Samir Chouali
email: chouali@lifc.univ-fcomte.fr

Cooperation Between the B Method and the Automata Theory to Check the Component Interoperability

Keywords: Component interoperability, compatibility, substitutability, B method, verification

Component interoperability is one of the essential issues in the component based development, since it allows the composition of reusable heterogenous components developed by different people. In this paper, we propose an approach to formally verify component interoperability at signature, semantics, and protocol levels. It is based on the use of the B formal method for specifying component interfaces and finite transition systems for specifying component protocols. The verification is done with the B theorem prover and the verification of the simulation relation between transition systems. This approach allows to decide whether two components can interoperate if assembled together and whether a component can be replaced by another component.

Introduction

The component based development is widely used in software engineering. Its aim is to develop software systems by assembling a collection of pieces that are independently produced. These pieces are called components. The advantages of this approach are the reusability of software components which involves a reduction of the development cost, and the flexibility of developed systems.

A component is a unit of composition with contractually specified interfaces and explicit dependencies [START_REF] Szyperski | Component Software[END_REF]. An interface describes the services offered or required by a component without disclosing the component implementation. It is the only access to the information of a component. The offered services by a component are described by an offered interface and the required services are described by a used interface.

The component interoperability is an essential issue in the component based development. The success of applying the component based approach depends So, the verification of component interoperability involves the verification of the interface compatibility or interface equivalence on the components that will be connected or the component that will be replaced.

The specification of the interfaces plays an important role in the verification of their compatibility. Most current interface modelling languages (IDLs), used in several component oriented platforms like JavaBeans [START_REF]JavaBeans Specification, Version 1.01[END_REF], CORBA [START_REF]The Common Object Request Broker: Architecture and Specification, Revision 2.2[END_REF], or COM [START_REF]The Component Object Model Specification, Version 0.9[END_REF], are limited for expressing signature (operation names, types, parameters) information. They provide insufficient information about component behaviors. Hence, one cannot insure trust in component based systems.

The design by contract approach proposed by B. Meyer [START_REF] Meyer | Object-Oriented Software Construction[END_REF] is the first evolution toward a specification approach that proposes a way to insure trust in components. B. Meyer proposes to annotate interface specifications with assertions that provide pre and postconditions of the operations. Several other works [START_REF] Han | A comprehensive interface definition framework for software components[END_REF][START_REF] Hernandez | Object interoperability[END_REF] have proposed to enhance component interfaces by providing information at signature, semantics (the meaning of operations) and protocol (order in which the operations of a component are called) levels. Despite these enhancements in the interface specification, we believe that there is not enough information in component interfaces to perform a formal verification of the interface compatibility.

In this paper we deal with the formal specification of the interfaces and the verification of their compatibility at the signature, semantics, and protocol levels. We propose to specify interfaces with the B method and to enhance them by the specification of protocols using the automata theory language [START_REF] Kleene | Representation of events in nerve nets and finite automata[END_REF]. The B method allows an abstract specification of systems to be developed step by step using the refinement until the implementation. Therefore we consider that the B specification of an interface is an abstraction of a component implementation.

The B theorem prover is used to verify a step of the interface compatibility. We also exploit the B specifications of the interfaces and their protocol specifications in order to model the behavior of software components with transition systems [START_REF] Arnold | Mec: a system for constructing and analysis transition systems[END_REF]. Thus, we verify the simulation relation between the transition systems, which is the final step of the verification of the interface compatibility.

In the following section we give an overview of the B method. In Section 3 we present the specification of component interfaces and illustrate it by the example of the car wiping system. In Section 4 we present the verification approach of the component interoperability. In Section 5 we present related work. In section 6 we terminate the paper by a conclusion. The B method [START_REF]The B Book[END_REF] is a formal software development approach allowing to develop software for critical systems. It covers the entire development process from abstract specifications to an implementation. The B method is based on the set theory. The basic building block of a B specification is the abstract machine that is similar to a module or a class in an object oriented development. A B specification is composed of one or many abstract machines (examples of B machines are given in Section 3), each of them describes a set of variables, invariance properties (also called safety properties) relating to these variables, an initialization which is a predicate that initializes the variables, and a list of operations. The specification of an operation consists of a precondition part and a body part. The precondition expresses the requirement that must be met whenever the operation is called. The body expresses what the operation achieves, it is expressed with a generalized substitution. The states of a specified system are only modifiable by operations that must preserve an invariant.

With the B method, a system is developed by refinement. The refinement is used to transform step by step an abstract specification into a concrete representation. At each refinement step, you have to prove that the refined specification is correct with its abstraction. Therefore the implementation must refine its abstract specification. The verification with the B method is automated. The B theorem prover, Atelier B [START_REF] Steria | Preuves et Exemples[END_REF], allows the verification of invariance properties and the refinement relation.

Specification of component interfaces

Our goal is to propose an approach to specify component interfaces in order to verify the interface compatibility. This work takes place in the context where components are specified as black boxes, then deployed without knowing details of their implementation. In this context, the specification of component interfaces plays an important role because it is the only description of the component.

We propose to specify components interfaces with the B method and augment the interface specifications with protocol specifications that must be respected by the order of the operation calls. We apply this approach to a case study.

Specification structure

Traditional approaches of interface specification provide signature of operations and their pre and postconditions. In many cases there are not sufficient information in interfaces specifications in order to detect the problems of components 3.1.1 Interface Specification with the B method A B specification of an interface is composed of the following information:

• The name of the B machine: it is the name of the associated interface.

• The variables of the interface: the set of variables used in the operation definition.

• The initialisation: the initial value of the variables.

• The invariant: describes the property that a component must satisfy in each state.

• The operations: each operation is specified by a precondition and a body which expresses the transformation performed on states by an operation.

Protocol specification

In the B method, it is not possible to specify a particular order of operation calls. Therefore we use the regular language to specify component protocols. We specify a protocol as a set of finite words that are made up over an alphabet which is a set of the called operation names.

A protocol is described by the following formula: (((operation name 1).(operation name ′ 1). . . .) * + . . . +((operation name i).(operation name ′ i). . . .) * + . . .), using the following operators: • ′′ . ′′ expresses the sequencing in the operation calls. For example (operation name 1 . operation name 2) means that the operation name 1 will be called before the operation name 2 ,

• ′′ + ′′ expresses the choice. For example (operation name 1 + operation name 2) means that either the operation name 1 or the operation name 2 will be called,

• ′′ * ′′ is used to express the repetition. For example (operation name 1 . operation name 2) * means that the operation name 1 and the operation name 2 will be called a finite number of times.

Case Study: a car windscreen wiping system

We illustrate our approach by considering a car windscreen wiping system [START_REF] Kouchnarenko | Refinement and verification of synchronized component-based systems[END_REF]. This system receives messages from an environment, a car driver, and activates the windscreen wiper. It has two operational modes:

• manual: the car driver selects the speed for the windscreen wiper. Then the wiping system receives messages from the car driver and sends messages in order to activate the windscreen wiper with the selected speed,

• automatic: the wiping system is activated by the car driver and the selection of the speed for the windscreen wiper is done automatically according to the quantity of the detected rain.

The wiping system can send messages to activate the windscreen wiper with three different speeds: the first speed, the intermediate speed and the second speed.

In order to construct this system, we dispose of three components provided by different software designers. The components are:

• the control lever CLever component,

• the windscreen wiper WWiper component,

• the rain sensor RSensor component.

The CLever component

It allows to detect the mode of the wiping system selected by the car driver, automatic or manual. In the first mode, the component CLever sends a message to activate the automatic mode for the wiping system. In the second mode, the car driver can select two speeds for the windscreen wiper:

• speed1: the component CLever sends a message to the environment in order to activate the first speed for the windscreen wiper,

• speed2: the component CLever sends a message to the environment in order to activate the second speed for the windscreen wiper.

Remark 3.1 Note that the component CLever does not offer the possibility to select the intermediate speed for the wiping system.

The component CLever has three interfaces: the offered interfaces OIManual and OIAutoCL, and the used interface UICLever. We only describe the offered interface OIManual. The B specification of this interface is given in figure 1. The operations defined in the interface OIManual are:

• Cl Speed1: the car driver activates the first speed for the wiping system.

• Cl Speed2: the driver activates the second speed for the wiping system.

• Cl Stop: the driver stops the wiping system.

The protocol that must be respected by the operation calls in the interface OIManual is:

(Cl Speed1.(Cl Speed2.Cl Speed1) * .Cl Stop) * .

The WWiper component

It receives messages from the environment and activates (with the first, the second or the intermediate speed) or stops the windscreen wiper. This component has three interfaces, the used interfaces UIManual and UIAu-toWW, and the offered interface OIWWiper. We only describe the used interface UIManual. The B specification of this interface is given in figure. The operations defined in the interface UIManual are:

• Cl Stop, Cl Speed1, Cl Speed2: these operations have the same description as those described in the interface OIManual,

• Cl Speedi: the driver activates the intermediate speed for the wiping system.

The protocol that must be respected by the operation calls in this interface is:

((Cl Speedi.Cl Stop) * . (Cl Speed1.(Cl Speed2.Cl Speed1) * .Cl Stop) * . (Cl Speedi.Cl Stop) *).

The RSensor component

It is operational in the automatic mode of the wiping system. It allows to detect the quantity of rain and to send messages to its environment in order to activate the windscreen wiper with the appropriate speed. it can detect three cases: there is no rain, there is little rain and there is big rain. This component is described by the offered interface OIAutoRS and the used interface UIAutoRS.

The wiping system

The architecture of the wiping system using these three components is proposed in figure 3. It is described using UML 2 notations [START_REF] Doldi | UML 2 Illustrated -Developing Real-Time & Communications Systems[END_REF].

Verification of component interoperability

In order to verify the component interoperability, it is necessary to treat two cases:

• verification of component compatibility: verify whether two software components can be related.

• verification of component substitutability: verify whether a component can be replaced by another component.

Verification of component compatibility

To determine whether two components can interoperate, we propose a compatibility verification between offered and used interfaces because components interoperate via these interfaces. We use the B theorem prover, and the operational semantics of the interface specifications (transition systems) of offered and used interfaces to perform the verification. We split the verification approach into two steps:

• Invariant verification: since we define an invariant in the interfaces, we must verify that the invariant provided in the used interface is satisfied by the specification of the appropriate offered interface.

• Verification of interface compatibility at signature, semantics and protocol levels between an offered and used interfaces: to verify that required services described by a used interface are compatible with offered services described by an offered interface, it is necessary to verify the compatibility between these interfaces. Therefore, we verify that the component behavior described by an offered interface simulates the component behavior described by the corresponding used interface.

We illustrate our verification approach by checking whether the component CLever interoperates with the component WWiper via the interfaces OIManual and UIManual.

Invariant verification

In order to insure that the component CLever can interoperate with the component WWiper via the offered interface OIManual and the used interface UIManual, we must prove that the operations specified in the interface OIManual satisfy the invariant I u specified in the interface UIManual. Since we specify interfaces using the B method, we use the B theorem prover to perform this verification. The verification will be performed on a new B specification obtained by modifying the OIManual specification and taking into account information provided by UIManual. So, we describe below two steps allowing to construct a B specification where the invariant I u is specified and also the operations of the offered interface OIManual are specified. This new specification is obtained as follows:

• We modify the invariant of the interface OIManual : The invariant of the new specification is I o ∧ I u , where I o is the invariant of the interface OIManual.

• We add in the specification of OIManual variables and sets of UIManual which are not defined in OIManual. If there exists a set S which is defined in the interface OIManual and in the interface UIManual with more variable values, then we replace the set S in OIManual by the set S of UIManual (see the example below). Finally, initialize the new variables defined in the specification of OIManual.

After carrying out these two steps, we obtain a new B specification presented in figure 4 in which the value sp i has been added in the set CL P osition. We did not change the invariant of the interface OIManual because this interface has the same invariant as the one defined in UIManual. The verification with the B theorem prover shows that the new B specification is valid, which means that the operations preserves the invariant. Therefore the operations of the offered interface OIManual satisfy the invariant provided by the used interface UIManual. 4.1.2 Verification of interfaces compatibility at signature, semantics and protocol levels The verification of the compatibility between the offered interface OIManual and the used interface UIManual is based on verifying that the component behavior described by the B specification of the offered interface and its protocol simulates the component behavior described by the B specification of the used interface and its protocol.

The steps which compose this verification approach are:

• Construction of the transition systems that capture the component behavior described in the specification of offered and used interfaces: we exploit the protocol specifications and the B specification of the interfaces to construct these transition systems.

• Verification of the interface compatibility by defining and verifying the relation of simulation between the transition systems obtained in the above step.

Construction of the transition systems corresponding to the interface specifications: The protocols specified in the interfaces OIManual and UIManual are respectively:

• (Cl Speed1.(Cl Speed2.Cl Speed1) * .Cl Stop) * . These protocols are specified with a finite regular language which has the alphabet composed of operation names specified in the interfaces. According to the Kleene theorem [START_REF] Kleene | Representation of events in nerve nets and finite automata[END_REF], we can model these protocols with finite transition systems [START_REF] Arnold | Mec: a system for constructing and analysis transition systems[END_REF].

The transition systems do not express the total behaviors described in the interfaces, because the values of their states are not significant. Indeed, they only present the information at the levels of operation signature and protocols but not at the level of the semantics of the operation (their pre and postconditions). Therefore, we enhance these transition systems by changing the values of their states. We use the B specification of the interfaces in order to decorate the states of the transition systems by a set of atomic propositions that correspond to pre and postconditions of the operations. The approach of constructing the transition systems is presented as follows:

propositions which are the equality between the variables and their values.

• From the operations of the B specification of an interface, we decorate the other states by a set of atomic propositions which are the equality between the variables and their new values. The values of variables in a state s i , such that t def = s i-1 op → s i is a transition, are obtained by applying the generalised substitution of the operation op on the variables of the state s i-1 .

By applying our approach on the previous example, we obtain the transition systems T S o (see figure 5) and T S u (see figure 6) that model both behaviors of software components described respectively by the offered interface OIManual and the used interface UIManual. These transition systems allow to know all the authorized behaviors for the component CLever corresponding to the specification of the interfaces OIManual and UIManual.

The transition system T S o def = S 0o , S o , → o , L o , F o is composed of the following information:

• the initial states: S 0o = {s 0 }

• the set of states: S o = {s 0 , s 1 , s 2 }

• the transition relation → o expressed by the following set of transitions:

{s 0 Cl Speed1 → s 1 , s 1 Cl Speed2 → s 2 , s 2 Cl Speed1 → s 1 , s 1 Cl Stop → s 0 } • the labelling function L o defined by: L o (s 0) = {cl pos = stop}, L o (s 1) = {cl pos = sp 1 }, L o (s 2) = {cl pos = sp 2 }
• the set of the final states: The transition system T S u def = S 0u , S u , → u , L u , F u is composed of the following information:

F o = {s o }.
• the initial states: relation of Milner [START_REF] Milner | Communication and Concurrency[END_REF]. A transition system T S 0 simulates a transition system T S 1 according to the Milner definition if and only if the system behavior described by T S 1 is included in the system behavior described by T S 0 .

S 0u = {s ′ 0 } • the set of states: S u = {s ′ 0 , s ′ 1 , s ′ 2 , s ′ 3 } • the transition relation → u expressed by the following set of transitions: {s ′ 0 Cl Speed1 → s ′ 1 , s ′ 1 Cl Speed2 → s ′ 2 , s ′ 2 Cl Speed1 → s ′ 1 , s ′ 1 Cl Stop → s ′ 0 , s ′ 0 Cl Speedi → s ′ 3 , s ′ 3 Cl Stop → s ′ 0 } • the labelling function L u is defined as follows: L u (s ′ 0) = {cl pos = stop}, L u (s ′ 1) = {cl pos = sp 1 }, L u (s ′ 2) = {cl pos = sp 2 }, L u (s ′ 3) = {cl pos = sp i } • the set of the final states: F u = {s ′ o }.

Verification of the relation of simulation: We define a relation of simulation between two transition systems as an adaptation of the definition of the simulation

In our case, we need to take into account the transition labels in order to verify components compatibility. In Milner's definition the transition are not labelled. • Compatibility at signature and semantics levels: the operations described in OI and U I are expressed in T S o and T S u by transitions. Source and target states of these transitions are decorated with a set of atomic propositions which expresses respectively pre and postconditions of the operations. Furthermore transitions are labelled with operation names. According to Definition 1 and Definition 2, the verification of the simulation relation implies the verification of the matching of transitions between T S o and T S u at signature and semantics (operation names, pre and postconditions) levels. This involves the verification of the compatibility at signature and semantics levels. ✷

Definition 1 Let T S o = S 0o , S o , → o , L o , F o and T S u = S 0u , S u , → u , L u , F u be two transition systems. Let R be a relation between S u S o , R ⊆ S o × S u . R is a relation of simulation iff for each couple of states (s i , s ′ i) ∈ S o × S u we have: • if (s i , s ′ i) ∈ R, then L u (s i) ⊆ L o (s ′ i) • if (s i , s ′ i) ∈ R and s ′ i a → s ′ i+1 ∈→ u ,
Case study: In order to verify that the interface OIManual is compatible with the interface UIManual, we must verify that the relation of simulation R holds between the two transition systems T S o and T S u . The verification requires the parallel exploration of the transition systems T S o and T S u by beginning from their initial states. Therefore, the proof that T S o simulates T S u is the proof that the initial states (s 0 , s ′ 0) ∈ R such that s 0 is the initial state of T S o and s ′ 0 is the initial state of T S u .

We illustrate the verification algorithm of the simulation relation by verifying whether T S o simulates T S u as follows:

• verify the first condition of the relation on the couple (s 0 , s ′ 0): the condition is verified because

L o (s 0) = L u (s ′ 0), • verify the second condition on (s 0 , s ′ 0): there is a transition s ′ 0 Cl Speedi → s ′ 3 ∈→ u in T S u , but there is not a transition s 0 Cl Speedi → s 3 ∈→ u such that (s 3 , s ′ 3) ∈ R. Therefore (s 0 , s ′ 0) ∈ R.
The verification of the simulation relation between the transition systems T S o and T S u shows that T S o does not simulate T S u . That means that the interfaces OIManual and UIManual are not compatible. Therefore, the behavior required by the component WWiper is not offered by the component CLever. The verification fails because the component WWiper requires the operation Cl Speedi that is not offered by the component CLever (see the dashed transition in the transition system T S u in figure 6).

Verification of component substitutability

To determine whether a defective component can be substituted by another component, we propose an approach based on the verification of the relation of equivalence between component specifications. This approach allows to determine whether the behavior of the defective component is equivalent to the behavior of the substitute component.

In order to illustrate this approach, we present in the figure 7 two components control lever CLever and CLever'. Suppose that we need to replace the component CLever by the component CLever'. To reach this goal, the component CLever' must satisfy the following constraints: To check this constraint it is necessary to verify the equivalence between component behaviors described in the used interfaces of CLever and CLever'. In our example (see figure 7), we verify that the behavior described in the interface UClever is equivalent to the one described in the interface UClever'.

• The set of the services offered by the component CLever' must be the same as the set of the services offered by the component CLever. To check this constraint it is necessary to verify the equivalence between component behaviors described in the offered interfaces. In our example, we verify that the behavior described in the interface OIManual is equivalent to the one described in the interface OIManual', and we also verify that the behavior described in the interface OIAutoCL is equivalent to the one described in the interface OIAutoCL' .

To verify the equivalence between the component behaviors, we propose an approach based on the B method and on a relation between transition systems. This approach is divided into two steps:

• Equivalence between invariants: we verify the equivalence between the invariants defined in the offered interfaces and between the invariants defined in the used interfaces. In our example, we verify that the invariant defined in the offered interface OIManual is equivalent to the invariant defined in the interface OIManual'. We use the B theorem prover and the B specification of the interfaces to perform this verification.

• Equivalence between component interfaces: in this step, we verify the equivalence between component behaviors described in the offered interfaces and the equivalence between component behaviors described in the used interfaces.

In the example in figure 7, we verify equivalence between component behaviors described in OIManual and OIManual', and between OIAutoCL and OIAutoCL'.

We also verify equivalence between component behaviors described in UClever and UClever'. To perform this verification we define and we check the relation of bisimulation (this relation is defined in the next paragraph) between the transition systems that model the component interfaces (relation of bisimulation between offered interfaces and between used interfaces). So, we verify that the relation of bisimulation holds between the following transition systems • the transition systems describing the offered interfaces OIManual and OIMan-ual', • the transition systems describing the offered interfaces OIAutoCL and OIAu-toCL', • the transition systems describing the used interfaces UClever and UClever'.

In the following, we define the relation of bisimulation between transition systems. This relation is based on the relation of simulation defined in the last section.

A transition system T S ′ bisimulates a transition system T S if and only if the system behavior described by T S ′ is the same as (we say also that is equivalent) to the system behavior described by T S.

Definition 3 Let T S = S 0 , S, →, L, F and T S ′ = S 0 ′ , S ′ , → ′ , L ′ , F ′ be two transition systems. Let R be a relation of simulation between S and S ′ . Let α be another relation between S and S ′ , α ⊆ S × S ′ . α is a relation of bisimulation iff for each couple of states (s i , s

′ i) ∈ S × S ′ we have: if (s i , s ′ i) ∈ α, then (s i , s ′ i) ∈ R and (s ′ i , s i) ∈ R
′ , α ⊆ S × S ′ . T S ′ bisimulates T S iff ∀s 0 .(s 0 ∈ S 0 ⇒ ∃s ′ 0 .(s ′ 0 ∈ S ′ 0 ∧ (s 0 , s ′ 0) ∈ α))
According to Definition 4, the transition T S ′ bisimulates the transition system T S if and only if the bisimulation relation holds between their initial states.

Related Work

Several works have been proposed in the context of specifying component interfaces and verifying their compatibility.

Cheesman and Daniels [START_REF] Cheesman | UML Components -A Simple Process for Specifying Component-Based Software[END_REF] propose to specify component interfaces using UML [START_REF] Rumbaugh | Unified Modeling Language Reference Manual[END_REF] and OCL [START_REF] Warmer | The Object Constraint Language: Precise Modeling with UML[END_REF] notations. The interface specification includes: an information model that provides the type of the information expressed in the interfaces (it is specified using UML class diagram), invariants on the information model, and operation specifications that express operation signatures and pre-and postconditions. However this work does not propose any verification approach of interface compatibility.

Yellin and Storm [START_REF] Yellin | Protocol specifications and component adaptors[END_REF] propose a state machine based approach to specify protocols. Protocols are expressed in terms of abstract states and transitions. We are inspired by this work in order to model protocols. In contrast with our proposition, the approach of Yellin and Storm does not cope with the component interoperability at the semantics level but only at the protocol level.

Canal and al [START_REF] Canal | Extending CORBA interfaces with protocols[END_REF] use a subset of the polyadic pi-calculus to deal with component interoperability only at the protocol level. The pi-calculus is very well suited for describing component interactions. The limitation of this approach is the low-level description of the used language and its minimalistic semantics which does not provide rich feedback to system designers when errors are detected during protocol checks.

In [START_REF] Bastide | Formal specification and prototyping of CORBA systems[END_REF], Bastide et al use Petri nets to specify the behavior of CORBA objects, including operation semantics and protocols. This work correlates with our approach because we use transition systems that can be expressed as Petri nets, to express component behaviors. The difference to our approach is that we take into account the invariant in the interface specifications and we use the B approach to verify interface compatibility.

In [START_REF] Han | Temporal logic based specification of component interaction protocols[END_REF], J. Han specifies protocols with a temporal logic based approach. This approach leads to a rich specification for component interfaces.

Alfaro and Henzinger [START_REF] Alfaro | Interface automata[END_REF] propose an interesting approach which allows the verification of the interfaces compatibility based on the automata and game theories. This approach is well suited for checking the interface compatibility at the protocol level.

In [START_REF] Zaremski | Specification matching of software components[END_REF], Zaremski and Wing propose an interesting approach to compare two software components. It determines whether one component can be substituted for another. They use formal specifications to model the behavior of components and exploit the Larch prover to verify the specification matching of components.

The approaches described above treat the component interoperability at the semantics and the signature levels, or at the protocol level, not both. However, in this paper we propose an approach which handles the component interoperability and component substitutability at the both levels.

An interesting approach proposed in [START_REF] Smith | Specification, refinement and verification of concurrent systems -an integration of Object-Z and CSP[END_REF], allows to formally specify, refine and verify component based systems. It is based on Object-Z language and the process algebra CSP. The main difference with our approach is the specification language. In our case, we have chosen the B method to specify component interfaces in order to exploit the B theorem prover.

Conclusion

This paper presents an approach to verify component interoperability. We have considered two cases in the interoperability: component compatibility and component substitutability. This approach is based on the use of the B method for specifying component interfaces. An interface specification provides the following information:

• an initialization predicate which provides initial states of a component

• a list of operations, specified by means of their preconditions and generalized substitutions

• an invariant property that must be respected by the initialization predicate and the operations.

Specification of interfaces is enhanced by the specification of protocols with finite transition systems.

The approach to verify the component compatibility is composed of two steps. First, we verify with the B theorem prover that the invariant specified in a used interface is satisfied by the specification of the appropriate offered interface. Sec-ond, we use protocol specifications and B specification of interfaces to complete the verification of interface compatibility at the signature, semantics, and protocol levels by verifying the simulation relation between the transition systems that model component behaviors.

The approach to verify the component substitutability is based on the B method and the verification of the relation of bisimulation between transition systems that models offered interfaces and between transition systems that models used interfaces (interfaces of the defective component and the substitute component).

 Fig. 1. B machine corresponding to the interface OIManual of the component CLever

Fig. 2 .

 2 Fig. 2. B machine corresponding to the interface UIManual of the component WWiper

Fig. 3 .

 3 Fig. 3. Component architecture of the wiping system

Fig. 4 .

 4 Fig. 4. The new B specification obtained from OIManual and the invariant of UIManual

•

 ((Cl Speedi.Cl Stop) * . (Cl Speed1.(Cl Speed2.Cl Speed1) * .Cl Stop) * . (Cl Speedi.Cl Stop) *).

Fig. 5 .

 5 Fig. 5. The transition system T So corresponding to the interface OIManual

Fig. 6 .

 6 Fig. 6. The transition system T Su corresponding to the interface UIManual

Definition 2

 2 then there exists s i+1 ∈ S o such that s 1 a → s i+1 ∈→ o and (s i+1 , s ′ i+1) ∈ R. After defining the relation of simulation between the states of transition systems, we define what it means that a transition system simulates another transition system. Let T S o = S 0o , S o , → o , L o , F o and T S u = S 0u , S u , → u , L u , F u be two transition systems. Let R be a relation of simulation between S u and S o , R ⊆ S o × S u . T S o simulates T S u iff ∀s ′ 0 .(s ′ 0 ∈ S 0u ⇒ ∃s 0 .(s 0 ∈ S 0o ∧ (s 0 , s ′ 0) ∈ R)) According to Definition 2, the transition T S o simulates the transition system T S u if and only if the simulation relation holds between their initial states. Theorem 4.1 Let T S o and T S u be two transition systems that model respectively an offered interface OI and a used interface U I. When the relation of simulation R holds between the states of T S o and T S u , then the interfaces OI and U I are compatible at signature, semantics and protocol levels. Proof. Suppose that T S o simulates T S u . • Compatibility at protocol level: T S o and T S u model respectively the interfaces OI and U I. The specification of these interfaces includes the B specification and the protocol specification. According to Definition 1 and Definition 2, the verification of the simulation relation is based on the parallel exploration of the transition systems T S o and T S u . Thus we verify that the traces of the paths explored in T S u are contained in the traces of the paths explored in T S o . Consequently, verifying the relation of simulation implies verifying whether the set of the operation calls described in U I are included in the set of the operation calls described in OI.

Fig. 7 .

 7 Fig. 7. component substitutability

Definition 4

 4 After defining the relation of bisimulation between the states of transition systems, we define what means that a transition system bisimulates another transition system. Let T S = S 0 , S, →, L, F and T S ′ = S 0 ′ , S ′ , → ′ , L ′ , F ′ be two transition systems. Let α be a relation of bisimulation between S and S

Chouali

• From the clause Initialization of the B specification of an interface, we decorate the initial states of the transition system that model the protocol by a set of atomic

• The set of services required by the component CLever' must be the same as the