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In this paper, we consider joint distributions of order statistics generated by two simulation methods. By using these distributions, we study the nature of dependence and exceedence probabilities between them.

Introduction

Let U 1 , • • • , U n be iid uniform random variables, and let us denote the corresponding r-th order statistic by U r:n and its cumulative distribution function (cdf) by F r:n . Then, for simulating U r:n , we have two options. First is simply to order U 1 , • • • , U n and take the r-th smallest value. Second is to take the first uniform random variable U 1 and apply a quantile transformation to define U * r:n = F -1 r:n (U 1 ); see [START_REF] Nagaraja | Some relations between order statistics generated by different methods[END_REF] and [START_REF] Arnold | A First Course in Order Statistics, Classic Edition[END_REF]. Evidently, the random variables U r:n and U * r:n have the same distribution, but the generation process is clearly different. Moreover, they are dependent since both definitions involve a common random variable U 1 .

In this paper, we are interested in the nature of dependence between U r:n and U * r:n . In Section 2, we derive the joint distribution of U r:n and U * r:n , and show that they are positive quadrant dependent. In Section 3, we derive explicit expressions for exceedence probabilities of the form π * r:n = P (U * r:n ≤ U r:n ) and establish some associated properties. In Section 4, we present some asymptotic approximations to exceedence probabilities.

In the subsequent derivations, we make use of the following relations for cdf's of uniform order statistics, which can be found in [START_REF] David | Robustness of location estimators in the presence of an outlier[END_REF] (see also Arnold et al. 2008, p. 40) :

F r-1:n-1 (t) = F r:n-1 (t) + n -1 r -1 t r-1 (1 -t) n-r (1.1) = F r:n-1 (t) + 1 n f r:n (t), t ∈ [0, 1], F r:n (t) = F r:n-1 (t) + n -1 r -1 t r (1 -t) n-r (1.2) = F r:n-1 (t) + 1 n tf r:n (t), t ∈ [0, 1].
2 Joint distribution of U r:n and U * r:n

We shall denote the order statistics of the sample

U 2 , • • • , U n by V r:n-1 for 1 ≤ r ≤ n -1. Note that the order statistics V 1:n-1 , • • • , V n-1:n-1 are independent of U 1 .
For convenience, let us also define

F n:n-1 (x) = 0 ∀ x ∈ [0, 1].
Theorem 2.1 The joint cdf of U * r:n and U r:n is given by

F * r:n (s, t) = P (U * r:n ≤ s, U r:n ≤ t) = F r-1:n-1 (t)F r:n (s), t ≥ F r:n (s) F r:n-1 (t)F r:n (s) + 1 n tf r:n (t), t < F r:n (s) , 0 ≤ s, t ≤ 1. (2.1)
Proof The r-th order statistic U r:n in the sample U 1 , • • • , U n is related to the order statistics in the subsample U 2 , • • • , U n in the following way:

U r:n =      V r-1:n-1 , U 1 < V r-1:n-1 , U 1 , V r-1:n-1 ≤ U 1 < V r:n-1 , V r:n-1 , V r:n-1 ≤ U 1 .
So, for 0 ≤ s, t ≤ 1, the joint cdf can be expressed as

P (U * r:n ≤ s, U r:n ≤ t) = P (U 1 ≤ F r:n (s), U r:n ≤ t) = P (U 1 ≤ F r:n (s), U r:n ≤ t, U 1 < V r-1:n-1 ) + P (U 1 ≤ F r:n (s), U r:n ≤ t, V r-1:n-1 ≤ U 1 < V r:n-1 ) + P (U 1 ≤ F r:n (s), U r:n ≤ t, V r:n-1 ≤ U 1 ) = P (U 1 ≤ F r:n (s), V r-1:n-1 ≤ t, U 1 < V r-1:n-1 ) + P (U 1 ≤ F r:n (s), U 1 ≤ t, V r-1:n-1 ≤ U 1 < V r:n-1 ) + P (U 1 ≤ F r:n (s), V r:n-1 ≤ t, V r:n-1 ≤ U 1 ) = I 1 + I 2 + I 3 , say .
Now, we obtain the following representations for I 1 , I 2 and I 3 : F r:n-1 (u)du + F r:n-1 (t) F r:n (s) -min{F r:n (s), t} .

I 1 = Fr:n(s) 0 P (V r-1:n-1 ≤ t, u < V r-1:n-1 )du = min{Fr:n(s),t} 0 F r-1:n-1 (t) -F r-1:n-1 (u) du = F r-1:n-1 (t) min{F r:n (s), t} - min{Fr:n(s),t} 0 F r-1:n-1 (u)du, I 2 = min{Fr:n(s),t} 0 P (V r-1:n-1 ≤ u < V r:n-1 )du = min{Fr:n(s),t} 0 n -1 r -1 u r-1 (1 -u) n-r du (1.1)
Summing I 2 and I 3 , we obtain

I 2 + I 3 = min{Fr:n(s),t} 0 F r-1:n-1 (u)du + F r:n-1 (t) F r:n (s) -min{F r:n (s), t}
so that we finally find

I 1 + I 2 + I 3 = F r-1:n-1 (t) min{F r:n (s), t} + F r:n-1 (t)[F r:n (s) -min{F r:n (s), t}].
Thence, we have

P (U * r:n ≤ s, U r:n ≤ t) = F r-1:n-1 (t)F r:n (s), t ≥ F r:n (s) F r-1:n-1 (t)t + F r:n-1 (t)[F r:n (s) -t], t < F r:n (s) = F r-1:n-1 (t)F r:n (s), t ≥ F r:n (s) F r:n-1 (t)F r:n (s) + t[F r-1:n-1 (t) -F r:n-1 (t)], t < F r:n (s) = F r-1:n-1 (t)F r:n (s), t ≥ F r:n (s) F r:n-1 (t)F r:n (s) + n-1 r-1 t r (1 -t) n-r , t < F r:n (s) = F r-1:n-1 (t)F r:n (s), t ≥ F r:n (s) F r:n-1 (t)F r:n (s) + 1 n tf r:n (t), t < F r:n (s)
.

Hence, the theorem.

Remark 2.2 Noting that U * n:n = U 1/n 1

, for r = n, (2.1) yields

P (U 1/n 1 ≤ s, U n:n ≤ t) = t n-1 s n , t ≥ s n t n , t < s n , 0 ≤ s, t ≤ 1,
which is an expression given earlier by [START_REF] Nagaraja | Some relations between order statistics generated by different methods[END_REF]; see also Arnold et al. (2008, p. 106).

In particular, we find from the above representation the copula of U * r:n and U r:n . Since both marginal cdf's are given by F r:n and so, with s = F -1 r:n (u) and t = F -1 r:n (v), we find

C(u, v) = P (U 1 ≤ u, U r:n ≤ F -1 r:n (v)) = F r-1:n-1 (F -1 r:n (v))u, v ≥ F r:n (u) F r:n-1 (F -1 r:n (v))u + 1 n F -1 r:n (v)f r:n (F -1 r:n (v)), v < F r:n (u)
to be the copula of U * r:n and U r:n . Theorem 2.3 U * r:n and U r:n are positive quadrant dependent, and so they are positively correlated, in particular.

Proof U * r:n and U r:n are positive quadrant dependent (PQD) if

P (U * r:n ≤ s, U r:n ≤ t) ≥ P (U * r:n ≤ s)P r(U r:n ≤ t) = F r:n (s)F r:n (t), 0 ≤ s, t ≤ 1.
By using the result (Shaked and Shanthikumar 2007, p. 277)

U i:n ≤ st U j:m ⇐⇒ i ≤ j and n -i ≥ m -j,
we find U r-1:n-1 ≤ st U r:n so that F r-1:n-1 ≥ F r:n . Therefore, we get from (2.1), for t ≥ F r:n (s),

F * r:n (s, t) = F r-1:n-1 (t)F r:n (s) ≥ F r:n (s)F r:n (t). Let t < F r:n (s); then F * r:n (s, t) = F r:n-1 (t)F r:n (s) + 1 n tf r:n (t) ≥ F r:n (s)F r:n (t) iff F r:n (s) F r:n-1 (t) -F r:n (t) + 1 n tf r:n (t) ≥ 0. (2.2) Now, from (1.2), we have F r:n-1 (t)-F r:n (t) = -1 n tf r:n (t), and so (2.2) is equivalent to 1 n tf r:n (t)[1 -F r:n (s)] ≥ 0.
This obviously holds, which implies the positive quadrant dependence of U * r:n and U r:n . The positive correlation then readily follows. Using Hoeffding's expression for the covariance and

1 0 F r:n (s)ds = n-r+1 n+1 , we find 1 12 Cov(U * r:n , U r:n ) = 1 0 Fr:n(s) 0 F r:n-1 (t)F r:n (s) + 1 n tf r:n (t) dtds + 1 0 1 Fr:n(s) F r-1:n-1 (t)F r:n (s)dtds - 1 0 F r:n (s)ds 2 = 1 0 Fr:n(s) 0 {F r:n-1 (t) -F r-1:n-1 (t)} F r:n (s) + 1 n tf r:n (t) dtds + 1 0 1 0 F r-1:n-1 (t)F r:n (s)dtds - n -r + 1 n + 1 2 = 1 n 1 0 Fr:n(s) 0 f r:n (t) {t -F r:n (s)} dtds + (n -r + 1) 2 n(n + 1) - n -r + 1 n + 1 2 = 1 n 1 0 Fr:n(s) 0 f r:n (t) {t -F r:n (s)} dtds + (n -r + 1) 2 n(n + 1) 2 = - 1 n 1 0 Fr:n(s) 0 F r:n (t)dtds + (n -r + 1) 2 n(n + 1) 2 .
Since Cov(U * r:n , U r:n ) ≥ 0 by the PQD-property established in Theorem 2.3, we obtain the following bounds for the covariance:

0 ≤ Cov(U * r:n , U r:n ) ≤ 12 (n -r + 1) 2 n(n + 1) 2 ≤ 12 n ,
which readily reveals that the covariance tends to zero as n → ∞.

In this section, we obtain an expression for the exceedence probabilities π * r:n = P (U * r:n ≤ U r:n ) for r = 1, • • • , n. First, we get the following decomposition of π * r:n :

π * r:n = P (U * r:n ≤ U r:n ) = P (F -1 r:n (U 1 ) ≤ U r:n ) = P (F -1 r:n (U 1 ) ≤ V r-1:n-1 , U 1 < V r-1:n-1 ) + P (F -1 r:n (U 1 ) ≤ U 1 , V r-1:n-1 ≤ U 1 < V r:n-1 ) + P (F -1 r:n (U 1 ) ≤ V r:n-1 , V r:n-1 ≤ U 1 ) = J 1 + J 2 + J 3 , say . (3.1)
It turns out that the solution of the equation

t = F r:n (t), t ∈ (0, 1), (3.2)
is important in the calculation of the probabilities J 1 , J 2 and J 3 . F r:n is an S-shaped function which is unimodal, as seen in Figure 3.1. It is first convex and then concave with F r:n (0) = 0 and F r:n (1) = 1. For 1 < r < n, F r:n has exactly one fixpoint in the interval (0, 1), i.e., there exists exactly one solution y r:n of (3.2). Observe that (3.2) has no solution for r ∈ {1, n}. In these cases, let us define for convenience y 1:n = 0 and y n:n = 1. Geometrically, y r:n is the intersection point where the graph of F r:n intersects the line from (0, 0) to (1, 1). Moreover, (i) y r:n is strictly increasing in r;

(ii) y n-r+1:n = 1y r:n , r = 1, • • • , n;

(iii) For n odd and r = n+1 2 , we have y r:n = 1 2 ; (iv) For 1 ≤ r < n+1 2 , we have y r:n < 1 2 ; (v) For n+1 2 < r ≤ n, we have y r:n > 1 2 . Proof (i) Suppose that y r:n < y r-1:n . Then, we conclude from (3.3) that y r-1:n < F r:n (y r-1:n ). The cdf's F r:n are strictly ordered with respect to r, i.e., for fixed n, F r:n (t) < F r-1:n (t), t ∈ [0, 1] (see (1.1)). Therefore, F r:n (y r-1:n ) < F r-1:n (y r-1:n ) = y r-1:n which results in a contradiction. Thus, y r-1:n ≤ y r:n , 1 ≤ r ≤ n. Moreover, equality is not possible. For r = 1, we have y 1:n = 0 < y 2:n . Assuming that r ≥ 2, and that y r:n = y r-1:n , we deduce from (1.1) that

0 = F r:n (y r:n ) -F r-1:n (y r:n ) = - 1 n f r:n+1 (y r:n ) < 0.
Thus, we obtain a contradiction once again, and so y r:n is strictly increasing in r.

(ii) Using the fact that F r:

n (t) = 1 -F n-r+1:n (1 -t), t ∈ [0, 1], we have F r:n (t) = t ⇐⇒ 1 -t = F n-r+1:n (1 -t).
Therefore, α is a fixpoint of F r:n iff 1α is a fixpoint of F n-r+1:n . (iii) From (ii), we conclude for n odd and r = n+1 2 , that nr + 1 = r. Therefore, y r:n and 1-y r:n are fixpoints. Since we have exactly one fixpoint, we conclude that y r:n = 1 2 . (iv) Assertions (iv) and (v) follow immediately from (i) and (ii).

A C C E P T E D M

These properties of y r:n , 1 ≤ r ≤ n, are illustrated in Figure 3.1. Table 3.1 gives intersection points y r:n for n = 5, 10, 15, 20. The values are given only for r = 2, . . . , ⌊(n + 1)/2⌋ since y n-r+1:n = 1y r:n (see Part (ii) of Lemma 3.1). The computation of y r:n is difficult for large values of n, but we conjecture the following bounds. Notice that r-1 n-1 is the change point of F r:n . Conjecture 3.2 Let 2 ≤ r ≤ ⌊(n + 1)/2⌋ and w r:n be the smallest change point of f r:n given by

w r:n = r -1 n -1 - √ 2r 2 -r 2 n -rn -2r + rn 2 -n 2 + 2n (n -1)(n -2) .
Then,

w r:n ≤ y r:n ≤ r -1 n -1 .
Moreover, for (r n ) n with lim n→∞ rn n = α ∈ (0, 1), we have

lim n→∞ √ n r n n -y rn:n = α(1 -α).
Now, we are ready to establish the following theorem which gives a simple expression for the exceedence probability π * r:n = P (U * r:n ≤ U r:n ). Theorem 3.3 The exceedence probability π * r:

n = P (U * r:n ≤ U r:n ), 1 ≤ r ≤ n, is given by π * r:n = 1 2 + 1 2 n-1 r-1 2 2n-1 2r-1 - 2r-2 r-1 2n-2r n-r 2n-1 n-1 F 2r-1:2n-1 (y r:n ) (3.4) = 1 2 + 2r-2 r-1 2n-2r n-r 2n-1 n-1 2r -1 2n -F 2r-1:2n-1 (y r:n ) . (3.5)
Proof Suppose 1 < r < n. Then, we have from (3.1),

J 1 = 1 0 P (U 1 ≤ F r:n (u), U 1 ≤ u)f r-1:n-1 (u)du = 1 0 min{F r:n (u), u}f r-1:n-1 (u)du = yr:n 0 F r:n (u)f r-1:n-1 (u)du + 1 yr:n uf r-1:n-1 (u)du A C C E P T E D M A N U S C R I P T ACCEPTED MANUSCRIPT J 2 = 1 0 P (u ≤ F r:n (u), V r-1:n-1 ≤ u < V r:n-1 )du = 1 yr:n P (V r-1:n-1 ≤ u < V r:n-1 )du = 1 n 1 yr:n f r:n (u)du = 1 n {1 -F r:n (y r:n )} = 1 n (1 -y r:n ), J 3 = 1 0 P (U 1 ≤ F r:n (u), u ≤ U 1 )f r:n-1 (u)du = 1 yr:n P (u ≤ U 1 ≤ F r:n (u))f r:n-1 (u)du = 1 yr:n {F r:n (u) -u} f r:n-1 (u)du.
From (1.1), we have

f r-1:n-1 (t) = f r:n-1 (t) + 1 n f ′ r:n (t), t ∈ (0, 1). (3.6)
So, by partial integration, we obtain

1 yr:n uf r-1:n-1 (u)du - 1 yr:n uf r:n-1 (u)du = 1 n 1 yr:n uf ′ r:n (u)du = - 1 n y r:n f r:n (y r:n ) - 1 n (1 -y r:n ).
Moreover, by (3.6), we have

yr:n 0 F r:n (u)f r-1:n-1 (u)du - yr:n 0 F r:n (u)f r:n-1 (u)du = 1 n yr:n 0 F r:n (u)f ′ r:n (u)du = 1 n F r:n (u)f r:n (u) yr:n 0 - 1 n yr:n 0 f 2 r:n (u)du = 1 n y r:n f r:n (y r:n ) - 1 n yr:n 0 f 2 r:n (u)du.
Thus, summing up J 1 , J 2 and J 3 , we arrive at

P (U * r:n ≤ U r:n ) = 1 0 F r:n (u)f r:n-1 (u)du - 1 n yr:n 0 f 2 r:n (u)du = P (U r:n ≤ V r:n-1 ) - 1 n yr:n 0 f 2 r:n (u)du.
Since, 1

n yr:n 0 f 2 r:n (u)du = 2r-2 r-1 2n-2r n-r 2n-1 n-1 F 2r-1:2n-1 (y r:n ), we get P (U * r:n ≤ U r:n ) = P (U r:n ≤ V r:n-1 ) - 2r-2 r-1 2n-2r n-r 2n-1 n-1 F 2r-1:2n-1 (y r:n ).
(3.7) Proof As above, we can write

P (U * r:n = U r:n ) = P F -1 r:n (U 1 ) = V r-1:n-1 , U 1 < V r-1:n-1 + P F -1 r:n (U 1 ) = U 1 , V r-1:n-1 ≤ U 1 < V r:n-1 + P F -1 r:n (U 1 ) = V r:n-1 , V r:n-1 ≤ U 1 ≤ P F -1 r:n (U 1 ) = V r-1:n-1 + P F -1 r:n (U 1 ) = U 1 + P F -1 r:n (U 1 ) = V r:n-1 = 0.
The second result can be seen as follows:

P (U * r:n , U r:n ) ∈ G = P (F -1 r:n (U 1 ), U r:n ) ∈ G = P U 1 = U r:n = 1 n .
Finally, we find

P (U * r:n , U r:n ) ∈ G > = P U * r:n > F -1 r:n (U r:n ) = P U 1 > U r:n = P U 1 > V r:n-1 = 1 0 F r:n-1 (t)dt = n -r n = 1 - r n .
In an analogous manner, we find P (U * r:n , U r:n ) ∈ G > = r-1 n . By combining the above results, we obtain the following theorem.

Theorem 3.7 For any 1 ≤ r ≤ n, we have

π * r:n = P (U * r:n ≤ U r:n ) = 1 -P (U * n-r+1:n ≤ U n-r+1:n ) = 1 -π * n-r+1:n .
In particular, for n odd and r = n+1 2 , we have so that in the case of the median the probability equals 1 2 .

P (U * r:n ≤ U r:n ) = 1 2 , A C C E P T E D M A N U S C
Proof According to Lemma 3.6, P F -1 r:n (U 1 ) = U r:n = 0 so that we do not have to take care of equality. Then, due to the relations U r:n = 1 -(1 -U ) n-r+1:n and F n-r+1:n (t) = 1 -F r:n (1t) for t ∈ [0, 1], we find

P (U * r:n ≤ U r:n ) = P F -1 r:n (U 1 ) ≤ U r:n = P 1 -F -1 n-r+1:n (1 -U 1 ) ≤ 1 -(1 -U ) n-r+1:n = P (1 -U ) n-r+1:n ≤ F -1 n-r+1:n (1 -U 1 ) = P U n-r+1:n ≤ F -1 n-r+1:n (U 1 ) = 1 -P U * n-r+1:n ≤ U n-r+1:n .
Note that both 1 -U and U have the uniform distribution on [0, 1]. The second assertion follows since, in this case, nr + 1 = n+1 2 = r and so both events are the same. 

= P (U * r:n ≤ U r:n ) > 1 2 .
For r = 1, the result follows directly since y 1:n = 0. Let r ≥ 2. Then, from (3.5), it is sufficient to show that 2r

-1 2n ≥ F 2r-1:2n-1 (y r:n ), 2 ≤ r ≤ n + 1 2 .
The latter condition is equivalent to

E (U 2r-1:2n-1 ) ≥ F 2r-1:2n-1 (y r:n ) = P (U 2r-1:2n-1 ≤ y r:n ).
Finally, we conjecture that the sequence π * r:n is increasing-decreasing. Conjecture 3.9 π * r:n is increasing-decreasing in r f or 1 ≤ r ≤ n + 1 2 .

Lemma 4.1 Suppose y r:n is the unique solution of the equation F r:n (t) = t in the interval (0, 1). Moreover, let (r n ) n be a sequence such that lim n→∞ rn n = α ∈ (0, 1). Then, we have lim n→∞ y rn:n = α.

Proof Let t ∈ (0, 1). Suppose S n is a binomial random variable with parameters n and t. Then, with S * n = Sn-nt √ nt(1-t)

, we have

F rn:n (t) = P (S n ≥ r n ) = P S * n ≥ r n -nt nt(1 -t) = P 1 √ n S * n ≥ rn n -t t(1 -t) .
By central limit theorem, S * n is asymptotically standard normal so that Now, for any r and n, F r:n is a continuous function such that the equation F r:n (t) = t has exactly one solution y r:n in the interval (0, 1). Let δ > 0 and ε > 0. From (4.1), we find that there exists n 1 such that F rn:n (z) < δ for all n ≥ n 1 and z ∈ (0, αε).

Analogously, we find that there exists n 2 such that F rn:n (z) > 1δ for all n ≥ n 2 and z ∈ (α + ε, 1). Hence, the solution of F rn:n (t) = t must be contained in the interval (αε, α + ε) for all n ≥ max{n 1 , n 2 }. Since ε and δ are chosen arbitrarily, we find that lim n→∞ y rn:n = α. Since F 2rn-1:2n-1 (y rn:n ) ∈ [0, 1], we obtain the desired result.
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The expression in (3.7) can be evaluated by using (1.2). As

, the theorem follows.

Remark 3.4 For r = n, we deduce

which has been derived by [START_REF] Nagaraja | Some relations between order statistics generated by different methods[END_REF]. For r = 1, with V j = 1 -U j , 1 ≤ j ≤ n, we find