

Distribution and contamination of trace metals in surface sediments of the East China Sea

Tien-Hsi Fang, Jou-Yun Li, Hui-Min Feng, Hung-Yu Chen

▶ To cite this version:

Tien-Hsi Fang, Jou-Yun Li, Hui-Min Feng, Hung-Yu Chen. Distribution and contamination of trace metals in surface sediments of the East China Sea. Marine Environmental Research, 2009, 68 (4), pp.178. 10.1016/j.marenvres.2009.06.005 . hal-00563083

HAL Id: hal-00563083

https://hal.science/hal-00563083

Submitted on 4 Feb 2011

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Accepted Manuscript

Distribution and contamination of trace metals in surface sediments of the East China Sea

Tien-Hsi Fang, Jou-Yun Li, Hui-Min Feng, Hung-Yu Chen

PII: S0141-1136(09)00068-3

DOI: 10.1016/j.marenvres.2009.06.005

Reference: MERE 3345

To appear in: Marine Environmental Research

Received Date: 19 November 2008 Revised Date: 20 March 2009 Accepted Date: 2 June 2009

Please cite this article as: Fang, T-H., Li, J-Y., Feng, H-M., Chen, H-Y., Distribution and contamination of trace metals in surface sediments of the East China Sea, *Marine Environmental Research* (2009), doi: 10.1016/j.marenvres.2009.06.005

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Distribution and contamination of trace metals in surface sediments of the East China Sea

Tien-Hsi Fang $^{\ast},$ Jou-Yun Li, Hui-Min Feng, Hung-Yu Chen

Department of Marine Environmental Informatics, National Taiwan Ocean University, Keelung 202, Taiwan.

*Correspondence:

Dr. Tien - Hsi Fang

Department of Marine Environmental Informatics

National Taiwan Ocean University,

Keelung, 202, Taiwan.

Tel: 886-2-4622192 ext 6343

Fax: 886-2-4627674

1

E-mail: thfang@mail.ntou.edu.tw

Abstract

2	The distributions, contamination status and annual sedimentation flux of trace
3	metals in surface sediments of the East China Sea (ECS) were studied. Higher
4	concentrations of the studied metals were generally found in the inner shelf and the
5	concentrations decreased seaward. The sequences of the enrichment factor (EF) of the
6	studied metals are Cu>Mn>Ni \cdot Zn>Pb>Fe. The values of EF suggest that the
7	metals contamination in the middle and outer shelves of the ECS is still minor. The
8	annual sedimentation fluxes of trace metals in the ECS were: Fe, 3.48 x 10 ⁷ t/y; Mn,
9	$9.07 \times 10^{5} \text{ t/y}$; Zn, $1.08 \times 10^{5} \text{ t/y}$; Ni, $4.48 \times 10^{4} \text{ t/y}$; Pb, $4.32 \times 10^{4} \text{ t/y}$; and Cu, $3.1 \times 10^{4} \times 10^{4} \times 10^{4}$
10	10 ⁴ t/y, respectively. Approximately 55-70% and 10-17% of the sedimentation fluxes
11	of trace metals were deposited in the inner shelf and the Changjiang estuarine zone.
12	(Keywords: continental shelf; East China Sea; enrichment factor; trace metals
13	sediments; sedimentation flux)
14	
15	
16	
17	
18	
19	
20	
21	
22	1. Introduction
23	The East China Sea, located between 26°_31°N and 121°_126°F, is one of the

24	largest marginal seas in the western Pacific of the northern nemisphere, and it is also
25	the main discharge area of the Changjiang River which is the world's fourth largest
26	river when reviewed in terms of suspended load. The annual transportation of
27	suspended load of the Changjiang River is approximately 4.61 x 10 ⁸ t/y (Zhang and
28	Liu, 2002). In addition, there are another four middle size rivers, namely the Jiaojiang
29	the Qiantangjiang, the Jiulongjiang and the Minjiang, which together discharge 2.36 x
30	10 ⁷ tons/y of suspended load into the ECS (Zhang and Liu, 2002). Along the coast
31	there are many developed cities, such as Shanghai and Ningbo, and a number of
32	factories have also been set up there. Because of the over-emphasis on the economic
33	development and the lack of environmental regulations since China embarked on the
34	"Reform and Open Policy" from 1978, many studies have indicated that the
35	Hangzhou Bay was contaminated by trace metals (Huh and Chen, 1999; Yuan et al.,
36	2004) and polycyclic aromatic hydrocarbon (Guo et al., 2006). A recent study
37	conducted in August 2003 uncovered a hypoxic area (dissolved oxygen
38	concentrations <2-3 mg/l) greater than 12,000 km ² extending from the Changjiang
39	River plume to the ECS (Chen et al., 2007). Thus, our current understanding is that
40	the water quality of the ECS has been getting worse. However, the distribution and
41	contamination status of trace metals for the whole ECS has not been established (Shi
42	et al., 2005). In order to establish such a knowledge, the present study investigates the
43	spatial distribution of trace metals in surface sediments of the ECS. In addition, based
44	on the mass accumulation rates published in the literature for the ECS, the annual
45	sedimentation fluxes of the studied metals in the ECS are also estimated.

46

47

48

2. Sampling and methods

2.1 Study area

49 Twenty-five sediment cores were collected with a box core during a cruise onboard the R/V Ocean Research-I from 6-16 November, 2006. The box core was 50 designed to obtain undisturbed sediments and the core samples were sealed and kept 51 frozen for subsequent processing and analyzing in the university laboratory. The 52 sampling stations (Fig.1) were located outside of the mouth of the Changjiang River 53 54 and extended to the outer shelves of the ECS with water depths < 150 m. Stations I1-I6 were located in the inner shelf and along the coast of China. Stations M1-M11 55 were situated in the middle shelf and extended southwards to the northern Taiwan 56 Strait. Stations O1-O6 were located along the Okinawa Trough, through which the 57 Kuroshio Water flows. To facilitate interpretation of the results, the sampling stations 58 were divided into three groups based on their locations and bathymetry of the 59 60 sampling sites: stations I1-I8 in the inner shelf (depth < 50 m); stations M1-M11 in the middle shelf (50 m < depth < 100 m); and stations O1-O6 in the outer shelf (100 61 m < depth < 150 m). 62

63

64

65

66

67

The major source of the fine-grained sediment to the ECS continental shelf is from the Changjiang River, which discharges 4.61 x 10⁸ t/y fine-grained sediment and accounts for 73% of the terrestrial export of suspended matter carried by rivers (Zhang and Liu, 2002). Most of the suspended sediments consist of silt and clay. A

68	large portion of this sediment supply is moved southward by the Jian-Su coastal
69	current (Cao et al., 1989). A small portion of the suspended sediments is transported
70	east and northeastwards to the ESC (Sternberg et al., 1985). From the examination of
71	²¹⁰ Pb profiles in sediment DeMaster et al. (1985) obtained a sedimentation rate of up
72	to 4.5cm/y near the mouth of the Changjiang River. In a recent study based on
73	measurements of ¹³⁷ Cs throughout the ECS, Huh and Su (1999) indicated that the
74	sedimentation rates in the ECS varied by two orders of magnitude, from 2 to 0.02
75	cm/y, and generally decreased southwards along the inner shelf and eastwards
76	offshore. Based on the spatial distributions of the grain size, carbonate, organic
77	carbon contents, metals/aluminum ratios and the δC^{13} content of organic carbon, the
78	ECS continental shelf was divided into five major regions: the Delta, inner shelf,
79	middle shelf, outer shelf and northeast outer shelf (Lin et al., 2002). Major types of
80	sediments occurring there include terrigenous sediments from the Changjiang River,
81	relict sediment from the middle shelf, biogenic carbonate from the outer shelf and
82	sediments from the Yellow Sea (Lin et al., 2002).
02	

83

84

85 **2.2** Analytical method

- After thawing, the cores samples were extruded vertically with a hydraulic jack and sampled at 1 cm thickness at the surface. The outer rim (~ 0.5cm) of each sediment slab was trimmed off to avoid contamination between layers.
- 89 Approximately 10-20 g of each surface sample (0-1 cm) was freeze-dried, ground and

90	homogenized with a mortar and pestle. The processed sample was stored in
91	acid-cleaned polypropylene tubes for further analysis. The bulk sediment samples
92	were divided into two sub-samples for the determinations of total organic carbon and
93	trace metals.

Total organic carbon analysis

Total organic carbon (TOC) contents in the sediment samples were measured by a
Horbia carbon analyzer 8210 after the samples were smoked with concentrated HCl
acid in a closed container for 48 hours to remove the inorganic C content. The
detailed analytical procedure of TOC can be found in Fang and Hong (1999).

Trace metals analysis

The trace metals contents in the surface sediments were totally digested with hydrofluoric acid (HF) in combination with aqua regia and heated on a hot plate at 200 °C for about 8 hours and evaporated to dryness. After cooling, the residue was dissolved with 0.5ml HNO₃ and the solution was made up with Milli-Q water to a volume of 25 ml in a volumetric tube. The final acidic solution was transferred into a 50ml centrifuge tube and was centrifuged at a speed of 4000 rpm for 5 minutes. The clear supernatant was stored in acid-cleaned polypropylene tubes and was analyzed for trace metals (Cu, Fe, Mn, Ni, Pb and Zn) by flame atomic absorption spectrometry using a Perkin-Elmer Analyst 800A.

112	Analytical quality assurance was performed by measurements of the PACS-2
113	reference material (National Research Council of Canada). The concentrations (n=6)
114	of trace metals measured in the PACS-2 reference material (one standard deviation)
115	were as follows: Cu, $286 \pm 14 \ \mu g/g$; Mn, $412 \pm 18 \ \mu g/g$; Ni, $38.8 \pm 1.5 \ \mu g/g$; Pb, 167
116	\pm 3 $\mu g/g$; and Zn, 340 \pm 11 $\mu g/g$, respectively. The ratio of the measured
117	concentration to the certified value and precision (one standard deviation) was as
118	follow: Cu, 92.6 \pm 4.0%; Mn, 94.5 \pm 4.4%; Ni, 98.3 \pm 4.0%; Pb, 91.7 \pm 1.8%; and Zn
119	$93.4 \pm 3.4\%$.
120	
121	3. RESULTS AND DISCUSSION
122	3.1 Spatial distribution
123	The concentration ranges of TOC and trace metals in surface sediments of the ECS
124	were as follows: TOC, 0.10-0.61%; Cu, 4.3-41.5 $\mu g/g$; Mn, 152-1152 $\mu g/g$; Ni,
125	$8.2\text{-}48.6~\mu\text{g/g};$ Pb, $10.0\text{-}44.8~\mu\text{g/g};$ Zn, $18.2\text{-}114~\mu\text{g/g};$ Fe, $0.62\text{-}3.97~\%$ and Al,
126	4.35-8.49 %, respectively. The concentrations of TOC and trace metals found at each
127	station are listed in Table 1. The spatial distributions of TOC and trace metals are
128	shown in Fig.2. Higher concentrations of TOC and trace metals were generally found
129	on the inner shelf, especially the area off Hangzhou Bay. Away from the Hangzhou

good agreement with TOC decreasing along transects radiating outwards from the 132 mouth of the Changjiang River. Therefore, it supports the view that Changjiang River

Bay area, concentrations (except for Mn) decreased in both a southerly (along the

inner shelf) and south-easterly (middle and outer shelves) direction. This finding is in

130

131

133

is a dominant factor resulting in elevated trace metals and TOC concentrations on the ECS (Lin et al., 2002) The spatial distributions of trace metals and TOC in the ECS generally exhibited similar patterns and the concentration of TOC correlated well with trace metals (Fig.3). It is well established that natural organic matter (NOM) has a high affinity for trace metals in the aquatic environment (Stumm and Morgan, 1996). As a consequence, it affects the geochemical behavior of trace metal in the aquatic environment. The coupling between the cycles of TOC and trace metals is ultimately reflected in the chemical composition of marine sediments (Basaham and El-Sayed, 1998; Fang and Hong, 1999; Lin et al., 2002).

In addition, the distribution of Mn showed a distinct peak situated between the middle and outer shelves at approximately located at 27° N and 123.5° E. The mechanism caused such a distribution is probably due to the sediment of this area being dominated by biogenic carbonate (Lin et al., 2002). Previous studies have shown that dissolved manganese can become adsorbed on, or incorporated into, freshly precipitated CaCO₃ in seawater (e.g. Wartel et al., 1990). Wartel et al. (1990, 1991) used suspended particulate matters from the English Channel, which is high in carbonate minerals, to study the interaction of Mn⁺² in the CaCO₃ structure. They concluded that the adsorption on and substitution in calcite are the major mechanisms controlling the dissolved concentration of Mn in seawater along the French coast of the English Channel. Recent studies on suspended particulate matter from the Seine Estuary have also indicated that the majority of particulate Mn is bound to carbonate

(Boughriet et al., 1992; 1994). A good correlation between concentrations of Mn and
carbonate in marine sediments has been reported off the southwestern coast of
Taiwan (Fang and Hong, 1999).

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

Total concentrations of trace metals in the inner shelf sediment found in the present study were in good agreement with the report by Yuan et al. (2004) who used the four-step sequential extraction procedure to analyze coastal sediments outside of the Changiang Estuary. Their results also indicated that more than 90% of Fe and 60-80% of Cu, Ni and Zn total concentrations were present in the residual fraction. In contrast, the concentrations of Mn and Pb were dominant in the non-residual fraction, accounting for more than 60% of the total concentrations. A comparison of trace metals concentrations in shelf sediments around the world is given in Table 2. It can be seen that the concentrations of trace metals, except Mn, found in the continental shelves, such as the Arabian Gulf, the Mediterranean Sea, the Aegean Sea and the Laptev Sea, around the world are quite comparable. However, the average concentration of Mn found in the ECS is two-three folds higher than those of the above continental shelves. Comparably high concentrations of Mn have been reported by Nolting et al. (1996) who indicated that Mn lateral distribution in surface sediments showed an increase from 1000 µg/g in the mouth of the Lena River to > 5000 µg/g in the eastern part of the Laptev Sea. They attributed these higher concentrations to the diagenetic process in sediments which caused large upward fluxes of Mn. The findings of Nolting et al. (1996) elucidate that trace metal, especial

the redox sensitive metal like Fe and Mn, contents in marine sediments may increase several folds through the naturally geochemical process regardless of the anthropogenic influence.

181

182

193

194

195

196

197

198

199

3.2 Enrichment factor

Trace metals concentrations in marine surface sediments can vary widely (Luoma, 183 1990). As a result, it is difficult to evaluate whether the observed concentration in 184 marine sediments is influenced by anthropogenic sources or not without normalizing 185 186 the result. Some normalising procedures are widely used to compensate for 187 differences in grain size variations and carbonate content, and thus provide a means separating anthropogenic sources from natural inputs (Luoma, 1990). 188 Normalization to a background level of metals in samples with different 189 characteristics can be accomplished by calculating an enrichment factor (EF) relative 190 to the reference sample. In the equation 191

192 $EF = (M/Al)_S/(M/Al)_R,$

 $(M/Al)_S$ and $(M/Al)_R$ are the ratio of metal to Al concentrations in sample and in reference sample, respectively. It is found that the metal concentrations at stations of the outer shelf in the ECS were the least among the study areas, which may indicate that the disturbance of the outer shelf was relatively minor. In order to avoid the natural differences of sediment textures in different environments, the reference sample is taken from the data of outer shelf stations in the present study. The average concentrations of each metal and Al at all stations of outer shelf are considered as the

200	reference values which are used to calculate the EF and assess the contamination
201	status of the ECS. The EF range of the studied metals was as follow: Fe, 0.43-1.93
202	(average 1.22); Cu, 0.67-5.83 (average 1.96); Mn, 0.54-3.76 (average 1.47); Ni,
203	0.52-2.57 (average 1.42); Pb, 0.56-2.07(average 1.29); and Zn, 0.51-2.89 (average
204	1.42). Contour plots of EF distribution for each metal are shown in Fig.4.
205	Surprisingly, the EF values of Cu are the highest and indicate a marked
206	anthropogenic burden, suggesting that Cu was the most contaminated metal among
207	the studied metals. However, it can be seen in Fig.4 that the contour values of each
208	metal greater than 2 generally distributed in the inner shelf. While, the contour values
209	in the middle and outer shelves are within the range of 1-2 and approache to 1,
210	respectively. The EF values suggest the inner shelf of the ECS was mildly
211	contaminated by trace metals. Such a metal contamination did not further extend to
212	the middle and outer shelves.

An EF value of 1 indicates a predominantly natural origin for the element in sediment, while values greater than 1.5 indicate enrichment by either natural processes (e.g. biota contributions) or anthropogenic influences (Zhang and Liu, 2002). EF values lower than 0.5 can reflect mobilization and loss of these elements relative to Al, or indicate an overestimation of the reference metal contents (Zhang, 1995; Mil-Homens et al., 2006).

3.3 Trace metals sedimentation flux

Huh and coworker employed the radionuclide method (²¹⁰Pb, ¹³⁷Cs and ^{239,240}Pu) to comprehensively evaluate the sedimentation rates and mass accumulation rates in the East China Sea (Huh and Su, 1999; Su and Huh, 2002). Based on their data and trace metals concentrations in surface sediment found in the present study, an attempt is made to calculate the trace metals sedimentation fluxes in the ECS. To facilitate the calculation, the calculated area is divided into five boxes: estuary (box I), inner shelf (box II), middle shelf (box III and IV), and outer shelf (box V) (Fig. 5), according to the value of mass accumulation rate (MAR) in each box observed by Huh and coworker (Huh and Su, 1999; Su and Huh, 2002). The middle shelf area is divided into two boxes because the MAR in the northern middle shelf slightly differed from the southern middle shelf.

Due to the ECS being adjacent to the Yellow Sea to the north and with the North Pacific Ocean to the east, its total area is difficult to determine. Two widely accepted values are 0.74 x 10⁶ km² for the total area of the ECS and 0.51 x 10⁶ km² for the area with a water depth < 200m (Wong et al., 2000, and references cited therein). The calculated area of the present study is approximately 0.376 x 10⁶ km², which accounts for about 50% of the whole ECS area provided by Wong et al. (2000) and about 74% of the continental shelf area. Table 3 shows the area, the concentration range of trace metals obtained in the present study and the mass accumulation rate (MAR) in each box.

244	There are three values for each metal-related parameter: minimum, maximum and
245	average. The minimum value of the annual metals sedimentation flux was calculated
246	from the minimum concentration of metals multiplied the minimum value of MAR in
247	each box. The maximum and average values were calculated in a similar manner. The
248	average annual sedimentation fluxes of trace metals in the calculated area were as
249	follow: Fe, 34800 x 10 ⁹ g/y; Mn, 907 x 10 ⁹ g/y; Cu, 31.0 x 10 ⁹ g/y; Ni, 44.8 x 10 ⁹ g/y;
250	Pb, 43.2 x 10 ⁹ g/y; and Zn, 108 x 10 ⁹ g/y. Most of the sedimentation fluxes of trace
251	metals were concentrated in the inner shelf (box II), accounting for 55-70% of the
252	total fluxes of each metal. The second important area was the estuarine zone (box I),
253	contributing from 10 to 17% of the total fluxes of each metal. These results indicate
254	that the suspended loads of metals exported from the Changjiang River catchment
255	were mostly deposited on the inner shelf. It is well known that the continental shelf
256	sediments originate primarily from the riverine suspended load. The suspended load
257	of the Changjiang River is the major contribution and the four middle size rivers,
258	namely the Jiaojiang, the Qiantangjiang, the Jiulongjiang and the Minjiang,
259	contribute minor inputs to the ECS (Zhang and Liu, 2002). The upper part of Table 4
260	summarizes the annual flux of particles to the coast and their trace metal contents.
261	The calculated annual chemical fluxes of particulate metals from these rivers are
262	listed in the lower part of Table 4. These fluxes are as follows: Fe, 24456 x 10 ⁹ g/y;
263	Mn, 386.6 x 10 ⁹ g/y; Cu, 29.97 x 10 ⁹ g/y; Ni, 30.67 x 10 ⁹ g/y; Pb, 19.87 x 10 ⁹ g/y;
264	and Zn, 46.67 x 10 ⁹ g/y.

These riverine fluxes of particulate metals are generally lower than, but with the same magnitude as, the calculated sedimentation fluxes. The reason for this phenomenon may attribute to the anthropogenic influence as indicated in the enrichment factor values. The calculation bias of sedimentation fluxes could also be another reason because the difference of maximum and minimum values may vary one order of magnitude. However, the data accuracy of the riverine sediment transportation fluxes and properties shown in literature (Zhang and Liu, 2002, and references cited therein) should be taken into account when calculating the riverine annual transportation fluxes. Since the riverine data were established in the early 1990s. It is known that China launched its modernization campaign from 1980 and substantially increased its economic development in the last two decades (Guo et al., 2006). The rapid economic development of China may alter the environment. One of the evidences is that the Asian dust storm which occurred since 2000 (Mori et al., 2003). Thus, in order to obtain a more accurate calculation of the riverine annual fluxes of trace metals, the updating riverine data are necessary to be used. Unfortunately, it is not able to find the updating data in the literature.

282

283

284

285

286

287

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

3.4 Atmospheric trace metals flux

Owing to its rapid industrial development and urbanization since 1980, the frequency and scale of dust events giving rise to dust storm aerosols has increased rapidly in the east Asian region since 2000 (Mori et al., 2003). Thus, Asian countries suffer from the dust storms which annually occur in the late winter and spring in this

288	decade. Asian dust storms, generated when the surface soil in the arid region of the
289	Asian continental landmass is lifted by winds, move southeastward out of the China
290	continent, the northeasterly monsoon prevails south of 30 °N following the passage
291	of the cold front (Hsu et al., 2008). Zhang et al (1997) estimated China's annual
292	emission of dusts to be Tg, 50% of which is subject to long-range transport to the
293	Pacific Ocean and beyond. The East China Sea is situated the right pathway of the
294	Asian dust storms. As a result, it is expected that the atmospheric dry deposition may
295	provide a substantial amount of chemical constituents to the East China Sea.
296	
297	Research into Asian dust storms impact on the biogeochemistry of the ECS,
298	especially with respect to biological bloom and budget balance of nutrients and trace
299	metals, has been conducted by several research groups (Yuan and Zhang, 2006; Hsu
300	et al., 2008). A comprehensive study carried out by Hsu et al (2008) who conducted
301	several cruises to collect the marine aerosols from the ECS during the spring of 2005
302	and 2007. They analyzed marine aerosol samples for both the water-soluble and the
303	total concentration of 27 trace elements and calculated the dry deposition fluxes.
304	Their results for trace metals dry deposition fluxes were as follows: Fe, 39±50
305	$\mu g/m^2/d$; Cu, 12 ± 14 $\mu g/m^2/d$; Mn, 6.7 ± 14.3 $\mu g/m^2/d$; Ni, 0.24 ± 0.29 $\mu g/m^2/d$; Pb,
306	$2.5\pm6.7~\mu g/m^2/d$; and Zn, $19\pm39~\mu g/m^2/d$. We used these values to calculate 120-day
307	and 180-day of the aerosol dry deposition fluxes of these metals in same area, 0.376 x
308	10 ⁶ km ² , as the calculation of metals sedimentation fluxes in the ECS, as shown
309	above. The calculated result for the aerosol dry deposition fluxes and the riverine

annual transportation fluxes of these metals are depicted together in Fig. 6.
Surprisingly, the aerosol dry deposition fluxes of these metals are relatively small
compared with the riverine annual fluxes. The percentage of 120-day aerosol dry
deposition fluxes of these metals to the riverine annual fluxes is as follows: Cu and
Zn, 1.8%; Pb, 0.56%; Mn, 0.08%; Ni, 0.035%; and Fe, 0.007%. This result may
suggest that the aerosol dry deposition fluxes of Fe, Mn, Ni and Pb can be ignored,
and of Cu as well as Zn contribute a small amount of fluxes to the ECS when
comparing with the riverine fluxes.

4. Conclusions

The water quality of the ECS has been getting deleterious due to the rapid industrial development and urbanization of China since 1980. However, the results of this study find that the surface sediment of the inner shelf of the East China Sea was mildly contaminated by trace metals. Elevated concentrations of trace metals were generally found in the Hangzhou Bay and along the inner shelf of the ECS. Trace metals contamination did not extend further to the middle and outer shelves of the ECS. The combination of two effects may explain this finding. First, more than 80% the sedimentation fluxes of trace metals are deposited in the inner shelf and the Changjiang estuarine zone. Secondly, the atmospheric dry deposition fluxes of trace metals to the ECS are relatively small compared with the riverine annual fluxes.

Finally, the estimated annual sedimentation fluxes of trace metals in this study

332	are generally higher than those of the riverine annual transportation fluxes of
333	particulate metals. The anthropogenic source is probably the major mechanism
334	However, the use of the old published data of the riverine particulate composition and
335	flux in literature to calculate the riverine annual fluxes may cause under estimation
336	because the environmental changes may occur substantially due to the rapid industrial
337	development and urbanization in China.
338	
339	
340	
341	
342	
343	
344	
345	
346	
347	
348	
349	
350	
351	
352	
353	

354	
355	
356	
357	
358	Acknowledgments
359	We wish to gratefully acknowledge the assistance provided by the captain and
360	crew of the R/V Research-I during sampling. The authors are grateful to two
361	anonymous referees for their constructive comments and suggestions which led to
362	significant improvements to the manuscript. This research was financially supported
363	by the National Science Council of the Republic of China under grants NSC
364	95-2611-M-019-004, 96-2611-M-019-001 and 97-2611-M-019-012.
365	
366	
367	
368	
369	
370	
371	
372	
373	
374	
375	

376	
377	
378	
379	REFERENCES
380	
381	Aloupi, M., Angelidis, M.O., 2001. Normalization to lithium for the assessment of
382	metal contamination in coastal sediment cores from the Aegean Sea, Greece. Marine
383	Environmental Research 52, 1-12.
384	
385	Basaham, A.S., El-Sayed, M.A., 1998. Distribution and phase association of some
386	major and trace elements in the Arabian Gulf sediments. Estuarine, Coastal and Shelf
387	Science 46, 185-194.
388	
389	Bougheriet, A., Ouddane, B., Fischer, J.C., Wartel, M., Leman, G., 1992. Variability
390	of dissolved Mn and Zn in the Seine estuary and chemical speciation of these metals
391	in suspended matter. Water Research 26, 1359-1378.
392	
393	Bougheriet, A., Wartel, M., Cordier, C., Douez, C., Deram, L., Martin, E., Ouddane,
394	B., Chamley, H., Recourt, P., 1994. Chemical speciation of some particulate elements
395	in the English Channel, and impact of human activities on the magnetic behavior of
396	suspended matter. Marine Pollution Bulletin 28, 541-556.

397

398	Cao, P., Huo, F., Gu, G., Zhou, Y., 1989. Relationship between suspended sediments
399	from the Changjiang estuary and the evolution of the embayed muddy coast of
100	Zhejinag Province. Acta Oceanol Sinica 8, 273-283.
4 01	
102	Chen, C.C., Gong, G.C., Shiah, F.K., 2007. Hypoxia in the East China Sea: One of
103	largest coastal low-oxygen areas in the world. Marine Environmental Research 64,
104	399-408.
105	
106	DeMaster, D., Mckee, B., Nittrouer, C., Qian, J., Cheng, G., 1985. Rates of sediment
107	accumulation and particle reworking based on radiochemical measurements from
108	continental shelf deposits in the East China Sea. Continental Shelf Research 4,
109	143-158.
4 10	
4 11	Fang, T.H., Hong, E., 1999. Mechanisms influencing the spatial distribution of trace
112	metals in surficial sediments off the south-western Taiwan. Marine Pollution Bulletin
113	38, 1026-1037.
114	
115	Goldsmith, S.L., Krom, M.D., Sandler, A., Herut, B., 2001. Spatial trends in the
116	chemical composition of sediments on the continental shelf slope off the
1 17	Mediterranean coast of Israel. Continental Shelf Research 21, 1879-1900.
118	
119	Guo, Z.G., Lin, T., Zhang, G., Yang, Z.S., Fang, M., 2006. High-resolution

depositional record of polycyclic aromatic hydrocarbons in the central continental 420 shelf mud of the East China Sea. Environmental Science & Technology 40, 421 5304-5311. 422 423 424 Hsu, S.C., Wong, G.T.F., Gong, G.C., Shiah, F.K., Huang, Y.T., Kao, S.J., Tsai, F., 425 Lung, S.C., Lin, F.J., Lin, I.I., Hung, C.C., Tseng, C.M., 2008. Source, solubility, and dry deposition of aerosol trace elements over the East China Sea. Marine Chemistry, 426 427 doi:10.1016/j.marchem.2008.10.003. 428 429 Huh, C.A., Chen, H. Y., 1999. History of lead pollution recorded in East China Sea 430 sediments. Marine Pollution Bulletin 38, 545-549. 431 Huh, C. A., Su, C., 1999. Sedimentation dynamics in the East China Sea elucidated 432 from ²¹⁰Pb, ¹³⁷Cs and ^{239, 240}Pu. Marine Geology 160, 183-196. 433 434 435 Lin, S., Huang, K., Chen, S., 2002. Sulfate reduction and iron sulfide mineral 436 formation in the southern East China Sea continental slope sediment. Deep Sea Research I 49, 1837-1852. 437 438 439 Loring, D.H., Naes, K., Dahle, S., Matishov, G.G., Illin, G., 1995. Arsenic, trace 440 metals, and organic micro contaminants in sediments from the Pechora Sea, Russia. 441 Marine Geology 128, 153-167.

442 Luoma, S., 1990. Processes affecting metal concentrations in estuarine and coastal 443 marine sediments, in: Furness, R., Rainbow, P. (Eds.), Heavy Metals in the Marine 444 Environment, CRC Press Inc., Boca Raton, pp.51-66. 445 Macias-Zamora, J.V., Villaescusa-Celaya, J.A., Munoz-Barbosa, A., Gold-Bouchot, 446 447 G., 1999. Trace metals in sediment cores from the Campeche shelf, Gulf of Mexico. 448 Environmental Pollution 104, 69-77. 449 450 Mil-Homens, M., Stevens, R.L., Abrantes, F., Cato, I., 2006. Heavy metal assessment 451 for surface sediments from three areas of the Portuguese continental shelf. Continental Shelf Research 26, 1184-1205. 452 453 Mori, I., Nishikawa, M., Tanimura, T., Quan, H., 2003. Change in size distribution 454 455 and chemical composition of kosa (Asian dust) aerosol during long-range transport. Atmospheric Environment 37, 4253-4263. 456 457 Naidu, A.S., Blanchard, A., Kelley, J.J., Goering, J.J., Hameed, M.J., Baskaran, M., 458 459 1997. Heavy metals in Chukchi Sea sediments as compared to selected circum-arctic 460 shelves. Marine Pollution Bulletin 35, 260-269. 461 Nolting, R.F., van Dalen, M., Helder, W., 1996. Distribution of trace and major 462 elements in sediment and pore waters of the Lena Delta and Laptev Sea. Marine 463

464	Chemistry 53, 285-299.
465	
466	Nolting, R.F., Ramkema, A., Everaarts, J.M., 1999. The geochemistry of Cu, Cd, Zn,
467	Ni and Pb in sediment cores from the continental slope of the Banc d'Arguin
468 469	(Mauritania). Continental Shelf Research 19, 665-691.
470	Shi, J., Liang, L., Yuan, C., He, B., 2005. Methylmercury and total mercury in
471	sediments collected from the East China Sea. Bull. Environmental Contamination
472	Toxicology 74, 980-987.
473	
474	Sternberg, R., Larson, L., Miao, Y., 1985. Tidally driven sediment transport on the
475	East China Sea continental shelf. Continental Shelf Research 5, 105-120.
476	
477	Stumm, W., Morgan, J., 1996. Aquatic Chemistry. 3 rd ed. A Wiley-Interscience
478	Publication, John Wiley & Sons, Inc.
479	
480	Su, C., Huh, C., 2002. ²¹⁰ Pb, ¹³⁷ Cs and ^{239,240} Pu in the East China Sea sediments:
481	sources, pathways and budgets of sediments and radionuclides. Marine Geology 183,
482	163-178.
483	
484	Wartel, M., Skiker, M., Auger, Y., Boughriet, A., 1990. Interaction of manganese (II)
485	with carbonates in seawater: assessment of the solubility product of MnCO ₃ and Mn

486	distribution coefficient between the liquid phase and CaCO ₃ particles. Marine
487	Chemistry 29, 99-117.
488	
489	Wartel, M., Skiker, M., Auger, Y., Boughriet, A., Puskaric, E., Guegueniat, P., 1991.
490	Seasonal variation of Mn ⁺² adsorption on to calcareous surfaces in the English
491	Channel, and its implication on the manganese distribution coefficient. Marine
492	Chemistry 36, 85-105.
493	
494	Wong, G., Chao, S., Li, Y., Shiah, F., 2000. The Kuroshio Edge Exchange Processes
495	(KEEP) study - an introduction to hypotheses and highlights. Continental Shelf
496	Research 20, 335-347.
497	
498	Yuan, C., Shi, J., He, B., Liu, J., Liang, L., Jiang, G., 2004. Speciation of heavy
499	metals in marine sediments from the East Chia Sea by ICP-MS with sequential
500	extraction. Environmental International 30, 769-783.
501	
502	Yuan, W., Zhang, J., 2006. High correlations between Asian dust events and
503	biological productivity in the western North Pacific. Geophysical Research Letters 33
504	L07603. doi:10.1029/2005GL025174.
505	Zhang, J., 1995. Geochemistry of trace metals from Chinese river/estuary system: An
506	overview. Estuarine, Coastal and Shelf Science 41, 631-658.
507	Zhang, J., Liu., C.L., 2002. Riverine composition and estuarine geochemistry of

	ACCEL LED MANOSCILLI I
508	particulate metals in China-weathering features, anthropogenic impact and chemical
509	fluxes. Estuarine Coastal Shelf Science 45, 1051-1070.
510	
511	Zhang, X.Y., Arimoto, R., An, Z.S., 1997. Dust emission from Chinese desert sources
512	linked to variations in atmospheric circulation. Journal of Geophysical Research 102,
513	28041-28047.

514	
515	Figures captions
516 517	Fig.1. Map showing sampling stations in the East China Sea.
518	Fig.2. Spatial variation of trace metals concentrations in the surface sediment in the
519	study area of the East China Sea.
520	Fig.3 Scatter plot between concentrations of TOC and trace metals and their
521	correlation
522	Fig.4. Spatial variation of enrichment factor of trace metals in the study area of the
523	East China Sea.
524	Fig.5. Sub-areas, as defined on the basis of sedimentation rates, and trace metal
525	content. These sub-areas are: (I) estuary; (II) inner shelf; (III) middle shelf; (IV)
526	middle shelf; and (V) outer shelf
527	Fig.6. Comparison of the riverine annual transportation fluxes of trace metals with
528	Asian dusts dry deposition fluxes of trace metals (120-day and 180-day) to the
529	East China Sea.
530	
531	
532533	
534	
535	
536	
537	
538	
539	
540	
541	

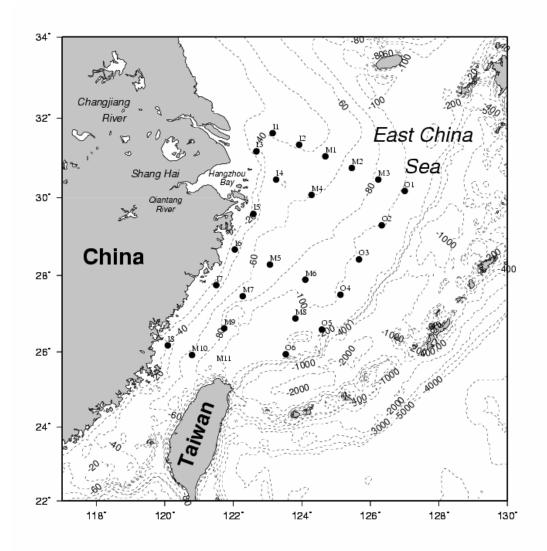


Fig.1

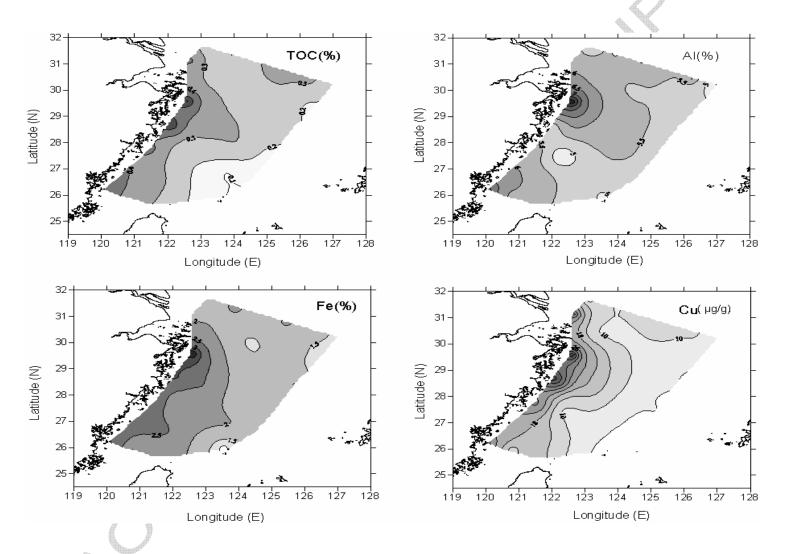


Fig.2

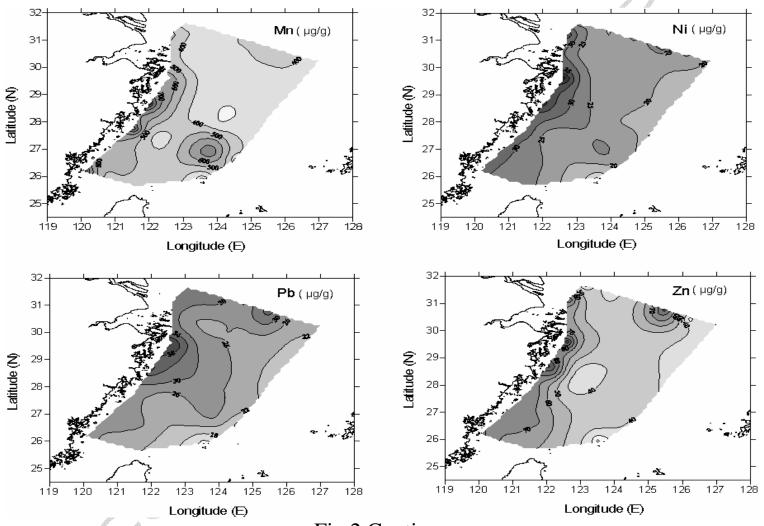


Fig.2 Continue

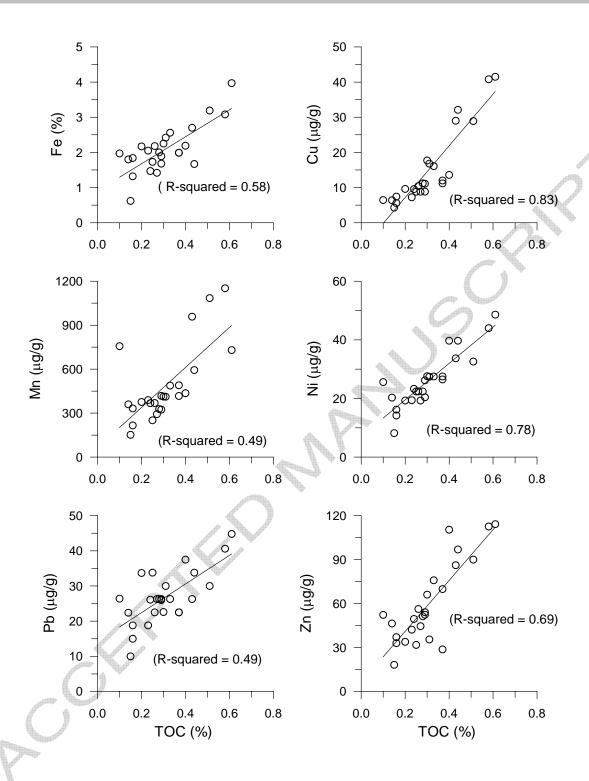
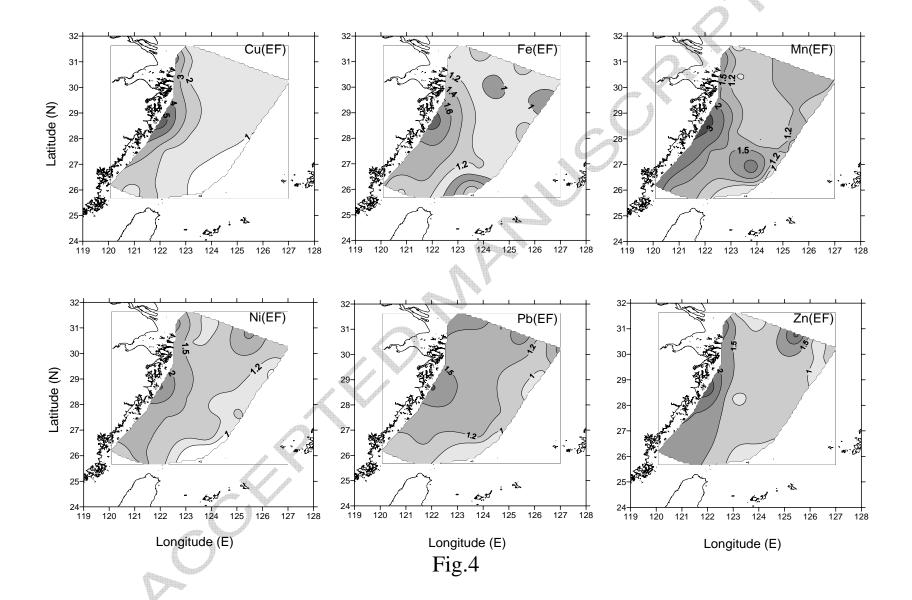



Fig. 3

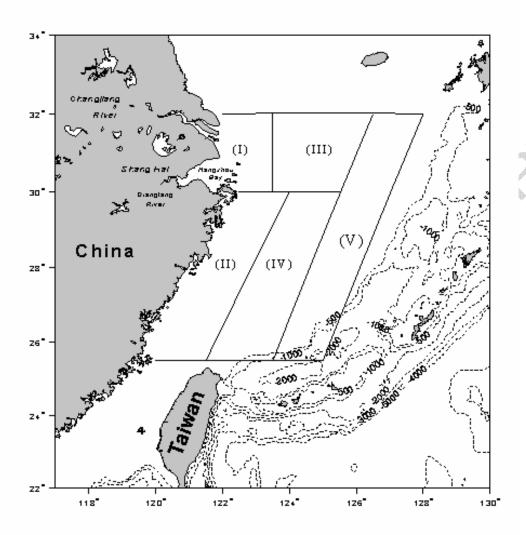


Fig.5

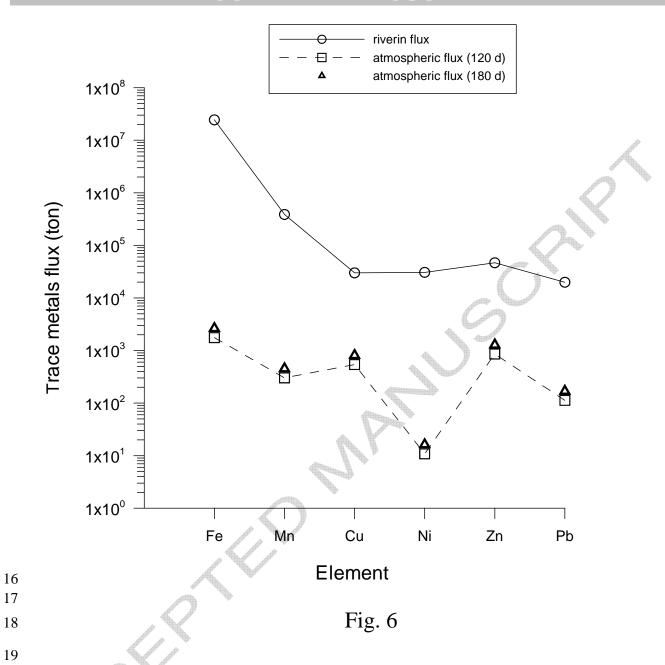


Table 1. The concentrations of trace metals in surface sediments at the study stations in the East China Sea.

Station	Long.(E)	Lat. (N)	TOC	Al	Fe	Cu	Mn	Ni	Pb	Zn
Station			(%)	(%)	(%)	$(\mu g/g)$				
I1	123°8.75′	31°37.49′	0.25	5.12	1.73	8.83	251	22.4	33.8	31.8
I2	123°55.00′	31°20.00′	0.20	5.47	2.17	9.61	376	19.3	33.7	33.9
I3	122°40.00′	31°10.00′	0.44	5.67	1.67	32.1	594	39.7	33.8	96.9
I4	123°15.00′	30°27.50′	0.28	5.84	2.00	11.2	328	22.4	26.3	51.3
I5	122°35.00′	29°35.00′	0.61	8.49	3.97	41.5	730	48.6	44.8	114.2
I6	122°2.50′	28°40.00′	0.58	5.33	3.08	40.8	1152	44.0	40.6	112.6
I7	121°30.00′	27°45.00′	0.43	5.83	2.70	29.0	958	33.7	26.3	86.2
18	120°5.00′	26°10.00′	0.51	7.44	3.19	28.9	1085	32.6	30.0	90.0
M1	124°41.25′	31°2.50′	0.29	6.03	1.89	11.1	418	26.2	26.0	54.1
M2	125°27.50′	30°45.00′	0.40	5.63	2.19	13.6	436	39.7	37.5	110.4
M3	126°13.75′	30°27.50′	0.37	6.03	1.99	12.0	490	26.5	22.5	28.7
M4	124°16.67′	30°4.17′	0.24	5.48	1.47	9.56	368	23.3	26.1	49.5
M5	123°4.17′	28°16.67′	0.31	5.75	2.42	16.8	412	27.4	30.0	35.5
M6	124°5.84′	27°53.33′	0.29	5.66	1.68	8.84	324	20.4	26.3	52.4
M7	122°16.25′	27°27.50′	0.26	4.75	2.18	10.4	369	22.4	22.5	56.3
M8	123°48.75′	26°52.50′	0.10	5.35	1.97	6.45	757	25.6	26.4	52.3
M9	121°43.96′	26°37.09′	0.33	5.77	2.56	16.1	488	27.5	26.3	75.9
M10	120°47.45′	25°55.00′	0.37	5.76	1.99	11.2	417	27.5	22.5	69.9
M11	121°29.90′	25°40.00′	0.30	5.65	2.25	17.7	413	27.6	22.6	66.1
01	127°0.01′	30°10.00′	0.27	4.35	1.42	8.82	293	19.3	26.3	44.6
O2	126°20.00′	29°17.50′	0.16	5.24	1.32	7.43	332	16.2	18.8	33.0
O3	125°40.00′	28°25.00′	0.23	5.37	2.05	7.24	389	19.4	18.8	42.2
O4	125°7.50′	27°30.01′	0.14	5.15	1.80	6.40	360	20.3	22.4	46.4
O5	124°35.00′	26°35.00′	0.16	5.34	1.84	5.60	216	14.2	15.0	37.1
O6	123°31.88′	25°56.26′	0.15	4.87	0.62	4.29	152	8.17	10.0	18.2

Table 2. Comparison of trace metals concentrations in surface sediment in the various continental shelves around the world. (Concentration unit is in $\mu g/g$, except Al and Fe in %)

Location	Digested Reagent	Al	Fe	Mn	Cu	Ni	Pb	Zn	Reference
East China Sea	HCl/HNO ₃ /HF	4.4-8.5 (5.7)	0.62-4.0 (2.1)	152-1152 (484)	4.3-42 (15)	8.2-49 (26)	10-49 (27)	18-114 (60)	This study
Arabian Gulf	HCl/HNO ₃ /HF	0.1-3.5 (0.69)	0.1-2.5 (0.69)	18-415 (165)	2-21 (9)	2-101 (30)	ND	4-58 (22)	Basaham & El-Sayed, 1998
Mediterranean, Israel coast	HNO_3	2.0-6.4	0.94-5.94	300-900	5.9-28.5	ND	9.9-20.2	22.6-88.6	Goldsmith et al., 2001
Aegean Sea	HCl/HNO ₃ /HF	2.8-5.3 (4)	0.8-2.8 (1.8)	171-323 (251)	5.3-30.5 (17)	ND	20.7-44.2 (34)	13-77 (50)	Aloupi and Angelidis, 2001
Banc d'Arguin, Mauritania	HCl/HNO ₃ /HF	1.19-4.66	0.63-2.34	27-112	2-18	5-32	2.8-8.9	19-65	Nolting et al., 1999
Campeche shelf, Gulf of Mexico	HCl/HNO ₃	ND	<0.5-7.9 (1.84)	12.5-449 (111)	3.8-18.7 (7.5)	0.56-76.9 (23.0)	0.22-20.2 (4.3)	0.04-79.6 (18.5)	Macias-Zamora et al., 1999
Laptev Sea, Siberia	HCl/HNO ₃ /HF	5.0-7.6	1.9-5.2	187-5398	2-20	16-33	12-22	56-120	Nolting et al., 1996
Chukchi Sea, Alaska	HNO ₃ /HF	1.6-8.3 (4.7)	0.7-8.1 (3)	96-610 (252)	8-31 (17)	10-38 (22)	ND	23-106 (61)	Naidu et al., 1997
Pechora Sea, Russia		2.97-6.88 (4.7)	0.51-6.88 (3)	154-684 (377)	4-25 (13)	6-47 (25)	9-22 (14)	7-97 (47)	Loring et al., 1995

ND: no data. Value in parentheses is an average.

Table 3. The area, ranges of metals concentration, mass accumulation rate (MAR), and annual sedimentation flux for each box of the East China Sea.

	or the D	ast emma sea.					- T	
Box	Area (km²)	MAR* (g/cm²/y)	Fe	Mn	Cu	Ni	Pb	Zn
			metals conce	ntration (Fe in 9	%; all others in μ	g/g)	·	
I	31900	0.40-1.09(0.75)	1.66-2.00 (1.80)	251-593 (391)	8.8-32.1 (17.4)	22.4-39.7(28.2)	26.3-33.8 (31.3)	31.8-96.9 (60.0)
II	98600	0.28-1.17(0.73)	1.99-3.97 (2.99)	417-1152 (869)	11.2-41.5(30.3)	27.5-48.6 (37.3)	22.5-44.8 (32.9)	69.9-114 (94.6)
III	53000	0.06-0.98(0.32)	1.47-2.19 (1.93)	368-436 (400)	9.6-13.7 (10.9)	19.3-39.8(27.1)	26.0-37.5 (30.8)	33.9-110 (62.0)
IV	86600	0.07-0.61(0.26)	0.65-2.56 (1.96)	152-757 (417)	4.3-17.7 (11.5)	8.2-27.6 (22.7)	10.0-30.0 (23.4)	18.2-75.9 (51.0)
V	105800	0.03-0.13(0.072)	1.32-2.05 (1.74)	216-490 (347)	5.6-12.0 (7.92)	14.2-26.5 (19.3)	15.0-26.2 (20.6)	28.7-46.4 (38.7)
			annual me	etals sedimentat	ion flux (10 ⁹ g/y)		
I			2120-7000(4300)	32-207(93.6)	1.13-11.2 (4.2)	2.9-13.8(6.70)	3.4-11.7(7.5)	4.1-33.7 (14.4)
II			5500-45800(21500)	115-1330(625)	3.1-47.9 (21.8)	7.6-56.1(26.9)	6.2-51.7(23.6)	19.3-131(68.1)
III			470-11400(3270)	11.7-227(68.0)	0.3-7.1 (1.9)	0.6-20.6(4.60)	0.8-19.5(5.2)	1.1-57.4 (10.5)
IV			370-14500(4400)	9.2-400(93.8)	0.3-9.4 (2.6)	0.5-14.6(5.1)	0.6-15.8(5.3)	1.1-40.1 (11.5)
V			390-2800(1320)	6.4-67.0(26.4)	0.2-1.7 (0.6)	0.4-3.6(1.5)	0.4-3.6(1.6)	0.9-6.4 (2.9)
Total			8850-80500(34800)	175-2230(907)	5.0-77.1(31.0)	12.0-109(44.8)	11.5-102(43.2)	26.4-269 (108)

Value in parentheses is an average.

*: data taken from Huh and Su (1999), Su and Huh (2002)

Table 4. The annual suspended load, the concentration of riverine particulate metals and annual transportation flux of particulate metals of the major Chinese rivers entering to the East China Sea.

_		-		_				·	
River	Suspended Load	Fe	Mn	Cu	Ni	Pb	Zn	Reference	
Kivei	(10^6 t/yr)	re	IVIII	Cu	111	FU	ZII	Ketetetice	
Riverine particulate metals conc. (Fe in %; all others in μg/g)									
Changjiang	461.4	5.2	811	62.3	64.2	39.9	97.7		
Qiantangjiang	4.4			89.3	92.6	76			
Jiaojiang	8.4	3.62	878	36.5	46.1	54.8	105	Zhang and Liu, 2002	
Minjiang	7.7			51.8		62.5			
Jiulongjiang	3.1	5.12	1620	39.5	81	60.6	228		
			Annual flux	(10^9 g/yr)					
Changjiang		23993	374.20	28.75	29.62	18.41	45.08		
Qiantangjiang				0.39	0.41	0.33			
Jiaojiang		304.1	7.38	0.31	0.39	0.46	0.88		
Minjiang				0.40		0.48			
Jiulongjiang		158.7	5.02	0.12	0.25	0.19	0.71		
Tota	al Flux	24456	386.59	29.97	30.67	19.87	46.67		