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For the partial sums (S n ) of independent random variables we define a stochastic process s n (t

, for some sequence (d n ) and distribution G t . We also prove an almost sure functional limit theorem for the product of partial sums of i.i.d. positive random variables attracted to an α-stable law with α ∈ (1, 2].

Introduction and main result

In the past two decades many interesting extensions of the classical central limit theorem (CLT) have been obtained. One of the extensions is known as almost sure central limit theorem (ASCLT) which is discovered by Brosamler (1988) and Schatte (1988) and has been extensively studied for independent random variables as well as dependent variables. Motivated by ASCLT, almost sure versions of many limit theorems in probability and statistics have been obtained in the past. It is known that for i.i.d. r.v.'s ASCLT holds under the same assumptions as CLT but in general, the existence of the weak limit does not always imply the almost sure limiting result. For more discussions about the early results on ASCLT we refer to [START_REF] Berkes | Results and problems related to the pointwise central limit theorem[END_REF].

In this note we consider the product of partial sums, denoted by S n , of a sequence of random variables attracted to a stable distribution and its limit distributions. [START_REF] Rempała | Asymptotics for products of sums and U-statistics[END_REF] established the limit distribution of the product of partial sums of a sequence of i.i.d. positive r.v.'s with mean µ and variance σ 2 :

n k=1 S k n!µ n µ/(σ √ n) d → e √ 2N(0,1) . (1) 
Zhang and Huang (2007) proves a weak invariance principle of (1) for i.i.d. r.v.'s. Recently, [START_REF] Kosiński | On the functional limits of a function of partial sums[END_REF] has shown that the weak invariance principle still holds when the partial sums are attracted to an α-stable law with α ∈ (1, 2] which also generalizes the earlier result by [START_REF] Qi | Limit distributions for products of sums[END_REF].

Throughout this paper, log log x and log x stand for ln ln(max{x, e e }) and ln(max{x, e}) respectively. We also use the notations a n b n for a n = O(b n ) and I(A) for the indicator function on a set A.

Our main result in this note is to establish an almost sure version of the result by [START_REF] Kosiński | On the functional limits of a function of partial sums[END_REF] that can generalize the early results by [START_REF] Gonchigdanzan | A note on the almost sure limit theorem for the product of partial sums[END_REF] and [START_REF] Gonchigdanzan | An almost sure limit theorem for the product of partial sums with stable distribution[END_REF][START_REF] Gonchigdanzan | Almost sure functional limit theorem for the product of partial sums[END_REF].

Recall that a sequence of and i.i.d. r.v.'s {X n : n ≥ 1} is said to be in the domain of attraction of a stable law L if there exist sequences (a n ) and (b n ) such that

S n -b n a n d → L,
where L is one of the stable distributions with index α ∈ (0, 2].

The following theorem is well known (see e.g. [START_REF] Hall | A comedy of error: the canonical form for a stable characteristic function[END_REF].
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Theorem 1.1 (Stability Theorem). The general stable law is given, to within type, by a characteristic function of one of the following forms:

1. φ(t) = exp(-t 2 /2) (normal case, α = 2); 2. φ(t) = exp(-|t| α (1 -iβ sgn(t) tan( 1 2 πα))) (0 < α < 1 or 1 < α < 2, -1 ≤ β ≤ 1); 3. φ(t) = exp(-|t|(1 + iβ sgn(t)2/π log |t|) (α = 1, -1 ≤ β ≤ 1).
It is worth mentioning that in Theorem 1.1, β is the skewness parameter. In our paper, β = 1 since X 1 is a positive random variable.

The first result of this note is the following almost sure functional limit theorem:

Theorem 1.2. Let {X n : n ≥ 1} be a sequence of i.i.d. positive random variables with EX 1 = µ in the domain of attraction of an α-stable law L α with α ∈ (1, 2] and characteristic function as in Theorem 1.1. Define a process

{π n (t) : 0 ≤ t ≤ 1} by π n (t) :=         [nt] k=1 S k µk         µ/a n ,
where (a n ) is a sequence of positive numbers that satisfies (S nµn)/a n d → L α as n → ∞. Then for any real x

1 log N N n=1 1 n I (π n (t) ≤ x) a.s. → F t (x) as N → ∞
where F t is the distribution function of the random variable exp

t 0 L α (s) s ds . Remark 1.3. If X 1 has finite variance equal to σ 2 then α = 2, L α d = N(0, 1) and a n ∼ σ √ n, thus Theorem 1.2 implies
the main result of [START_REF] Gonchigdanzan | Almost sure functional limit theorem for the product of partial sums[END_REF] which in particular yields the result of [START_REF] Gonchigdanzan | A note on the almost sure limit theorem for the product of partial sums[END_REF] Theorem 2 since it is easy to verify that

1 0 L α (s) s ds d = √ 2 N(0, 1).
Moreover, [START_REF] Kosiński | On the functional limits of a function of partial sums[END_REF] showed that for any α ∈ (1, 2]

1 0 L α (s) s ds d = (Γ(α + 1)) 1/α L α ,
hence Theorem 1.2 also yields the result of [START_REF] Gonchigdanzan | An almost sure limit theorem for the product of partial sums with stable distribution[END_REF] Theorem 1.1.

Our next result is the following Berkes-Dehling type of theorem (Theorem 2 [START_REF] Berkes | Some limit theorems in log density[END_REF].

Theorem 1.4. Let {Y n : n ≥ 1} be a sequence of independent random variables and

S n = Y 1 + • • • + Y n . Let (d n ) be a sequence of positive numbers such that d l d k l k γ (l ≥ k ≥ n 0 ) (2)
for some γ > 0 and n 0 ≥ 1 and

E S n -µn d n e γ (log n) 1-ε (3)
for some constant µ and γ ∈ (0, γ). Then for any distribution G t ,

1 log N N n=1 1 n I 1 d n [nt] k=1 S k k -µ ≤ x a.s. → G t (x) as N → ∞ (4)
if and only if

1 log N N n=1 1 n P 1 d n [nt] k=1 S k k -µ ≤ x → G t (x) as N → ∞. (5) 
The following three lemmas are needed for the proof of our main result.

Lemma 2.1 (Lemma 2.3, [START_REF] Gonchigdanzan | An almost sure limit theorem for the product of partial sums with stable distribution[END_REF]). Under the assumption of Theorem 1.2 we have

µ a n [nt] k=1 log S k µk - 1 a n [nt] k=1 S k k -µ a.s.
→ 0 as n → ∞.

Lemma 2.2. Under the assumptions of Theorem 1.2 we have

1 a n [nt] k=1 S k k -µ d → t 0 L α (s) s ds in D[0, 1].
Proof This is a particular case of Theorem 2 in [START_REF] Kosiński | On the functional limits of a function of partial sums[END_REF] when f (x) = x.

Lemma 2.3. Under the assumptions of Theorem 1.4 we have

E 1 d n max 1≤k≤n k j=1 log n + 1 j (Y j -µ) log n E 1 d n max 1≤k≤n |S k -kµ| log n e γ (log n) 1-ε .
Proof The first part is Lemma 1 in [START_REF] Gonchigdanzan | Almost sure functional limit theorem for the product of partial sums[END_REF] valid for any sequence of random variables. The second part is Lemma 1 in [START_REF] Berkes | Some limit theorems in log density[END_REF] combined with the assumption (3).

Proofs of the main results

To prove Theorem 1.2 we need the result in Theorem 1.4. Let us prove Theorem 1.4 first, then Theorem 1.2 for convenience.

Proof of Theorem 1.4 According to [START_REF] Berkes | Results and problems related to the pointwise central limit theorem[END_REF]Dehling (1993) (p.1647) it suffices to prove that for any bounded Lipschitz function g on D[0, 1] we have

1 log n n k=1 1 k g s k d k -Eg s k d k a.s. → 0 as n → ∞, (6) 
where

s n := s n (t) = k≤[nt] (S k /k -µ).
It turns out that the following estimate is indeed sufficient for (6) (see p.1648 [START_REF] Berkes | Some limit theorems in log density[END_REF], for the proof):

E n k=1 1 k ξ k 2 log 2 n(log log n) -1-ε for some ε > 0, (7) 
where

ξ k = g(s k /d k ) -Eg(s k /d k ). Observe that n k=1 (S k /k -µ) = n k=1 b k,n (Y k -µ) where b k,n = n j=k 1/ j. It can be easily seen that s l -s k = b [kt]+1,[lt] (S [kt] -[kt]µ) + b [kt]+1,[lt] (Y [kt]+1 -µ) + • • • + b [lt],[lt] (Y [lt] -µ) for l ≥ k. Obviously s l -s k -b [kt]+1,[lt] (S [kt] -µ[kt]) is independent of s k , so we get Cov g s k d k , g s l -s k -b [kt]+1,[lt] (S [kt] -µ[kt]) d l = 0 for l ≥ k.
Since g is a bounded Lipschitz it follows that

E(ξ k ξ l ) = Cov g s k d k , g s l d l -g s l -s k -b [kt]+1,[lt] (S [kt] -µ[kt]) d l E max 0≤t≤1 |s k + b [kt]+1,[lt] (S [kt] -µ[kt])| d l ≤ E max 0≤t≤1 |s k | d l + E max 0≤t≤1 |b [kt]+1,[lt] (S [kt] -µ[kt])| d l = d k d l E max 0≤t≤1 |s k | d k + E max 0≤t≤1 b [kt]+1,[lt] |S [kt] -µ[kt]| d k .
Moreover, noticing max 0≤t≤1 b [kt]+1,[lt] = log(l/k) and applying Lemma 2.3 we get

E(ξ k ξ l ) d k d l         E max 0≤t≤1 1 d k [kt] i=1 b i,k (Y i -µ) + log(l/k)E max 0≤t≤1 |S [kt] -µ[kt]| d k         = d k d l         E max 0≤ j≤k 1 d k j i=1 b i,k (Y i -µ) + log(l/k)E max 0≤ j≤k |S j -µ j| d k         log l d k d l E max 1≤ j≤k |S j -µ j| d k log l k l γ log ke γ (log k) 1-ε =: c k,l .
On the other hand we also have E(ξ k ξ l ) 1 because ξ k is bounded. Hence we estimate E(ξ k ξ l ) as follows:

E(ξ k ξ l ) 1, if l/k ≤ exp (log n) 1-ε c k,l , if l/k ≥ exp (log n) 1-ε
where ε is any positive number.

Thus we get

1≤k≤l≤n l/k≤exp ((log n) 1-ε ) E(ξ k ξ l ) kl ≤ 1≤k≤n 1 k k≤l≤ke (log n) 1-ε 1 l n k=1 1 k log 1-ε n log 2-ε n (8) and 1≤k≤l≤n l/k≥exp ((log n) 1-ε ) E(ξ k ξ l ) kl ≤ log 2 ne γ (log n) 1-ε 1≤k≤l≤n l/k≥exp ((log n) 1-ε ) 1 kl k l γ ≤ log 2 ne (γ -γ)(log n) 1-ε 1≤k≤l≤n 1 kl log 4 ne (γ -γ)(log n) 1-ε log 2-ε n, (9) 
where the last estimation follows because γ ∈ (0, γ).

Since

E n k=1 1 k ξ k 2 1≤k≤l≤n 1 kl |E(ξ k ξ l )|
by ( 8) and (9) it follows (7).

Before proving Theorem 1.2, recall that it is well known that the sequence (a n ) in Theorem 1.2 can be written as

a n = n 1/α L(n)
where L is a slowly varying function.

Proof of Theorem 1.2 We first show the equivalence of (4) and ( 5) under the conditions of Theorem 1.2 setting d n := a n . In fact (3) is a direct consequence of Theorem 6.2 in [START_REF] Deacosta | Convergence of moments and related functionals in the general central limit theorem in Banach spaces[END_REF]. ( 2) can be easily verified using the facts that a n = n 1/α L(n) and L(k)/L(n) (k/n) ε for any ε > 0 where L is a slowly varying function. Thus by
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