between Su and So, R ⊆

So × Su. TSo simulates TSu iff ∀s′0.(s
′
0 ∈ S0u ⇒ ∃s0.(s0 ∈ S0o ∧ (s0, s

′
0) ∈ R))

According to Definition 2, the transition TSo simulates the transition system

TSu if and only if the simulation relation holds between their initial states.

Theorem 4.1 Let TSo and TSu be two transition systems that model respectively

an offered interface OI and a used interface UI. When the relation of simulation

R holds between the states of TSo and TSu, then the interfaces OI and UI are

compatible at signature, semantics and protocol levels.

Proof. Suppose that TSo simulates TSu.

• Compatibility at protocol level: TSo and TSu model respectively the interfaces OI

and UI. The specification of these interfaces includes the B specification and the

protocol specification. According to Definition 1 and Definition 2, the verification

of the simulation relation is based on the parallel exploration of the transition

systems TSo and TSu. Thus we verify that the traces of the paths explored in TSu

are contained in the traces of the paths explored in TSo. Consequently, verifying

the relation of simulation implies verifying whether the set of the operation calls

described in UI are included in the set of the operation calls described in OI.
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• Compatibility at signature and semantics levels: the operations described in OI

and UI are expressed in TSo and TSu by transitions. Source and target states of

these transitions are decorated with a set of atomic propositions which expresses

respectively pre and postconditions of the operations. Furthermore transitions

are labelled with operation names. According to Definition 1 and Definition 2,

the verification of the simulation relation implies the verification of the matching

of transitions between TSo and TSu at signature and semantics (operation names,

pre and postconditions) levels. This involves the verification of the compatibility

at signature and semantics levels.

✷

Case study: In order to verify that the interface OIManual is compatible with

the interface UIManual, we must verify that the relation of simulation R holds

between the two transition systems TSo and TSu. The verification requires the

parallel exploration of the transition systems TSo and TSu by beginning from their

initial states. Therefore, the proof that TSo simulates TSu is the proof that the

initial states (s0, s
′
0) ∈ R such that s0 is the initial state of TSo and s′0 is the initial

state of TSu.

We illustrate the verification algorithm of the simulation relation by verifying

whether TSo simulates TSu as follows:

• verify the first condition of the relation on the couple (s0, s
′
0): the condition is

verified because Lo(s0) = Lu(s′0),

• verify the second condition on (s0, s
′
0): there is a transition s′0

Cl Speedi
→ s′3 ∈→u

in TSu, but there is not a transition s0
Cl Speedi

→ s3 ∈→u such that (s3, s
′
3) ∈ R.

Therefore (s0, s
′
0) 6∈ R.

The verification of the simulation relation between the transition systems TSo

and TSu shows that TSo does not simulate TSu. That means that the interfaces

OIManual and UIManual are not compatible. Therefore, the behavior required by

the component WWiper is not offered by the component CLever. The verification

fails because the component WWiper requires the operation Cl Speedi that is not

offered by the component CLever (see the dashed transition in the transition system

TSu in figure 6).

4.2 Verification of component substitutability

To determine whether a defective component can be substituted by another compo-

nent, we propose an approach based on the verification of the relation of equivalence

between component specifications. This approach allows to determine whether the

behavior of the defective component is equivalent to the behavior of the substitute

component.

In order to illustrate this approach, we present in the figure 7 two components

control lever CLever and CLever’. Suppose that we need to replace the component

CLever by the component CLever’. To reach this goal, the component CLever’

must satisfy the following constraints:

• The set of services required by the component CLever’ must be the same as the
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CLever

CLever’

OIManual

OIManual’ UIManual’

UIManual

OIAutoCL

OIAutoCL’

Fig. 7. component substitutability

set of the services required by the component CLever. To check this constraint

it is necessary to verify the equivalence between component behaviors described

in the used interfaces of CLever and CLever’. In our example (see figure 7), we

verify that the behavior described in the interface UClever is equivalent to the

one described in the interface UClever’.

• The set of the services offered by the component CLever’ must be the same as

the set of the services offered by the component CLever. To check this constraint

it is necessary to verify the equivalence between component behaviors described

in the offered interfaces. In our example, we verify that the behavior described in

the interface OIManual is equivalent to the one described in the interface OIMan-

ual’, and we also verify that the behavior described in the interface OIAutoCL is

equivalent to the one described in the interface OIAutoCL’ .

To verify the equivalence between the component behaviors, we propose an ap-

proach based on the B method and on a relation between transition systems. This

approach is divided into two steps:

• Equivalence between invariants: we verify the equivalence between the in-

variants defined in the offered interfaces and between the invariants defined in

the used interfaces. In our example, we verify that the invariant defined in the

offered interface OIManual is equivalent to the invariant defined in the interface

OIManual’. We use the B theorem prover and the B specification of the interfaces

to perform this verification.

• Equivalence between component interfaces: in this step, we verify the

equivalence between component behaviors described in the offered interfaces and

the equivalence between component behaviors described in the used interfaces.

In the example in figure 7, we verify equivalence between component behaviors

described in OIManual and OIManual’, and between OIAutoCL and OIAutoCL’.

We also verify equivalence between component behaviors described in UClever

and UClever’. To perform this verification we define and we check the relation of

bisimulation (this relation is defined in the next paragraph) between the transition

systems that model the component interfaces (relation of bisimulation between

offered interfaces and between used interfaces). So, we verify that the relation of

bisimulation holds between the following transition systems

· the transition systems describing the offered interfaces OIManual and OIMan-
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ual’,

· the transition systems describing the offered interfaces OIAutoCL and OIAu-

toCL’,

· the transition systems describing the used interfaces UClever and UClever’.

In the following, we define the relation of bisimulation between transition sys-

tems. This relation is based on the relation of simulation defined in the last section.

A transition system TS′ bisimulates a transition system TS if and only if the

system behavior described by TS′ is the same as ( we say also that is equivalent)

to the system behavior described by TS.

Definition 3 Let TS = 〈S0, S,→, L, F 〉 and TS′ = 〈S0
′, S′,→′, L′, F ′〉 be two tran-

sition systems. Let R be a relation of simulation between S and S′. Let α be another

relation between S and S′, α ⊆ S × S′. α is a relation of bisimulation iff for each

couple of states (si, s
′
i) ∈ S × S′ we have:

if (si, s
′
i) ∈ α, then (si, s

′
i) ∈ R and (s′i, si) ∈ R

After defining the relation of bisimulation between the states of transition sys-

tems, we define what means that a transition system bisimulates another transition

system.

Definition 4 Let TS = 〈S0, S,→, L, F 〉 and TS′ = 〈S0
′, S′,→′, L′, F ′〉 be two tran-

sition systems. Let α be a relation of bisimulation between S and S′, α ⊆ S × S′.

TS′ bisimulates TS iff ∀s0.(s0 ∈ S0 ⇒ ∃s′0.(s
′
0 ∈ S′

0 ∧ (s0, s
′
0) ∈ α))

According to Definition 4, the transition TS′ bisimulates the transition system

TS if and only if the bisimulation relation holds between their initial states.

5 Related Work

Several works have been proposed in the context of specifying component interfaces

and verifying their compatibility.

Cheesman and Daniels [7] propose to specify component interfaces using UML

[17] and OCL [23] notations. The interface specification includes: an information

model that provides the type of the information expressed in the interfaces (it is

specified using UML class diagram), invariants on the information model, and oper-

ation specifications that express operation signatures and pre- and postconditions.

However this work does not propose any verification approach of interface compat-

ibility.

Yellin and Storm [25] propose a state machine based approach to specify pro-

tocols. Protocols are expressed in terms of abstract states and transitions. We are

inspired by this work in order to model protocols. In contrast with our proposition,

the approach of Yellin and Storm does not cope with the component interoperability

at the semantics level but only at the protocol level.

Canal and al [6] use a subset of the polyadic pi-calculus to deal with component

interoperability only at the protocol level. The pi-calculus is very well suited for

describing component interactions. The limitation of this approach is the low-level

description of the used language and its minimalistic semantics which does not
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provide rich feedback to system designers when errors are detected during protocol

checks.

In [5], Bastide et al use Petri nets to specify the behavior of CORBA objects, in-

cluding operation semantics and protocols. This work correlates with our approach

because we use transition systems that can be expressed as Petri nets, to express

component behaviors. The difference to our approach is that we take into account

the invariant in the interface specifications and we use the B approach to verify

interface compatibility.

In [10], J. Han specifies protocols with a temporal logic based approach. This

approach leads to a rich specification for component interfaces.

Alfaro and Henzinger [3] propose an interesting approach which allows the ver-

ification of the interfaces compatibility based on the automata and game theories.

This approach is well suited for checking the interface compatibility at the protocol

level.

In [26], Zaremski and Wing propose an interesting approach to compare two

software components. It determines whether one component can be substituted for

another. They use formal specifications to model the behavior of components and

exploit the Larch prover to verify the specification matching of components.

The approaches described above treat the component interoperability at the

semantics and the signature levels, or at the protocol level, not both. However, in

this paper we propose an approach which handles the component interoperability

and component substitutability at the both levels.

An interesting approach proposed in [19], allows to formally specify, refine and

verify component based systems. It is based on Object-Z language and the process

algebra CSP. The main difference with our approach is the specification language.

In our case, we have chosen the B method to specify component interfaces in order

to exploit the B theorem prover.

6 Conclusion

This paper presents an approach to verify component interoperability. We have con-

sidered two cases in the interoperability: component compatibility and component

substitutability. This approach is based on the use of the B method for specifying

component interfaces. An interface specification provides the following information:

• an initialization predicate which provides initial states of a component

• a list of operations, specified by means of their preconditions and generalized

substitutions

• an invariant property that must be respected by the initialization predicate and

the operations.

Specification of interfaces is enhanced by the specification of protocols with finite

transition systems.

The approach to verify the component compatibility is composed of two steps.

First, we verify with the B theorem prover that the invariant specified in a used

interface is satisfied by the specification of the appropriate offered interface. Sec-
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ond, we use protocol specifications and B specification of interfaces to complete the

verification of interface compatibility at the signature, semantics, and protocol lev-

els by verifying the simulation relation between the transition systems that model

component behaviors.

The approach to verify the component substitutability is based on the B method

and the verification of the relation of bisimulation between transition systems that

models offered interfaces and between transition systems that models used interfaces

(interfaces of the defective component and the substitute component).
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