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Abstract 15 

Blooms of the cyanobacteria Lyngbya majuscula have occurred for decades 16 

around the world. However, with the increase in size and frequency of these 17 

blooms, coupled with the toxicity of such algae and their increased biomass, 18 

they have become substantial environmental and health issues. It is therefore 19 

imperative to develop a better understanding of the scientific and 20 

management factors impacting on Lyngbya bloom initiation. This paper 21 

suggests an Integrated Bayesian Network (IBN) approach that facilitates the 22 

merger of the research being conducted by various parties on Lyngbya. 23 

Pivotal to this approach are two Bayesian networks modelling the 24 
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management and scientific factors of bloom initiation. The research found that 25 

Bayesian networks (BN) and specifically Object Oriented BNs (OOBN) and 26 

Dynamic OOBNs facilitate an integrated approach to modelling ecological 27 

issues of concern. The merger of multiple models which explore different 28 

aspects of the problem through an IBN approach can apply to many multi-29 

faceted environmental problems. 30 

Keywords: Bayesian network, cyanobacteria, DOOBN, dynamic, IBN, 31 

Lyngbya majuscula, object oriented, OOBN. 32 

 33 

1 Introduction 34 

Lyngbya majuscula is a cyanobacterium (blue-green algae) occurring 35 

naturally in tropical and subtropical coastal areas worldwide (Osborne et al., 36 

2001; Arquitt and Johnstone, 2004; Dennison et al., 1999), including Moreton 37 

Bay in Queensland, Australia. Lyngbya grows on the sediment or over the 38 

seagrass, algae or coral (Dennison and Abal, 1999; Watkinson et al., 2005) 39 

and when the conditions are favourable, the algae goes through a rapid 40 

growth phase, resulting in a substantial increase in biomass, commonly 41 

referred to as a bloom (Ahern et al., 2007; Hamilton et al., 2007c). Lyngbya 42 

blooms appear to be increasing in both frequency and extent (Dennison and 43 

Abal, 1999; Albert et al., 2005; Ahern et al., 2007), which can have major 44 

ecological (Stielow and Ballantine, 2003; Paul et al., 2005; Watkinson et al., 45 

2005), health (Osborne et al., 2001; Osborne et al., 2007) and economic 46 

consequences (Dennison and Abal, 1999). It is therefore imperative to better 47 
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understand the scientific and management factors that drive the initiation of L. 48 

majuscula blooms.  49 

 50 

Deception Bay, located in Northern Moreton Bay in Queensland, Australia, 51 

has a history of Lyngbya blooms (Watkinson et al., 2005; Ahern et al., 2007) 52 

and forms a case study for this investigation. With its proximity to Brisbane, 53 

Australia’s third largest city with an estimated population in 2004 of 1.78 54 

million (ABS, 2004), it is a popular tourist destination. The many waterways 55 

feeding from intensive and rural agricultural activities into the Bay and its use 56 

for commercial and recreational fishing, put pressure on the marine 57 

environment and compound the issues resulting from a nuisance algal bloom 58 

(Dennison and Abal, 1999). 59 

 60 

A modelling approach was required to identify the high priority research that 61 

needed to be undertaken into the poorly known features of Lyngbya initiation. 62 

Therefore it was necessary to capture and represent all the available data and 63 

expert knowledge about the initiation of Lyngbya blooms in Deception Bay. 64 

This approach had to engage stakeholders, represent the available 65 

information at different spatial and temporal scales, identify scientific and 66 

management factors affecting Lyngbya initiation and quantify the factors and 67 

their inter-dependencies. Moreover, the stakeholders were particularly diverse 68 

comprising ecologists and scientists familiar with Lyngbya and the factors that 69 

affect its bloom, state and local government representatives, committee 70 

members of local organisations, as well as individuals with an active interest 71 
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in Lyngbya, including a third generation local fisherman with decades of 72 

accumulated knowledge of Lyngbya blooms in the Bay. 73 

 74 

There are several modelling approaches that could be considered for such a 75 

problem, including decision trees, stochastic petri nets and Bayesian 76 

networks. A decision tree has a “top-down approach”. The first factor (root 77 

node) at the top of the tree is split according to the decision taken. Each 78 

subsequent node is then split in a similar way (Janssens et al., 2006). This 79 

approach lacked the ability to represent the many interactions between the 80 

factors which would be needed to model the initiation of a Lyngbya bloom. A 81 

stochastic petri net (SPN), also known as a place/transition net is used to 82 

model concurrent systems (Angeli et al., 2007). Implementing a SPN is not 83 

trivial, even with the use of bespoke software. It mandates some statistical 84 

knowledge as well as some familiarity with stochastic process theory and 85 

Monte Carlo simulation techniques (Goss and Peccoud, 1998). A Bayesian 86 

Network (BN) provides a graphical representation of key factors, which are 87 

represented as nodes in the diagram and their causal relationships with each 88 

other and with the outcome of interest (Borsuk et al., 2006; McCann et al., 89 

2006; Jensen and Nielsen, 2007; Uusitalo, 2007) are depicted as directed 90 

links or arrows connecting a ‘parent node’ to a ‘child node’, resulting in a 91 

directed acyclic graph (DAG) (Saddo et al., 2005; Jensen and Nielsen, 2007; 92 

Uusitalo, 2007; Park and Stenstrom, 2008). BNs are better able to portray the 93 

complexity of the decision process and the many inter-dependencies between 94 

the factors of the decision process (Janssens et al., 2006). Moreover, they are 95 

visually appealing, easy to use, comprehend and interact with. For more 96 
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detailed information about the advantages and disadvantages of BNs and 97 

comparisons with alternative statistical methods, we refer the reader to 98 

(Wilson et al., 2006; Uusitalo, 2007; Ahmed et al., 2009). 99 

 100 

Bayesian networks have been used successfully to better understand and 101 

model many complex environmental problems (Bromley et al., 2005). They 102 

facilitate the representation of different management decisions and scenarios 103 

that may impact on the environmental issue being modelled and the 104 

consequences of these situations and actions (McCann et al., 2006; Uusitalo, 105 

2007). However, the focus of many networks is often on a single aspect of the 106 

outcome, and multi-faceted inferential needs are most commonly addressed 107 

through multiple independent networks. This paper describes an approach to 108 

integrating diverse knowledge about Lyngbya bloom initiation in the Deception 109 

Bay area, by developing an Integrated Bayesian Network (IBN). The IBN 110 

comprises a series of BNs designed to conceptualize and quantify the major 111 

factors and their pathways contributing to the initiation of Lyngbya, from both 112 

scientific and management perspectives. In Figure 1 a unified modelling 113 

language (UML) use case diagram illustrates the conceptual processes of the 114 

Lyngbya IBN. To our knowledge an IBN approach has not previously been 115 

applied to Lyngbya bloom initiation. 116 

 117 

(Place figure 1 here) 118 

 119 

In Section 2 we describe the characteristics of a traditional BN, an object 120 

oriented BN (OOBN) and the natural progression to a dynamic OOBN 121 
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(DOOBN). We then introduce the integrated BN approach (IBN) which 122 

consolidates the information held in various networks and models. We present 123 

the results of this approach in Section 3 by applying it to the initiation of 124 

Lyngbya blooms.  125 

 126 

2 Methods 127 

2.1 Bayesian Network (BN) 128 

As described in Section 1, a BN visualizes knowledge about an ecological 129 

issue of interest with the important factors depicted as nodes in the network. 130 

These nodes may be at different temporal and spatial scales and the data 131 

represented in the BN may originate from diverse sources such as empirical 132 

data, expert opinion and simulation outputs (Saddo et al., 2005; Borsuk et al., 133 

2006; McCann et al., 2006; Jensen and Nielsen, 2007; Pollino et al., 2007; 134 

Park and Stenstrom, 2008). In the case of the Lyngbya network, the outcome 135 

of interest is the initiation of a Lyngbya bloom. Each node of the network is 136 

described by a set of states (for example high/medium/low, 137 

adequate/inadequate) and quantified by associating a probability table with 138 

each node. The probability table is determined by these states and the states 139 

of the nodes that influence it. An example is the conditional probability table 140 

(CPT) for the Bottom Current Climate node, shown in Table 1, which has two 141 

states (Low and High) and has three parent nodes that influence it (Wind 142 

Direction, Wind Speed and Tide) (Saddo et al., 2005; Pollino et al., 2007; Park 143 

and Stenstrom, 2008).  144 

 145 
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(Place Table 1 here) 146 

 147 

Two important characteristics of a BN which also simplify probability 148 

calculations are directional separation (d-separation) and the assumption of 149 

the Markov property (Jensen and Nielsen, 2007). The criterion for d-150 

separation was first proposed by (Pearl, 1988) and an alternative criterion was 151 

specified by Lauritzen et al., (1990). If nodes are d-separated then they are 152 

conditionally independent (Kjaerulff, 1995, Taroni et al., 2006). The Markov 153 

property means that the probability distribution of a variable depends only on 154 

its parents. Consequently from the multiplication law of elementary probability 155 

theory, the conditional independence (d-separation) and the Markov property 156 

enable the probability distribution of a BN with n nodes ( )nXX ,...1  to be 157 

factorized as follows: 158 

( ) ( )( )∏
=

=
n

i
iin XPaXPXXP

1
1,...     where ( )iXPa  is the set of parents of node iX  159 

This greatly simplifies calculations of the joint probability distribution and 160 

allows us to focus on each node in turn to combine the expertise and data 161 

available for that node and its parents. The BNs described in this paper were 162 

developed as part of a larger study of the major factors and their pathways 163 

contributing to the initiation of Lyngbya blooms. They were constructed in 164 

close collaboration with a Lyngbya Science Working Group (LSWG) drawn 165 

from a range of disciplines and a Lyngbya Management Working Group 166 

(LMWG) drawn from local and state government and private organisations 167 

(Abal et al., 2005). 168 

 169 
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The Science Network focused on nutrient and physical factors that were 170 

agreed by the LSWG to be the most influential contributors to the initiation of 171 

Lyngbya. To construct the Science Network, numerous meetings were 172 

convened to determine the most important factors that were believed to have 173 

an impact on the ecosystem surrounding Deception Bay. Once the initial 174 

structure was agreed upon, the factors were then clearly defined. This was 175 

necessary to ensure throughout the process all involved could refer to these 176 

definitions to agree that this was indeed the focus of that particular aspect. 177 

The initial Lyngbya Science BN was then colour coded into six logical groups 178 

of coherent nodes. The groups are Water (containing nodes Rain-present, No 179 

prev dry days, Groundwater Amount and Land Run-off Load), Sea Water 180 

(containing Tide, Turbidity and Bottom Current Climate), Air (containing nodes 181 

Wind and Wind Speed), Light (containing nodes Light Quantity, Light Quality 182 

and Light Climate), Nutrients (containing nodes Dissolved Fe Concentration, 183 

Dissolved Organics, Dissolved N Concentration, Dissolved P Concentration, 184 

Particulates (Nutrients), Sediments Nutrient Climate, Point Sources and 185 

Available Nutrient Pool), and Lyngbya Algae (containing only the target node 186 

Bloom Initiation). 187 

 188 

Thereafter the network was quantified by populating a conditional probability 189 

table for each node, based on the factors affecting that node. For example, 190 

the probability of low or high Bottom Current Climate was determined for 191 

different states of its parent nodes, Wind Direction (north, south-east or other), 192 

Wind Speed (low or high) and Tide (spring or neap), as shown in Table 1. The 193 

CPTs were populated in this way using data obtained from expert elicitation, 194 
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output from simulation models and statistical models and data obtained from 195 

monitoring sites and government agencies. The datasets spanned different 196 

time periods ranging from one season to several years, depending on 197 

availability and applicability. Meta-data on these datasets were compiled as a 198 

key component of the project. The meta-database, comprising the source, 199 

ownership, type of data and dates collected, is summarised in a Healthy 200 

Waterways report (Fielding et al., 2007), and is available on the organisation’s 201 

website.  202 

 203 

Validation of the BN was assessed in three ways: through sensitivity analysis, 204 

outcomes comparison and scenario testing. Sensitivity analysis is a popular 205 

technique in mathematical modelling and the field of decision theory to 206 

investigate uncertainty in a model’s parameters and their effect on the model 207 

output (Hamby, 1994; Coupe et al., 2000). For BNs this means studying the 208 

changes in the probabilities of the target node as a result of changes in the 209 

network’s CPT values (Coupe et al., 2000). In the Science BN the 210 

probabilities of one node was varied, while keeping the others fixed, and then 211 

observing the changes in the probability of a Lyngbya bloom initiation. 212 

Sensitivity analysis is considered crucial to model validation and for targeting 213 

further research (Hamby, 1994). It is performed on the BN model to reduce 214 

uncertainty in the target node and to identify those nodes that have the largest 215 

impact on the target node (Hamby, 1994; Coupe et al., 2000). Additional 216 

research effort can then be directed to the quantification of those nodes 217 

(Bednarski et al., 2004). 218 

 219 
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Outcomes comparison involves comparison between external data and model 220 

predictions. In the case of the Lyngyba Science BN, no such external data 221 

were available since all known available data had been used to populate 222 

aspects of the BN. Moreover, for any observed Lyngbya outbreak, data were 223 

not available for the complete set of nodes in the BN model. As a result, a 224 

more limited outcomes comparison was undertaken through scenario testing, 225 

in which selected scenarios reflected known conditions associated with 226 

documented initiation or lack of initiation of Lyngbya outbreaks in the last 30 227 

years. 228 

 229 

Scenario testing is important to investigate model behaviour for different 230 

expert defined scenarios, assessing whether the model behaves as expected 231 

in light of past experience and in accordance with current credible research 232 

(Laskey, 1995; Bednarski et al., 2004). The expert team therefore nominated 233 

scenarios of interest and evidence was entered into the BN to represent these 234 

scenarios. The relevant nodes were updated to reflect the proposed scenario 235 

and this evidence was propagated through the BN to update the probability of 236 

a Lyngbya bloom initiation under those conditions (Laskey, 1995; Bednarski et 237 

al., 2004). For example, evidence of ‘best practice’ was entered into the BN 238 

by setting the Point sources node to low. Further sensitivity analysis was then 239 

performed on the other nodes in the BN to observe the sensitivity of the target 240 

node to changes in node probabilities for that scenario.  241 

 242 

The Management Network focused on management inputs that potentially 243 

influence the delivery of nutrients to the Bay and was constructed through a 244 
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series of meetings with the LMWG. The potential nutrient sources that were 245 

identified by the LMWG were split into point sources (coming from a relatively 246 

concentrated area e.g. waste water treatment plants) and diffuse sources 247 

(nutrients being contributed to the water catchment from a larger geographical 248 

area e.g. grazing land). The management model has evolved into a graphical 249 

representation of the catchment area showing the waterways and identifying 250 

the location of the sources within the catchment as well as their nutrient 251 

contributions. Participants of the LMWG identified the existing, committed and 252 

best practice management options for each source. The network was then 253 

quantified by assigning probabilities to each node to reflect the probability of 254 

low or high nutrient discharge for each source under each management 255 

option. 256 

2.2 Object Oriented Bayesian Network (OOBN) 257 

The basic building block in an Object Oriented Bayesian Network (OOBN) is 258 

an object, which can be a physical or an abstract entity, or a relationship 259 

between two entities. Typically, an entity comprises one or more nodes in a 260 

BN that are related in a physical, functional or abstract sense. From a 261 

probabilistic point of view, the attributes (nodes and links) are encapsulated in 262 

an object and therefore d-separated from the rest of the network.  263 

 264 

The definition of classes of objects in OOBNs enables a more generic, 265 

reusable network to be described, which can then be used in different 266 

contexts. A class is a generic network fragment and when this class is 267 

instantiated it is called an object. A class may be instantiated many times 268 

(Jensen and Nielsen, 2007). It is not uncommon for several classes to share 269 
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common substructures. These subclasses can inherit many attributes and 270 

behaviours from the parent class, which they can then modify and enhance. 271 

The parent class can be viewed as being more abstract than its subclasses 272 

with only the important details being retained, whereas subclasses define 273 

more specific attributes and behaviours. The ability to create subclasses that 274 

inherit properties from another class is a well known and very useful 275 

characteristic of object oriented modelling (Koller and Pfeffer, 1997).  276 

 277 

Applying this object oriented approach to BN modelling, an OOBN can be 278 

instantiated within another OOBN. An instantiated OOBN is called an instance 279 

node and represents an instance of another network, which in turn could 280 

contain instance nodes. Connectivity between these OOBNs is achieved 281 

through interface nodes (input nodes and/or output nodes) (Hugin, 2007; 282 

Jensen and Nielsen, 2007). It is clear that OOBNs enable a more structured, 283 

hierarchical approach to modelling and consequently the construction of 284 

complex and dynamic models (Koller and Pfeffer, 1997; Hepler and Weir, 285 

2008).  286 

 287 

The groups of nodes defined in Section 2.1 for the Science Network formed 288 

the basis for the creation of OOBN sub-networks, for example the ‘Dissolved 289 

Elements subnet’ and ‘Light subnet’, respectively. Thereafter the interface 290 

nodes were identified and added to the sub-networks to facilitate the transfer 291 

of information and evidence into and out of the sub-nets. The OOBN sub-292 

networks were then linked via the interface nodes to recreate the Lyngbya 293 

Science network. The new structure now facilitated the independent parallel 294 
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development and interrogation of the sub-networks so that they could be 295 

reintegrated into the parent network when they were deemed to be complete. 296 

2.3 Dynamic Object Oriented Bayesian Network (DOOBN) 297 

The temporal behaviour of a network can be represented by time slices, one 298 

for each period of interest. The resulting network, consisting of several OOBN 299 

time slices, is referred to as a dynamic OOBN (DOOBN) (Kjaerulff, 1995; 300 

Weber and Jouffe, 2006). Lyngbya blooms in Moreton Bay occur more 301 

frequently during the summer months when conditions are more favourable 302 

for bloom initiation (Watkinson et al., 2005). Additional statistical modelling 303 

was conducted by Hamilton et al. (2007a) on the effects of temperature, 304 

rainfall and light on L .majuscula blooms and the importance of groundwater 305 

in stimulating Lyngbya blooms has been studied by (Ahern et al., 2006) and 306 

was nominated by LSWG as a key node that may exhibit temporal behaviour. 307 

It was thus considered that the DOOBN would be better able to predict the 308 

probability of Lyngbya bloom initiation. A UML use case diagram illustrating 309 

the processes involved in creating this DOOBN, is shown in figure 2. 310 

 311 

(Place Figure 2 here) 312 

 313 

The initial static Science BN model used annual averages for rainfall and 314 

temperature, but captured some temporal behaviour by introducing a node to 315 

represent the previous number of dry days. As directed by the LSWG the 316 

Lyngbya Science BN was extended to incorporate the temporal nature of L. 317 

majuscula to create a DOOBN with five time slices (one for each of the 318 

months of November to March). The DOOBN is therefore able to predict the 319 
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probability of a Lyngbya bloom initiation by incorporating specific monthly data 320 

while also taking into account the influence of the previous month.  321 

 322 

Using Bayesian statistical modelling (Hamilton et al., 2007b) investigated the 323 

response of Lyngbya bloom initiation to temporal factors such as average 324 

minimum and maximum monthly temperature, monthly rainfall, average 325 

monthly solar exposure and average monthly clear sky (the inverse of cloud 326 

cover). One month time lags and interaction terms were also included for rain 327 

and minimum temperature. From a total of 890 models evaluated, the single 328 

term average minimum monthly temperature model (with an intercept term) 329 

had the best predictive behaviour. Rainfall at a lag of one month was the only 330 

other variable that appeared in the top five identified models. 331 

 332 

2.4 Integrated Bayesian Network (IBN) 333 

We describe here the IBN for the probability of initiation of a Lyngbya bloom. 334 

This network comprises two primary BNs, the Management Network and the 335 

Science Network described in Section 2.1, integrated with a Water Catchment 336 

simulation model, which was concurrently developed under the Lyngbya 337 

Programme. The IBN is conceived as a series of steps, in which the 338 

Management Network informs about nutrient discharge into the Deception 339 

Bay catchment, the Catchment model simulates the movement of these 340 

nutrients to the Lyngbya site in the Bay, and the Science model then 341 

integrates this nutrient information with other factors to determine the 342 

probability of initiation of a Lyngbya bloom. 343 

 344 



ACCEPTED MANUSCRIPT 
 15 

Figure 3 is a UML activity diagram detailing the processes of the IBN for 345 

Lyngbya bloom initiation. In addition to providing a rich, cohesive model of 346 

Lyngbya bloom initiation from both a science and management perspectives, 347 

an important use of the IBN was for scenario modelling. A set of exemplar 348 

scenarios that could impact on nutrient delivery to the Lyngbya site was 349 

proposed. This included: upgrading point sources from existing to best 350 

practice (e.g. eliminating potassium output from sewage treatment plants 351 

across the catchment), describing a climate event (e.g. a severe summer 352 

storm), and conditions least favourable for bloom initiation (e.g. low 353 

temperature and nutrients).  354 

 355 

For each proposed scenario the changes in the level of nutrients or to the 356 

factors affecting the initiation of Lyngbya in the Science network were 357 

assessed. If nutrient loads were changed, the impact on nutrient 358 

concentrations across the catchment arising from a management scenario 359 

could then be simulated through the Water Catchment model by the 360 

application of filters. The E2 software package (eWater CRC, 2007) used to 361 

create the Water Catchment model contains several pre-defined filters 362 

capable of simulating various complex management actions and adjusting the 363 

catchment load output accordingly. For example filters such as percentage 364 

removal of a nutrient and nutrient trapping may be chosen. Thereafter the 365 

Science Network was updated to reflect the modified nutrient loads and other 366 

changes related to the proposed scenario. This evidence was then 367 

propagated through the network to yield the probability of initiation of a 368 

Lyngbya bloom under the specific scenario. 369 
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 370 

(Place Figure 3 here) 371 

 372 

The networks in the IBN were developed using a variety of software modelling 373 

tools. The conceptual Management Network was visually represented using 374 

the BN package Netica® (Norsys, 2007) and then interfaced with the 375 

hydrological flow and nutrient load model created in the whole of catchment 376 

simulation software package, E2 (eWater CRC, 2007), in order to identify 377 

nutrient loads reaching the Lyngbya site. The Science Network was 378 

developed entirely in Netica® and later in Hugin® (Hugin, 2007) where the 379 

network was transformed into a DOOBN by creating time slices (Kjaerulff, 380 

1995; Weber and Jouffe, 2006; Jensen and Nielsen, 2007). In summary, the 381 

novelty factor here is that although a static BN is unable to ‘communicate’ with 382 

another BN, we can transform it to an OOBN to facilitate information flow and 383 

linkage to other OOBNs of interest. Thus we can exploit the purpose for which 384 

each model was designed to build a more comprehensive model of the 385 

environmental issue of concern. 386 

 387 

3 Results 388 

The static Science BN for initiation of Lyngbya is depicted in figure 4 with the 389 

nodes representing the factors identified by the LSWG as important in the 390 

initiation of a Lyngbya bloom.  391 

 392 

(Place Figure 4 here) 393 

 394 
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Sensitivity analysis of this BN revealed that the seven most influential factors 395 

in the Science Network were (in decreasing order of influence):  available 396 

nutrient pool (dissolved), bottom current climate, sediment nutrients, dissolved 397 

iron (Fe), dissolved phosphorous (P), light and temperature. Furthermore 398 

scenario modelling consistently identified available nutrient pool as the factor 399 

which most heavily influences the probability of initiation of a bloom. Point and 400 

diffuse sources deliver nutrients to the bay and this nutrient delivery is 401 

affected by management actions at the sources. 402 

 403 

The Science BN was also interrogated using management and climatic 404 

scenarios and analysing the effect on the probability of bloom initiation to 405 

changes in the various factors. The predicted changes in the probability of a 406 

Lyngbya bloom initiation as a result of each of the seven most influential 407 

factors in isolation, is shown in Table 2. In a ‘typical’ year, as defined by the 408 

LMWG, the probability of a bloom initiation was reported as 28%; this 409 

increased significantly during a severe summer storm event to 42%, when 410 

light climate was optimal and rain-present was high. Bloom initiation was a 411 

predicted as a certainty (100%) when the available nutrient pool (dissolved) 412 

was enough, temperature was high and light climate was optimal. However, 413 

when only the available nutrient pool (dissolved) was set to ‘not enough’, the 414 

probability of a bloom initiation dropped to 3%, but jumped to 80% when it 415 

was changed to ‘enough’. Although bottom current climate was a key 416 

influential factor, changing only this factor caused the probability of bloom 417 

initiation to drop to 15% when the bottom current climate was ‘high’ and to 418 

increase to 43% when it was ‘low’. This is a variation of 28% in the probability 419 
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of a bloom initiation and although large, is clearly overshadowed by the 77% 420 

variation caused by changes in nutrient availability. Changing iron availability 421 

alone increased the probability of a bloom initiation from 21% to 37%. 422 

Changing organics availability alone increased the probability of a bloom 423 

initiation from 25% to 31%. 424 

 425 

(Place Table 2 here) 426 

 427 

Next the Science OOBN sub-network (figure 5) was created from the static 428 

Lyngbya Science BN as outlined in Section 2.2, retaining all the key factors 429 

(with the exception of the No of prev dry days) and their CPTs from the static 430 

BN. As is characteristic of Object Oriented networks, the Science OOBN sub-431 

network includes instances of other sub-networks, shown in figure 5 as 432 

rectangles with rounded edges, such as the Wind subnet and the Turbidity 433 

subnet. Input nodes were added to the Science OOBN sub-network as 434 

placeholders for the real nodes, Temperature, Rain- present, Land Run-off 435 

Load and Ground Water Amount. The sub-networks were based on the 436 

groups created in the static Science BN to yield standalone networks capable 437 

of linking to other networks via the interface nodes (input and output nodes), 438 

or being instantiated in other networks. Importantly, providing the interface 439 

remains intact, these OOBN sub-networks can be further expanded without 440 

affecting the structure of any other networks linking to it. As a consequence 441 

we have a powerful concept of parallel development by independent expert 442 

teams while retaining the overall cohesive model. 443 

 444 
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(Place Figure 5 here) 445 

 446 

In collaboration with the LSWG and based on the findings of (Hamilton et al., 447 

2007a) as described in Section 2.3, the static Lyngbya Science network was 448 

adapted in the following manner to incorporate monthly rainfall and 449 

temperature data and the lag effect of rainfall on the amount of groundwater 450 

and land run-off. First, the lag effect of rainfall on groundwater amount and 451 

land run-off was replicated by creating a Rainwater OOBN sub-network as 452 

shown in figure 6. In this OOBN, the Prev Groundwater and the Prev Land 453 

Run-off are input nodes (double edged eclipse with a broken outer line), which 454 

enable connectivity to the previous time slice’s Ground Water Amount and 455 

Land Run-off nodes, respectively. The Rain – present input node enables the 456 

instances of the Rainwater OOBN to be bound to the rainfall relating to that 457 

instance, e.g. the November Rainwater OOBN instance will have November’s 458 

rainfall bound to the Rain – present input node. The Ground Water Amount 459 

and Land Run-off Load output nodes (double edged eclipse with a solid outer 460 

line) make them visible to other networks and therefore allow them to be 461 

bound to input nodes in other networks. 462 

 463 

(Place Figure 6 here) 464 

 465 

Finally the DOOBN was created with five time slices (figure 7), one time slice 466 

for each of the summer months (December to February), one for the end of 467 

spring (November)  and one for the start of autumn (March) . Every time slice 468 

has an instance of the Rainwater and Science sub-networks as well as the 469 
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temperature and rainfall nodes for that month. Data from the Bureau of 470 

Meteorology was used to quantify the DOOBN, as well as the information 471 

contained in the initial static BN. 472 

 473 

(Place Figure 7 here) 474 

 475 

As can be seen in figure 8, the rainfall information for a particular month is 476 

bound to the Rain present input node in the Rainwater and Science model 477 

sub-network instances for that month and the Groundwater Amount and Land 478 

Run-off output nodes from one month bind to the Prev Groundwater and Prev 479 

Land Run-off input nodes of the following month, respectively. 480 

 481 

(Place Figure 8 here) 482 

 483 

The point and diffuse nutrient sources contributing to the Management 484 

Network for Lyngbya initiation included: aquaculture, composting, onsite 485 

sewage, poultry, waste disposal, waste water treatment plant, agriculture, 486 

artificial development, development and clearing, extractive industries, 487 

forestry, grazing, natural vegetation and stormwater. The sources and 488 

nutrients identified by the management committee are shown in Table 3. 489 

 490 

An extract of the Management Network, which identifies and locates point and 491 

diffuse sources of nutrients for the Mellum Creek Sub-catchment, visually 492 

represented in Netica®, is shown in figure 9.  493 

 494 
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(Place Figure 9 here) 495 

 496 

Scenario modelling predicted higher probabilities of Lyngbya bloom initiation 497 

during the summer months and confirmed the temporal nature of Lyngbya 498 

bloom initiation. Incorporating this behaviour resulted in the DOOBN for 499 

Lyngbya bloom initiation (figure 7) being developed as outlined above with 500 

one month lag effects included for groundwater amount and land run-off. 501 

 502 

As shown in figure 10 below, the BN predicts a sharp increase in the 503 

probability of initiation of a Lyngbya bloom from the end of spring (November) 504 

to the first month of summer (December). The increased probability continued 505 

during the next two summer months, with a slight fall in autumn (March). 506 

Although these predicted probabilities for Lyngbya bloom initiation are low, the 507 

increased trend in bloom initiation is clearly visible. When evidence of summer 508 

rainfall was added to these time slices we observed a more dramatic 509 

increase. For example, the probability of a bloom initiation was predicted as 510 

52% when evidence of a summer rainfall event was entered into the 511 

December time slice. This compares to 42% in the original static annual BN 512 

model. 513 

 514 

(Place Figure 10 here) 515 

 516 

4 Discussion 517 

This paper describes an Integrated Bayesian Network approach applied to the 518 

initiation of Lyngbya blooms. The aim was to present the exposition of BN 519 
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methodology to a complex ecological problem such as Lyngbya bloom 520 

initiation and illustrate how it can be used to integrate models for different 521 

aspects of the same issue. We have illustrated the process that could be 522 

followed to integrate two static BNs and another type of model (such as the 523 

E2 model of the Whole of Catchment) to achieve an integrated BN. The IBN 524 

approach described here can also be used for investigating other features of 525 

this organism, such as growth, biomass and decay, through appropriate 526 

changes to the Science Network. These networks are currently being 527 

developed. The Integrated Network approach is also conceptually suitable for 528 

investigating other outcomes of interest that are impacted by nutrient outputs 529 

and water movement in a catchment. 530 

 531 

It is noted that it is beyond the scope of the present paper to provide an actual 532 

test of the utility of BNs for predicting cyanobacterial blooms. The paper 533 

therefore does not include a comparison of the predictions against classical 534 

multivariate techniques; a test of the BNs own output reliability, that is, 535 

whether the probabilistic estimate of the likelihood the BNs output is correct 536 

for the target data set; a clear presentation of exactly what data are being 537 

used; a sufficient amount of data to first build and refine the model on one 538 

data set and then test it on a previously unseen set of data. However the 539 

Science BN, which has been adopted by Healthy Waterways, will be validated 540 

through future data collected as part of the next phase of the Lyngbya project.  541 

 542 

More broadly, the general approach proposed in this paper is applicable to 543 

environmental or other outcomes involving both scientific and management 544 
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considerations. Information arising from expert knowledge, data and research 545 

can be formally conceptualized and quantified through Science and 546 

Management Networks, and combined into an Integrated Network. Such an 547 

approach involves definition of the problem or outcome of interest, agreement 548 

as to significant contributing factors and their definitions and pathways which 549 

impact on this outcome, and identification and integration of information that 550 

allow quantification of these factors and impacts. The benefits of such an 551 

approach include a much greater specification of the issue at hand or 552 

research focus, buy-in from diverse stakeholders, consolidation and 553 

formalisation of information, an audit trail for decision-making and future 554 

research, and quantitative outcomes in the form of probability statements 555 

about the outcome of interest.  556 

 557 

In the static Lyngbya BN (figure 4) similar factors were grouped together and 558 

colour coded as a visual aid. The nature of the Science BN enabled a simple 559 

conversion of the network to an OOBN (figure 6), with a sub-network for each 560 

group of factors and interface nodes providing the communication links to 561 

other OOBNs (figure 8). In the same way many complex BNs can be 562 

simplified by abstracting the network to a higher level to include sub-networks 563 

of logically grouped factors, which in turn can include other sub-networks, 564 

thereby having several levels of abstraction. An important feature of the 565 

OOBN sub-networks is that they can be developed simultaneously by the 566 

various expert groups who are responsible for them. When the sub-networks 567 

have been quantified, tested and ratified, they are integrated into the master 568 

network containing instances of those sub-networks. 569 
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 570 

The extension to a DOOBN not only improved prediction but also enhanced 571 

interpretability of the network. The inclusion of time-specific dynamics for 572 

temperature and water was more consistent with the conceptual framework of 573 

Lyngbya behaviour held by both science and management stakeholders. 574 

Moreover, it is more straightforward to include expert opinion and data of a 575 

temporal nature in this expanded model. It is suggested that for other complex 576 

ecological systems, the additional complexity of a DOOBN is more than 577 

compensated for by the increased flexibility of representation of information 578 

and acceptability of the outputs.  579 

 580 

Finally, the creation of an IBN to combine multiple networks which describe 581 

different aspects of an outcome of interest is an effective way of providing a 582 

cohesive, quantifiable and auditable tool for better understanding and 583 

coordination of multi-faceted environmental problems.  584 
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 732 
Legends 733 

Figure 1: UML use case diagram of the conceptual processes in the Lyngbya 734 

bloom initiation Integrated Network 735 

Figure 2: UML use case diagram of the processes for the Lyngbya bloom 736 

initiation DOOBN 737 

Figure 3: UML activity diagram detailing the processes for the Lyngbya bloom 738 

initiation IBN 739 

Figure 4: Science Network for Lyngbya initiation (Netica®) 740 

Figure 5: Rainwater OOBN sub-network showing two output nodes, 741 

Groundwater Amount and Land Run-off Load, which are then connected to 742 

the input nodes Prev Groundwater and Prev Land Run-off in the next time 743 

slice 744 

Figure 6: Science OOBN sub-network 745 

Figure 7: Five time slices forming the DOOBN for Lyngbya bloom initiation 746 

Figure 8: Expanded sub-network instances in Hugin®, showing the interface 747 

nodes for each instance. The input and output nodes are represented here as 748 

ellipses with broken and solid lines, respectively. Also evident are the directed 749 

links between the sub-network instances of the same and the next time slice, 750 

so that information from one time slice can flow into the next time slice. 751 

Figure 9: Extract of the Management Network for Mellum Creek Sub-752 

catchment, a visual representation of the sub-catchment, showing point and 753 

diffuse sources of nutrients. The inset shows the complete Management 754 

Network  755 

Figure 10: Probability of Lyngbya bloom initiation 756 
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 757 
Table 1: Conditional probability table for Bottom Current Climate node with 758 

states Low and High and parent nodes Wind Direction (states North, SE and 759 

Other), Wind Speed (states Low and High) and Tide (states Spring and 760 

Neap). These nodes, their states, probabilities and relationships are visible in 761 

the Bayesian network in figure 4 762 

 763 
Wind 

Direction 
Wind 
Speed Tide Low High 

North Low Spring 0.33 0.67 
North Low Neap 0.61 0.39 
North High Spring 0.43 0.57 
North High Neap 0.54 0.46 

SE Low Spring 0.42 0.58 
SE Low Neap 0.58 0.42 
SE High Spring 0.37 0.63 
SE High Neap 0.59 0.41 

Other Low Spring 0.39 0.61 
Other Low Neap 0.59 0.41 
Other High Spring 0.43 0.57 
Other High Neap 0.50 0.50 

 764 
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 765 
Table 2: Changes to the probability of Lyngbya bloom initiation for key 766 

factors. All possible states for each of the nodes were assessed individually to 767 

ascertain the delta effect it had on the probability of a Lyngbya bloom 768 

initiation.  769 

 770 

Factor Change in P(Bloom) 
(%) 

Available Nutrient Pool 77 
Bottom Current Climate 28 
Sediment Nutrient Climate 17 
Dissolved Fe 16 
Dissolved P 15 
Light Climate 14 
Temperature 14 

 771 
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 772 
Table 3: Point and diffuse sources contributing nutrients to Deception Bay 773 

 774 
Source Point(P) or 

Diffuse (D) 
Nitrogen Phosphorous Iron Organics 

Aquaculture P X X   
Composting P X X   
Onsite Sewage P X X   
Poultry  P X X X  
Waste Disposal P X X X  
Waste Water Treatment Plant P X X   
Agriculture D X X X X 
Artificial Development D X X   
Developing & Clearing D X X X X 
Extractive D X X   
Forestry D X X X X 
Grazing D X X   
Natural Vegetation D X X  X 
Stormwater D X X   
 775 
 776 
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