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On the functional limits for partial sums under stable law

Khurelbaatar Gonchigdanzana, Kamil M. Kosińskib,∗,1

aDepartment of Mathematical Sciences, University of Wisconsin, Stevens Point, Wisconsin 54481, USA
bKorteweg-de Vries Institute for Mathematics, Universiteit van Amsterdam, Plantage Muidergracht 24, 1018 TV Amsterdam, The Netherlands

Abstract

For the partial sums (S n) of independent random variables we define a stochastic process sn(t) := (1/dn)
∑

k≤[nt](S k/k−
µ) and prove that (1/log N)

∑
n≤N(1/n)I

{
sn(t) ≤ x

} → Gt(x) a.s. if and only if (1/log N)
∑

n≤N(1/n)P
(
sn(t) ≤ x

) →
Gt(x), for some sequence (dn) and distribution Gt. We also prove an almost sure functional limit theorem for the
product of partial sums of i.i.d. positive random variables attracted to an α-stable law with α ∈ (1, 2].

Key words: Almost sure limit theorem, logarithmic average, stable law, product of partial sums

1. Introduction and main result1

In the past two decades many interesting extensions of the classical central limit theorem (CLT) have been ob-2

tained. One of the extensions is known as almost sure central limit theorem (ASCLT) which is discovered by Brosam-3

ler (1988) and Schatte (1988) and has been extensively studied for independent random variables as well as dependent4

variables. Motivated by ASCLT, almost sure versions of many limit theorems in probability and statistics have been5

obtained in the past. It is known that for i.i.d. r.v.’s ASCLT holds under the same assumptions as CLT but in general,6

the existence of the weak limit does not always imply the almost sure limiting result. For more discussions about the7

early results on ASCLT we refer to Berkes (1998).8

In this note we consider the product of partial sums, denoted by S n, of a sequence of random variables attracted to9

a stable distribution and its limit distributions. Rempała and Wesołowski (2002) established the limit distribution of10

the product of partial sums of a sequence of i.i.d. positive r.v.’s with mean µ and variance σ2:11

(∏n
k=1 S k

n!µn

)µ/(σ√n)
d→ e

√
2N(0,1). (1)

Zhang and Huang (2007) proves a weak invariance principle of (1) for i.i.d. r.v.’s. Recently, Kosiński (2009)12

has shown that the weak invariance principle still holds when the partial sums are attracted to an α-stable law with13

α ∈ (1, 2] which also generalizes the earlier result by Qi (2003).14

Throughout this paper, log log x and log x stand for ln ln(max{x, ee}) and ln(max{x, e}) respectively. We also use15

the notations an � bn for an = O(bn) and I(A) for the indicator function on a set A.16

Our main result in this note is to establish an almost sure version of the result by Kosiński (2009) that can gener-17

alize the early results by Gonchigdanzan and Rempała (2006) and Gonchigdanzan (2008, 2009).18

Recall that a sequence of and i.i.d. r.v.’s {Xn : n ≥ 1} is said to be in the domain of attraction of a stable law L if19

there exist sequences (an) and (bn) such that20

S n − bn

an

d→ L,
where L is one of the stable distributions with index α ∈ (0, 2].21

The following theorem is well known (see e.g. Hall, 1981).22
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Theorem 1.1 (Stability Theorem). The general stable law is given, to within type, by a characteristic function of one23

of the following forms:24

1. φ(t) = exp(−t2/2) (normal case, α = 2);25

2. φ(t) = exp(−|t|α(1 − iβ sgn(t) tan( 1
2πα))) (0 < α < 1 or 1 < α < 2, −1 ≤ β ≤ 1);26

3. φ(t) = exp(−|t|(1 + iβ sgn(t)2/π log |t|) (α = 1, −1 ≤ β ≤ 1).27

It is worth mentioning that in Theorem 1.1, β is the skewness parameter. In our paper, β = 1 since X1 is a positive28

random variable.29

The first result of this note is the following almost sure functional limit theorem:30

Theorem 1.2. Let {Xn : n ≥ 1} be a sequence of i.i.d. positive random variables with EX1 = µ in the domain of31

attraction of an α-stable law Lα with α ∈ (1, 2] and characteristic function as in Theorem 1.1. Define a process32

{πn(t) : 0 ≤ t ≤ 1} by33

πn(t) :=


[nt]∏

k=1

S k

µk



µ/an

,

where (an) is a sequence of positive numbers that satisfies (S n − µn)/an
d→ Lα as n→ ∞. Then for any real x34

1
log N

N∑

n=1

1
n

I (πn(t) ≤ x)
a.s.→ Ft(x) as N → ∞

where Ft is the distribution function of the random variable exp
(∫ t

0
Lα(s)

s ds
)
.35

Remark 1.3. If X1 has finite variance equal to σ2 then α = 2, Lα d
= N(0, 1) and an ∼ σ

√
n, thus Theorem 1.2 implies36

the main result of Gonchigdanzan (2009) which in particular yields the result of Gonchigdanzan and Rempała (2006)37

Theorem 2 since it is easy to verify that38 ∫ 1

0

Lα(s)
s

ds d
=
√

2N(0, 1).

Moreover, Kosiński (2009) showed that for any α ∈ (1, 2]39

∫ 1

0

Lα(s)
s

ds d
= (Γ(α + 1))1/αLα,

hence Theorem 1.2 also yields the result of Gonchigdanzan (2008) Theorem 1.1.40

Our next result is the following Berkes-Dehling type of theorem (Theorem 2 Berkes and Dehling, 1993).41

Theorem 1.4. Let {Yn : n ≥ 1} be a sequence of independent random variables and S n = Y1 + · · · + Yn. Let (dn) be a42

sequence of positive numbers such that43

dl

dk
�

(
l
k

)γ
(l ≥ k ≥ n0) (2)

for some γ > 0 and n0 ≥ 1 and44

E
∣∣∣∣∣
S n − µn

dn

∣∣∣∣∣ � eγ
′(log n)1−ε

(3)

for some constant µ and γ′ ∈ (0, γ). Then for any distribution Gt,45

1
log N

N∑

n=1

1
n

I
( 1
dn

[nt]∑

k=1

(S k

k
− µ

)
≤ x

)
a.s.→ Gt(x) as N → ∞ (4)

if and only if46

1
log N

N∑

n=1

1
n

P
( 1
dn

[nt]∑

k=1

(S k

k
− µ

)
≤ x

)
→ Gt(x) as N → ∞. (5)

2
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2. Auxiliary results47

The following three lemmas are needed for the proof of our main result.48

Lemma 2.1 (Lemma 2.3, Gonchigdanzan (2008)). Under the assumption of Theorem 1.2 we have49

∣∣∣∣∣
µ

an

[nt]∑

k=1

log
(

S k

µk

)
− 1

an

[nt]∑

k=1

(S k

k
− µ

)∣∣∣∣∣
a.s.→ 0 as n→ ∞.

Lemma 2.2. Under the assumptions of Theorem 1.2 we have50

1
an

[nt]∑

k=1

(S k

k
− µ

)
d→

∫ t

0

Lα(s)
s

ds in D[0, 1].

Proof This is a particular case of Theorem 2 in Kosiński (2009) when f (x) = x. �51

Lemma 2.3. Under the assumptions of Theorem 1.4 we have52

E
( 1
dn

max
1≤k≤n

∣∣∣∣∣
k∑

j=1

log
(

n + 1
j

)
(Y j − µ)

∣∣∣∣∣
)
� log n E

( 1
dn

max
1≤k≤n

|S k − kµ|
)
� log n eγ

′(log n)1−ε
.

Proof The first part is Lemma 1 in Gonchigdanzan (2009) valid for any sequence of random variables. The second53

part is Lemma 1 in Berkes and Dehling (1993) combined with the assumption (3). �54

3. Proofs of the main results55

To prove Theorem 1.2 we need the result in Theorem 1.4. Let us prove Theorem 1.4 first, then Theorem 1.2 for56

convenience.57

Proof of Theorem 1.4 According to Berkes and Dehling (1993) (p.1647) it suffices to prove that for any bounded58

Lipschitz function g on D[0, 1] we have59

1
log n

n∑

k=1

1
k

(
g
(

sk

dk

)
− Eg

(
sk

dk

))
a.s.→ 0 as n→ ∞, (6)

where sn := sn(t) =
∑

k≤[nt] (S k/k − µ).60

It turns out that the following estimate is indeed sufficient for (6) (see p.1648 Berkes and Dehling, 1993, for the61

proof):62

E
( n∑

k=1

1
k
ξk

)2
� log2 n(log log n)−1−ε for some ε > 0, (7)

where ξk = g(sk/dk) − Eg(sk/dk).63

Observe that
∑n

k=1 (S k/k − µ) =
∑n

k=1 bk,n(Yk − µ) where bk,n =
∑n

j=k 1/ j. It can be easily seen that64

sl − sk = b[kt]+1,[lt](S [kt] − [kt]µ) +
(
b[kt]+1,[lt](Y[kt]+1 − µ) + · · · + b[lt],[lt](Y[lt] − µ)

)

for l ≥ k.65

Obviously sl − sk − b[kt]+1,[lt](S [kt] − µ[kt]) is independent of sk, so we get66

Cov
(
g
( sk

dk

)
, g

( sl − sk − b[kt]+1,[lt](S [kt] − µ[kt])
dl

))
= 0 for l ≥ k.

3
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Since g is a bounded Lipschitz it follows that

∣∣∣E(ξkξl)
∣∣∣ =

∣∣∣∣∣Cov
(
g
( sk

dk

)
, g

( sl

dl

)
− g

( sl − sk − b[kt]+1,[lt](S [kt] − µ[kt])
dl

)∣∣∣∣∣

� E
(
max
0≤t≤1

|sk + b[kt]+1,[lt](S [kt] − µ[kt])|
dl

)

≤ E
(
max
0≤t≤1

|sk |
dl

)
+ E

(
max
0≤t≤1

|b[kt]+1,[lt](S [kt] − µ[kt])|
dl

)

=
dk

dl

(
E

(
max
0≤t≤1

|sk |
dk

)
+ E

(
max
0≤t≤1

b[kt]+1,[lt]
|S [kt] − µ[kt]|

dk

))
.

Moreover, noticing max0≤t≤1 b[kt]+1,[lt] = log(l/k) and applying Lemma 2.3 we get

∣∣∣E(ξkξl)
∣∣∣ � dk

dl

E
(
max
0≤t≤1

1
dk

∣∣∣∣∣
[kt]∑

i=1

bi,k(Yi − µ)
∣∣∣∣∣
)

+ log(l/k)E
(
max
0≤t≤1

|S [kt] − µ[kt]|
dk

)

=
dk

dl

E
(
max
0≤ j≤k

1
dk

∣∣∣∣∣
j∑

i=1

bi,k(Yi − µ)
∣∣∣∣∣
)

+ log(l/k)E
(
max
0≤ j≤k

|S j − µ j|
dk

)

� log l
dk

dl
E

(
max
1≤ j≤k

|S j − µ j|
dk

)
� log l

(
k
l

)γ
log keγ

′(log k)1−ε
=: ck,l.

On the other hand we also have E(ξkξl) � 1 because ξk is bounded. Hence we estimate E(ξkξl) as follows:67

E(ξkξl) �
{

1, if l/k ≤ exp
(
(log n)1−ε)

ck,l, if l/k ≥ exp
(
(log n)1−ε)

where ε is any positive number.68

Thus we get69

∑

1≤k≤l≤n
l/k≤exp ((log n)1−ε)

E(ξkξl)
kl

≤
∑

1≤k≤n

1
k

∑

k≤l≤ke(log n)1−ε

1
l
�

n∑

k=1

1
k

log1−ε n � log2−ε n (8)

and

∑

1≤k≤l≤n
l/k≥exp ((log n)1−ε)

E(ξkξl)
kl

≤ log2 neγ
′(log n)1−ε ∑

1≤k≤l≤n
l/k≥exp ((log n)1−ε)

1
kl

(
k
l

)γ
≤ log2 ne(γ′−γ)(log n)1−ε ∑

1≤k≤l≤n

1
kl

� log4 ne(γ′−γ)(log n)1−ε � log2−ε n, (9)

where the last estimation follows because γ′ ∈ (0, γ).70

Since71

E
( n∑

k=1

1
k
ξk

)2
�

∑

1≤k≤l≤n

1
kl
|E(ξkξl)|

by (8) and (9) it follows (7). �72

Before proving Theorem 1.2, recall that it is well known that the sequence (an) in Theorem 1.2 can be written as73

an = n1/αL(n) where L is a slowly varying function.74

Proof of Theorem 1.2 We first show the equivalence of (4) and (5) under the conditions of Theorem 1.2 setting dn :=75

an. In fact (3) is a direct consequence of Theorem 6.2 in DeAcosta and Giné (1979). (2) can be easily verified using76

the facts that an = n1/αL(n) and L(k)/L(n) � (k/n)ε for any ε > 0 where L is a slowly varying function. Thus by77

4
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Theorem 1.4 (4) is equivalent to (5) with Yn
d
= Xn satisfying the conditions of Theorem 1.2. Now applying Lemma78

2.1 and Lemma 2.2 we get79

1
log N

N∑

n=1

1
n

I
(
µ

an

[nt]∑

k=1

log
(

S k

µk

)
≤ x

)
a.s.→ P

(∫ t

0

Lα(s)
s

ds ≤ x
)

as N → ∞.

�80
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