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Q-convex Sets For Source Points⋆

Fatma Abdmouleh, Alain Daurat, and Mohamed Tajine

LSIIT CNRS UMR 7005, Strasbourg University
Pole API Boulevard Sebastien Brant 67412 Illkirch-Graffenstaden, France

Abstract. In this paper, we introduce both discrete and continuous Q-
convex sets for ponctual X-ray sources. We study differences between
these sets and the Q-convexes for parallel X-rays where sources are sup-
posed infinitely far from the considered set. We also introduce a novel
operator that allows computing the Q-convex hull of any set. Moreover,
we provide an algorithm that generates random discrete Q-convex sets
under some conditions for a given couple of ray source points.

Keywords: convexity, point X-rays, discrete sets, filling operations, Q-
convex sets, random generator of sets.

1 Introduction

Tomography deals with the inverse problem of reconstructing an object from
its projections (X-rays). When a few projections are available, we need more
information about the set to be reconstructed. For this, we need to impose some
properties on it. Many researchs were realized on reconstructing convex sets.
For example, R. Gardner and P. Gritzmann showed in [2] that any set of seven
mutually non parallel lattice directions determine convex subsets of Z2. In [3],
the authors show that it is possible to find four projections that will uniquely
determine all planar convex bodies. Furthermore, in paper [4] a polynomial-time
algorithm for reconstructing a discrete set with special connectivity and convex-
ity properties in directions (1, 0), (0, 1), and (1, 1) is provided. A similar idea is
imployed by A. Daurat in his Ph.D thesis [7] where he defines a new class of
subsets of Z2 called ‘Q-convex’ and studies the reconstruction problemfor these
subsets. Several works study this class of subsets [10–14]. S. Brunetti and A.
Daurat present in [11] and [12] a study of the ‘Q-convex’ sets. They also provide
two random generator for these subsets in [13]. In [5], they provide a-polynomial
algorithm that enables the reconstruction of this kind of sets for two directions
and that can be used for reconstructing any convex subsets of Z2 for some suit-
able four directions or for any seven mututally nonparallel directions.
However, all these results have the same context: X-rays are the number of points
along parallel straight lines in a given set of directions. A more realistic context
would be when these lines are no more parallel but starting from a source point.

⋆ This work was supported by the Agence Nationale de la Recherche through contract
ANR-2010-BLAN-0205-01.



This context can be though of as the generalization of the first one. Indeed, par-
allel X-rays are an approximation of point X-rays where the light source point
is placed at an infinite distance from the object.
In this paper, we study Q-convex sets for point sources. In section 2, we in-
troduce both continuous and discrete Q-convex sets for point sources. We also
study relationships between Q-convextity and convexity and differences between
Q-convex sets for point and parallel X-rays. This leads us, in Definition 9, to
introduce a new operator for computing the Q-convex hull of any set. In Section
3, we present an algorithm for generating random Q-convex sets for a couple of
point sources. This algorithm works under conditions that are established in the
previous section.

2 Definition and notations

2.1 Classical definitions and notations

Definition 1. A set E ⊂ R2 is convex (or R-convex) if for every A, B ∈ E we
have [A,B] ⊆ E where [A,B] = {λA + (1 − λ)B | 0 ≤ λ ≤ 1} is called the line
segment between A and B.

In all the following, S denotes R or Z.
Let E be a subset of R2 and A and B two distinct points of R2. In all this paper,
we use the following notations:

– C(R2) is the set of all convex subsets of R2.
– CE(R

2, E) =
{

E′ ∈ C(R2) | E ⊆ E′
}

is the set of all convex subsets of R2

containing the set E.
– CH(E) =

⋂

E′∈CE(R2,E)

E′ is the convex hull of E.

– (AB) is the straight line joining A and B.
– A ray or a half-line RS,θ from a point S = (x0, y0) in the direction uθ =

(u1, u2) where
√

u2
1 + u2

2 = 1, and cos θ = u1 and sin θ = u2 can be defined
in different ways:

RS,θ =
{

(x, y) ∈ R
2 | u2(x− x0)− u1(y − y0) = 0 and x ≥ x0

}

;

= {(x0, y0) + λuθ | λ ≥ 0} ;

=
{

M ∈ R
2 | P̂SM = θ

}

;

where P̂SM denotes the angle between (SP ) and (SM) with P = S + (1, 0) (see

Fig.1.). In all the following, the angle P̂SM is denoted θSM .
We also introduce:

– For a point S ∈ R
2, we define the set of all the angles of all the rays issuing from

S and passing through all the points of S2 relatively to the horizontal line passing
through P = S + (1, 0):

A(S, S2) =
{

θSM | M ∈ S
2} .



– If E is a finite subset, then |E| is the cardinality of E indicating the number of
elements of E.

– Let A be a set. We denote by P(A) the powerset of A (P(A) = {B|B ⊆ A}).

Remark 1. Let S ∈ R2:

– A(S,R2) = [0, 2π[.
– A(S,Z2) is an infinite countable set.
– A(S,Z2) = [0, 2π]; where F is the closure of the set F in R relatively to

usual topology.

Fig. 1. The ray R is defined by the initial point S and the angle θSM .

For the discrete sets, convexity can be defined as follows :

Definition 2. Let D ⊂ Z2. D is Z-convex if D = CH(D) ∩ Z2.

Definition 3. Let k ∈ N and k ≥ 2. A set E ⊂ S2 is said to be k-S-convex if
for any subset E′ ⊆ E such that |E′| ≤ k, we have CH(E′) ∩ S2 ⊆ E.

Remark 2. By Definition 1, a set E is R-convex if and only if E is 2-R-convex.

Fig. 2. The set D of points • is 2-Z-convex but not Z-convex because the point ◦ is
not a point of D.

The following proposition is proven in [9].

Proposition 1. A finite set of Z2 is Z-convex if and only if it is 3-convex.

Remark 3. Let E ⊆ S2. Then,



– If E is k-R-convex with k ≥ 2, then E is necessarily (k + 1)-R-convex.
– If E is k-Z-convex with k ≥ 3, then E is (k + 1)-Z-convex.
– Unlike convexity in R2, a 2-Z-convex set is not nessecarily Z-convex (see the

example in Fig.2).

Let E ⊆ R2 and a point S in R2. We define the projection of E from the
source point S denoted XS(E, .): R 7→ R by:

XS(E, θ) =

∫ +∞

0

χE∩RS,θ
(S + tuθSM

)dt.

Where uθSM
= (cos θ, sin θ) and

χE(x) =











1 if x ∈ E

0 otherwise.

Then, XS(E, θ) = µ(E ∩RS,θ) where µ is the usual measure on R.

Fig. 3. Continuous (letf) and discrete(right) point X-rays.

Now, let us consider a source point S and a finite subset D ⊂ Z
2. We have a finite

number of rays issuing from S and passing through all points of D and each of these
rays passes through a finite number of points of D. The projection of D from the source
point S is the function XS(D, .): R 7→ N such that:

XS(D, θ) = |RS,θ ∩D| .

Definition 4. Let E ⊂ S
2. The support of E for the source point S is the set:

SuppS(E,S) =
{

θ ∈ A(S, S2) | XS(E, θ) 6= 0
}

.

Remark 4. For the reconstructing problem in both continuous and discrete case, we
aim to reconstruct the subset E of R2 or the finite subset D of Z2 having the position
of the source point and a set of angles and their projections (which is infinite for
the continuous case and finite for the discrete one). Only the rays RS,θ such that
θ ∈ SuppS(E,S) are considered.



2.2 Q-convexity

In this section, we introduce both continuous and discrete Q-convex sets for two source
points. This notion was first introduced by A. Daurat [7] for the discrete parallel rays.

Considering a ray RS,θ from a point S, we define:

– L(RS,θ) =
{

M ∈ S
2 | 0 ≤ θSM − θ ≤ π

}

the set of points that are on the left of
the straight line containing RS,θ;

– R(RS,θ) =
{

M ∈ S
2 | − 2π ≤ θSM − θ ≤ π

}

the set of points that are on the right
of the straight line containing RS,θ.

Fig. 4. Linear separation of the plane by the straight line containing the ray RS,θ.

We consider two distinct source points S and S′ ∈ R
2, a set E ⊂ S

2, two rays
RS,θSM

and RS′,θ′
S′M

such that RS,θSM
∩ RS′,θ′

S′M
= {M}. This intersection defines

the following four zones (called quadrants):

Z0
{S,S′}(M) = R(RS,θSM

) ∩ L(RS′,θ′
S′M

),

Z1
{S,S′}(M) = R(RS,θSM

) ∩R(RS′,θ′
S′M

),

Z2
{S,S′}(M) = L(RS,θSM

) ∩R(RS′,θ′
S′M

),

Z3
{S,S′}(M) = L(RS,θSM

) ∩ L(RS′,θ′
S′M

).

Definition 5. A set E ⊂ S
2 is S-Q-convex (quadrant-convex) for two source points S

and S′ if for all M ∈ S
2 we have :

∀t ∈ {0, 1, 2, 3} , Zt
{S,S′}(M) ∩ E 6= ∅ =⇒ M ∈ E

Definition 6. Let P be a set of at least two source points. We say that a set E ⊂ S
2

is S-Q-convex for P if it is S-Q-convex for any two points of P.

We denote the class of sets which are S-Q-convex for a set of source points P byQCS(P).

Lemma 1. Let E ⊂ S
2. E ∈ C(S2) ⇒ QCS(R

2).



Fig. 5. Four zones resulting of the intersection between two rays in a point M

Proof. Let E be a convex set of S2 and two rays intersecting in a point M ∈ S
2 such

that Zt
{S,S′}(M) ∩ E 6= ∅ for all t ∈ {0, 1, 2, 3}. So, for all t, let At ∈ Zt

{S,S′}(M) ∩ E.
As E is convex and thus 4-convex, we have M ∈ CH({A1, A2, A3, A4}) ⊆ CH(E) and
thus M ∈ E.

Proposition 2. Let E be a set of S2. The following properties are equivalent:

– E is S-convex
– E is S-Q-convex for R

2.

Proof. By Lemma 1 we have that if E is a S-convex set then it is necessarily S-Q-convex
for any set of two points. So, E is S-Q-convex for R2.
Let E be a subset of S2 that is S-Q-convex for any two points. According to Proposition
1, it is sufficient to prove that E is a 3-Z-convex. Let us consider three distinct points
A,B,C ∈ E and a point M inside of the triangle ABC. We can separate two cases. If
M is on one of the sides of the triangle, since E is Q-convex for any two points, then
M ∈ E. Else, if M is not on any side of ABC, let S be a point such that S,A and M
are collinear and S′ be a point such that S′, B and M are collinear. We know that E
is Q-S-convex for {S, S′} and we have Zt

{S,S′}(M)∩E 6= ∅ for all t ∈ {0, 1, 2, 3}, hence
M ∈ E.

Proposition 3. Let D be a finite subset of Z2. The following properties are equivalent:

– D is Z-Q-convex for R
2.

– D is Z-Q-convex for Z
2.

Proof. Since Z
2 ⊂ R

2, any Z-Q-convex set for R
2 is Z-Q-convex for Z

2. The second
inclusion can be proved in a similar way than for Proposition 2. Actually, to prove
that a set D ⊂ Z

2 is Z-Q-convex for Z
2 it is sufficient to prove that D is convex. Let

us consider the triangle ABC where A,B,C ∈ D, and a point M inside the triangle.
Similarly than the proof of Proposition 2, we separate two cases. If the point M is
on one of the triangle’s sides we know that M ∈ D. Else, we consider the line passing
through A andM and the line passing throughM and B. Since each line passes through
two points of Z2 the there exists a point G ∈ Z

2 such that M , A and G are collinear
and a point H ∈ Z

2 such that M , B and H are collinear and G, H /∈ D. knowing
that D is Z-Q-convex for G and H with Zt

{S,S′}(M) ∩D 6= ∅ for all t ∈ {0, 1, 2, 3} we
conclude that M ∈ D hence D is convex. Referring to Proposition 2, we have D is
Z-Q-convex for R2.



Remark 5. – Let E ⊆ S
2. From Proposition 3 and Proposition 2 we have:

E is S-convex ⇔ E is S-Q-convex for S2.

So,

C(S2) = QCS(S
2).

– QCS(P) =
⋂

{S1,S2}∈P

QCS({S1, S2}) is the set of all S-Q-convex sets for a set P ⊆ R
2.

Definition 7. Let E ⊆ S
2. QCS(P, E) = {E′ ∈ QCS(P) | E ⊆ E′} denotes the set of

all subsets of S2 containing E that are S-Q-convex for P.

Definition 8. Let E ⊂ S
2. QHS(P, E) =

⋂

E′∈QCS(P,E)

E′.

QHS(P, E) is called the S-Q-convex hull of E.

Proposition 4. Let E ⊆ Z
2. Then, QHS(P, E) ⊆ CH(E).

Proof. Let M ∈ QH(P, E). Then for all t we have Zt
{S,S′}(M)∩E 6= ∅. Let us consider

for each t a point At ∈ Zt
{S,S′}(M) ∩ E. CH(E) is convex then it is 4-convex. So,

M ∈ CH({A0, A1, A2, A3}) ⊆ CH(E). Then, M ∈ CH(E).

Definition 9. We consider the operator FP : P(S2) 7→ P(S2) such that for E ⊂ S
2 we

have FP(E) =
{

M ∈ S
2|∀ S, S′ ∈ P and S 6= S′, Zt

{S,S′}(M) ∩ E 6= ∅ for all t
}

.

Given E ⊆ S
2, we put E0 = E and Ei+1 = FP(Ei). So, Ei = F i

P(E) for i ≥ 0.
We denote FP(E) =

⋃

i≥0

F i
P(E).

Remark 6. Unlike parallel X-rays [7], for point X-rays we don’t always haveQHS(P, E) =
FP(E). Indeed, in Fig.6 we can see that N ∈ QHS(P, E) but N /∈ FP(E).

Fig. 6. QHS(P, E) 6= FP(E).

Remark 7. Let E ⊆ S
2 and P ⊆ R

2. We have E ⊆ FP(E) ⊆ FP(E).



The following proposition gives some properties of the completion operators FP

and FP .

Proposition 5. Let E ⊆ S
2 and P ⊆ R

2, we have:

1. FP is an increasing operator: If E′, E′′ ⊆ S
2, then,

E′ ⊆ E′′ =⇒ FP(E
′) ⊆ FP(E

′′).

2. E ∈ QCS(P) if and only if FP(E) = E if and only if FP(E) = E;
3. FP(FP(E)) = FP(E)
4. QHS(P, E) = FP(E)
5. If E is finite set and S = Z, then there exists k ∈ N such that FP(E) = Fk

P(E)

Proof. 1. Since FP is an increasing operator relatively to set inclusion, if E ⊆ E′,
then F i

P(E0) = Ei ⊆ F i
P(E

′
0) = E′

i.
Hence, FP(E) =

⋃

i≥0

Ei ⊆ FP(E
′) =

⋃

i≥0

E′
i.

2. – Suppose that E ∈ QCS(P) and letM ∈ FP(E). Then, we have for all t, Zt
{S,S′}(M)∩

E 6= ∅. We necessarily have M ∈ E because E ∈ QCS(P). Then FP(E) ⊆ E.
Also, by definition, we have E ⊆ FP(E). Hence, FP(E) = E.
Now suppose that FP(E) = E. Then for any point M such that for any
t, Zt

{S,S′}(M) ∩ E 6= ∅ we have M ∈ FP(E) which means that M ∈ E. Hence
E ∈ QCS(P).

– FP(E) = E ⇔ F i
P(E) = E for any i ⇔ FP(E) =

⋃

i≥0

F i
P(E) = E.

3. We consider a point M ∈ FP(FP(E)). Then, we have for all t, Zt
{S,S′}(M) ∩

FP(E) 6= ∅. Then there exists an i such that for all t, Zt
{S,S′}(M) ∩ F i

P(E) 6= ∅,

which means that M ∈ F i+1
P (E) and M ∈ FP(E). Also, we know that FP(E) ⊆

FP(FP(E)), then we have FP(FP(E)) = FP(E). So, item 2 implies that FP(FP(E)) =
FP(E).

4. Items 2 and 3 ⇒ FP(E) ∈ QCS(P, E). So, QHS(P, E) ⊆ FP(E).
Also, we have E ⊆ QHS(P, E). Then FP(E) ⊆ FP(QHS(P, E)) = QHS(P, E).
Hence, FP(E) ⊆ QHS(P, E).

5. Let n = |CH(E)∩Z
2|− |E|. We have QHS(P, E) ⊆ CH(E). Also, for all i we have

F i
P(E) ⊂ F i+1

P (E) or F i
P(E) = F i+1

P (E). When F i
P(E) = F i+1

P (E)for all i ≥ 0,
we have F i

P(E) = FP(E) = QHS(P, E).

Definition 10. Let E ⊆ S
2. HS(E) =

{

E′ ⊆ S
2 | QHS(P, E′) = QHS(P, E)

}

is the
set of all E′ ⊆ S

2 having the same S-Q-convex hull as E.

Proposition 6. Let E ⊆ S
2 and H ⊆ HS(E). Then,

⋃

E′∈H

E′ ∈ HS(E).

Proof. We know that for any E′ ∈ H we have E′ ⊆ FP(E). So,
⋃

E′∈H

E′ ⊆ FP(E).

Thus, FP(
⋃

E′∈H

E′) ⊆ FP(E). In the other hand, if E′′ ∈ H, then as E′′ ⊆
⋃

E′∈H

E′, we

have FP(E) = FP(E
′′) ⊆ FP(

⋃

E′∈H

E′). Thus, FP(
⋃

E′∈H

E′) = FP(E).



Fig. 7. F, F ′ ∈ HS(E);F ∩ F ′ /∈ HS(E)

Remark 8. We proved in Proposition 6 that the set HS(E) is closed under union. How-
ever, HS(E) is not generally closed under intersection. Indeed, Fig.7 shows two sets F
and F ′ such that FP(F ) = FP(F

′) and FP(F ∩ F ′) 6= FP(F ).

Since technical devices allow us to choose source positions, we consider, in all the
following, a set P of source points such that |P| = 2 and a class of sets E ⊂ S

2 such
that for any source point S ∈ P we have:

0 ≤ max(SuppZ(E, S))−min(SuppZ(E,S)) ≤ π. (⋆)

Condition (⋆) is a key condition for what follows. It can be verified for example
when all the points of E are in the same half plane delimited by the straight line (SS′).

Remark 9. Let E ⊆ S
2 be a set that verifies condition (⋆). Then,

– If E′ ⊆ E, then E′ verifies condition (⋆).
– CH(E) verifies condition (⋆).

Proposition 7. We consider two source points S and S′ ∈ R
2 and a set E ⊂ S

2 that
verifies condition (⋆).
Let M,M ′ ∈ S

2. We have for all t ∈ {0, 1, 2, 3}:

M ′ ∈ Zt
S,S′(M) =⇒ Zt

S,S′(M ′) ∩ E ⊆ Zt
S,S′(M) ∩ E.

Proof. We will prove the proposition for the case t = 3. The same arguments can be
used to prove the proposition for the cases t = 0, 1 and 2.
Let M ′ ∈ Z3

S,S′(M) and N ∈ Z3
S,S′(M ′) ∩ E such that N /∈ Z3

S,S′(M) ∩ E. So, N is

necessarily in the shaded area on Fig.8 and thus:

{

0 ≤ θSN − θSM′ ≤ π
θSN − θSM ≥ π

which is absurd since the set E verifies the condition (⋆).

Proposition 8. Let E ⊆ S
2 be a set that verifies condition (⋆). Then,

QHS(P, E) = FP(E).



Fig. 8. N ∈ L(RS,θSM′
) ∩R(RS,θSM

).

Proof. We know that QHS(P, E) = FP(E). So, we will prove that if E verifies the
condition (⋆), then FP(E) = FP(E).
Let M ∈ F2

P(E). We have, for any t, Zt
S,S′(M) ∩ FP(E) 6= ∅. Let N ∈ Zt

S,S′(M) ∩
FP(E). Hence, we have Zt

S,S′(N) ∩ E 6= ∅. But, according to Proposition 7, we have
Zt

S,S′(N) ∩ E ⊆ Zt
S,S′(M) ∩ E. So, Zt

S,S′(M) ∩ E 6= ∅ for any t and thus M ∈ FP(E).

Hence, F2
P(E) = FP(E). Then, FP(E) = FP(E).

In all the following, we suppose that E verifies the condition (⋆). So, we haveQHS(P, E) =
FP(E).

Definition 11. Let E ⊆ S
2. A point M ∈ E is said to be a salient point of E if

M /∈ QHS(P, E \ {M}). We denote by ξ(E) the set of salient points of E.

Lemma 2. A point M ∈ E is a salient point of E if and only if there is t such that
Zt

{S,S′}(M) ∩ E = {M}.

Proof. Let M ∈ E be a salient point of E and suppose that for all t, we have
(Zt

{S,S′}(M) ∩ E) ⊃ {M}. Hence, for all t we have Zt
{S,S′}(M) ∩ (E \ {M}) 6= ∅.

Thus M ∈ FP(E \ {M}) which is absurd.
For the opposite sens, we consider a point M ∈ E and t such that Zt

{S,S′}(M) ∩ E =

{M}. We have then Zt
{S,S′}(M) ∩ (E \ {M}) = {∅} hence M /∈ FP(E \ {M}).

Proposition 9. Let E ⊂ S
2. Then,

1. QH(P, E) = QH(P, ξ(E));
2. ξ(E) = ξ(QH(P, E)).

Proof. 1. – We know that ξ(E) ⊆ E, then FP(ξ(E)) ⊆ FP(E). Thus,QH(P, ξ(E)) ⊆
QH(P, E).

– Let M ∈ QH(P, E). So, Zt
{S,S′}(M) ∩ E 6= ∅ for all t. For t = 3 for example,

we consider a point N ∈ Z3
{S,S′}(M) ∩ E such that:

{

θSN = maxSuppZ(Z
3
{S,S′}(M) ∩ E,S)

θS′N = maxSuppZ(RS,θSN
∩ E, S′)



(see Fig.9). If {N} ⊂ Z3
{S,S′}(N) ∩ E then, as E verifies (⋆), there exists a

point N ′ ∈ Z3
{S,S′}(N) ∩ E such that θSN < θSN′ which is impossible as

θSN = maxSuppZ(Z
3
{S,S′}(M) ∩ E, S). Then Z3

{S,S′}(N) ∩ E = {N}. Then,
N ∈ ξ(E) and so N ∈ QH(P, ξ(E)). Similarly, we find for each t ∈ {0, 1, 2}
a point N ∈ Zt

{S,S′}(M) ∩ E such that Nt ∈ QH(P, ξ(E)). Thus, we have

for all t, Zt
{S,S′}(M) ∩ QH(P, ξ(E)) 6= ∅. QH(P, ξ(E)) is S-Q-convex, then

M ∈ QH(P, ξ(E)).

Fig. 9. N ∈ Z3
{S,S′}(M) ∩ E and θSN = maxSuppZ(Z

3
{S,S′}(M) ∩ E,S).

2. – Let M ∈ ξ(E) and a t such that Zt
{S,S′}(M) ∩E = {M}. Let us suppose that

{M} ⊂ Zt
{S,S′}(M) ∩ QH(P, E). As E verifies condition (⋆), CH(E) verifies

condition (⋆) as well. We have QH(P, E) ⊆ CH(E), then QH(P, E) verifies
condition (⋆) also. Let us consider a point N ∈ Zt

{S,S′}(M) ∩QH(P, E), sim-
ilarly than in the previous proof, such that N ∈ ξ(QH(P, E)). If N /∈ E, then
Zt

{S,S′}(N)∩E ⊆ Zt
{S,S′}(N)∩(QH(P, E)\{N}) = ∅ which is absurd because

N ∈ QH(P, E). So we necessarily have N ∈ E and so, Zt
{S,S′}(M)∩E ⊃ {M}

which is absurd because we have Zt
{S,S′}(M)∩E = {M}. Then, Zt

{S,S′}(M)∩
QH(P, E) = {M} and thus M ∈ ξ(QH(P, E)). S, ξ(E) ⊆ ξ(QH(P, E)).

– Let M ∈ ξ(QH(P, E)). So, there exists a t such that Zt
{S,S′}(M)∩QH(P, E) =

{M}. If M /∈ E, then Zt
{S,S′}(M)∩E ⊆ Zt

{S,S′}(M)∩ (QH(P, E) \ {M}) = ∅.

So, Zt
{S,S′}(M) ∩ E = ∅ which means that M /∈ FP(E) = QH(P, E) which is

absurd. Thus, M ∈ E and Zt
{S,S′}(M) ∩ E = {M}. Then, M ∈ ξ(E) and so

ξ(QH(P, E)) ⊆ ξ(E).

Proposition 9, leads to the following:

Corollary 1. Let E,E′ ⊂ S
2. Then,

ξ(E) = ξ(E′) ⇐⇒ QHZ(P, E) = QHZ(P, E′).



We recall that for a set E ⊆ S
2, HS(E) =

{

E′ ⊆ S
2 | QH(P, E′) = QH(P, E)

}

.
Corollay 1 shows that if E verifies condition (⋆) then we haveHS(E) =

{

E′ ⊆ S
2 | ξ(E′) = ξ(E)

}

.
We proved in Proposition 6 that if H ⊆ HS(E), then

⋃

E′∈H

E′ ∈ HS(E). So, HS(E) is

closed by union. In the following, we prove that, under condition (⋆), HS(E) is closed
by intersection.

Proposition 10. Le E ⊆ S
2 and H ⊆ HS(E). Then,

⋂

E′∈H

E′ ∈ HS(E).

Moreover, ξ(E) =
⋂

E′∈HS(E)

E′, and thus ξ(E) ∈ HS(E).

Proof. We know that for any E′ ∈ H, we have ξ(E′) = ξ(E) ⊆ E′ ⊆ FP(E
′).

Then, ξ(E) ⊆
⋂

E′∈H

E′ ⊆ FP(E
′). So, FP(ξ(E)) ⊆ FP(

⋂

E′∈H

E′) ⊆ FP(E). Thus,

FP(
⋂

E′∈H

E′) = FP(E).

Corollary 2. Let E ⊆ S
2 such that E verifies condition (⋆). Then:

HS(E) =
{

E′ ⊆ S
2 | ξ(E) ⊆ E′ ⊆ FP(E) = QH(P, E)

}

.

3 Random generation of Z-Q-convex for two source

points

In this section, we present a method of randomly generating a Z-Q-convex set for a
given set of source points P = {S, S′}.
The idea here is to generate uniformly a random set of points F in a rectangle
J−k1, k1K × J−k2, k2K with k1, k2 ∈ N (see Fig.10) and then complete F to obtain
the Q-convex set QHZ(P, F ). Actually, the generated Q-convex will be the Q-convex
hull of F . Corollary 1 says that a Z-Q-convex set D is generated by any set F ∈ HZ(D).
Hence, a Z-Q-convex set D has a probability to be produced that is proportional to
|HZ(D)|. When F verifies the condition (⋆), this probability is more exactly propor-
tional to 2|D|−|ξ(D)|.

Referring to the Proposition 2.2, we know that, for a set F , QH(P, F ) ⊆ CH(F )∩
Z
2. Hence after computing CH(F ), we calculate FP(F ) by verifying for each point

M ∈ CH(F )∩Z
2 if Zt

{S,S′}(M)∩D 6= ∅ for all t ∈ {0, 1, 2, 3} or not. If this condition is
verified, the point M is added to FP(F ). We do the same to the obtained set FP(F ).
We would repeat this operation until no points are added any more and we obtain
D = FP(F ).

Algorithm 1:

Uniformly generate a random set of points F ⊆ Z
2 contained into a rectangle J−k1, k1K×

J−k2, k2K such that no point of F is on the line (SS′)
F ′ = F
repeat

F = F ′



F ′ = FP(F )
until F = F ′

D = F

According to Proposition 5, since F is a finite set the halting condition F = F ′ of the
algorithm will be verified in a finite number k of steps (According to Proposition 9,
k ≤ |D| − |ξ(D)| ).
We recall that under condition (⋆), we have QH(P, F ) = FP(F ).

Fig. 10. Generated Z-Q-convex set will be included in a rectangle J−k1, k1K×J−k2, k2K.

In the following, we describe how to compute FP(F ).
After generating the random set of points F , as FP(F ) ⊆ CH(F ), we compute CH(F ).
The points of CH(F )∩Z2 will be the candidate points for D. We have: SuppZ(CH(F )∩
Z
2, S) = {θ1, ..., θn} where angles are sorted in an ascending order. We denote by j the

range of the ray RS,θj issued from S.
SuppZ(CH(F ) ∩ Z

2, S′) = {θ′1, ..., θ
′
m} where angles are sorted in a descending order.

We denote by i the range of the ray RS′,θ′
i
issued from S′.

We denote by I(i, j), the point such that I(i, j) = RS,θj ∩RS′,θi . We note that I(i, j)
is not always in Z

2. Hence, we obtain a deformed grill (see Fig.11). Since we have fixed
the two point sources S and S′, we will denote Zt

S,S′(M) simply by Zt(M). We have
then:

Z0(I(i, j)) =
{

I(i′, j′) ∈ Z
2 : i′ ≤ i and j′ ≤ j

}

,

Z1(I(i, j)) =
{

I(i′, j′) ∈ Z
2 : i′ ≥ i and j′ ≤ j

}

,

Z2(I(i, j)) =
{

I(i′, j′) ∈ Z
2 : i′ ≥ i and j′ ≥ j

}

,

Z3(I(i, j)) =
{

I(′i, j′) ∈ Z
2 : i′ ≤ i and j′ ≥ j

}

.

We define for each quadrant Zt(I(i, j)) of a pointM a boolean array (Vt(M))t∈{0,1,2,3})

such that Vt(M) = “True′′ if and only if Zt(M) ∩ F 6= ∅”.
This array of booleans is determined by induction based on the property of the in-
clusion between quadrants of neighbor points. Vt(I(i, j)) is set to “True” if and only



Fig. 11. (a) Grill obtained by parallel rays - (b) Deformed grill obtained by rays from
two point sources

if Zt(I(i, j)) ∩ F 6= ∅. So, under the condition (⋆), Vt(I(i, j)) is “True” if ans only if
V0(I(i− 1, j)) is “True” or V0(I(i, j − 1)) is “True” or I(i, j) ∈ D. And we have:

V0(I(i, j)) = V0(I(i− 1, j)) ∨ V0(I(i, j − 1)) ∨ I(i, j) ∈ F ;

V1(I(i, j)) = V1(I(i+ 1, j)) ∨ V1(I(i, j − 1)) ∨ I(i, j) ∈ F ;

V2(I(i, j)) = V2(I(i+ 1, j)) ∨ V2(I(i, j + 1)) ∨ I(i, j) ∈ F ;

V3(I(i, j)) = V3(I(i− 1, j)) ∨ V3(I(i, j + 1)) ∨ I(i, j) ∈ F.

Finally, FP(F ) =
{

I(i, j) ∈ CH(F ) ∩ Z
2 | V0(I(i, j)) ∧ V1(I(i, j)) ∧ V2(I(i, j)) ∧ V3(I(i, j))

}

.

After generating the Z-Q-convex set D, we compute its projections XS(D, .) for
each ray passing through it. This will be the data we use for testing the reconstruction
algorithm.

4 Conclusion

We presented in this paper a study on Q-convex sets for point sources. This study shows
that, under some conditions, we can connect these sets to Q-convex sets for parallel
X-rays. The study also leads to a new operator that computes the Q-convex hull for
any set. One of our perspectives is to study the new horizons that this operator opens
and learn more about this new class of subsets. We also provided an algorithm for
generating random discrete Q-convex sets for point sources under specified conditions.
This algorithm allows us to have ground truth for testing the reconstruction algorithm.

Acknowledgements: Alain Daurat, co-author of this article, died on June

the 25th, 2010. This article is dedicated to his memory.
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