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Influence of marine phytoplankton, transition metals and sunlight on the species distribution of chromium in surface seawater Running head: Photo-induced reduction of Cr(VI) in sunlit seawater
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The photo-reduction of Cr(VI) to Cr(III) by marine phytoplankton (diatoms, red and green algae),with or without the presence of transition metals (Fe(III), Cu(II) and Mn(II)) was studied. The direct influence of marine phytoplankton on the photochemical reduction of Cr(VI) was confirmed for the first time, and two kinds of mechanism were suggested to be responsible for the species transformation: (a) Cr(VI) in excited state could be reduced by the electron donor in its ground state via photo produced electrons; and (b) the solvated electrons reduce the CrO4 2-anions in their ground state. The conversion ratio of Cr(VI) to Cr(III) increased with increasing algae concentration and irradiation time. Different species of marine phytoplankton were found to have different photo-reducing abilities. The photochemical redox of transition metals could induce the species transformation of chromium. After photo-reduction by marine phytoplankton and transition metals, the ratio of Cr(VI) to Cr(III) was in the range of 1.45~2.16 for five green algae (Tetraselmis levis, Chlorella autotrophica, Dunaliella salina, Nannochloropsis sp., and Tetraselmis subcordiformis), and only 0.48 for Phaeodactylum tricornutum (diatom) and 0.71 for Porphyridium purpureum (red alga). The species distribution of chromium in the sunlit surface seawater was greatly affected by combined effects of marine phytoplankton (main contributor) and transition metals; both synergistic and antagonistic effects were observed. The results provided further insights into the species distribution and the biogeochemical cycle of chromium, and have significant implications for the risk assessment of chromium in the sunlit surface seawater.

Introduction

Developing a full understanding of the distribution and biogeochemical behavior of trace elements in seawater has the potential to provide: (a) unique insights into a wide range of oceanic processes and (b) the mechanisms controlling the fate of contaminants added to the ocean by human activities. Both the Joint Global Ocean Flux Study (JGOFS) and the Land-Ocean Interactions in the Coastal Zone Project (LOICZ), the core projects of the International Geosphere-Biosphere Program (IGBP), are focused on the distribution, transport, transform, cycle, end-result, production and consumption of trace metals.

In seawater, chromium exists in two different oxidation states, Cr(VI) and Cr(III). Similar to many other elements, the toxicological and physiological behavior of chromium depends on its oxidation state, binding partners, potential ligands and solubility. Chromium(III) shows a high affinity for particles at neutral pH (7-8), and is a micronutrient for higher mammals [START_REF] Mertz | Chromium in human nutrition-a review[END_REF]. In contrast, Cr(VI) is toxic and mobile, and can be easily absorbed by living organisms [START_REF] Richard | Aqueous geochemistry of chromium-a review[END_REF][START_REF] Standeven | Is there a role for reactive oxygen species in the mechanism of chromium(VI) carcinogenesis?[END_REF]. Chromium(VI) is an important industrial metal that is considered a priority pollutant by many countries including the USA, UK and Canada. Reduction of Cr(VI) to Cr(III) will not only reduce the toxicity of chromium to living organisms, but also help to precipitate chromium out at pH 8.1 (mainly as insoluble Cr(OH) 3 and soluble coordination compounds). The species transformation of chromium would thus greatly affect its toxicity or bioavailability and its biogeochemical cycle in the ocean.

Thermodynamic calculations predict that in oxygenated seawater (pH 8.1 and pE 12.5) the ratio of Cr (VI) to Cr (III) is 10 21 [START_REF] Elderfield | Chromium speciation in sea water[END_REF], i.e., chromium should exist almost exclusively as Cr(VI), but thermodynamically unstable Cr(III) has also been detected, the ratio of Cr(VI) to Cr(III) was in the range of 1.6~3.1 [START_REF] Hirata | Determination of chromium(III) and total chromium in seawater by on-line column preconcentration inductively coupled plasma mass spectrometry[END_REF]. It is important to provide valid explanations for the distribution of Cr (VI)/Cr (III) in order to understand the species transformation and biogeochemical behavior of chromium, and to assess its toxicity in seawater. The mechanistic investigations on the reduction of chromium have caused much attention [START_REF] Kieber | Indirect photoreduction of aqueous chromium(VI)[END_REF][START_REF] Buerge | Kinetics and pH dependence of chromium(VI) reduction by iron(II)[END_REF][START_REF] Hug | Iron(III) catalyzed photochemical reduction of Chromium(VI) by oxalate and citrate in aqueous solutions[END_REF][START_REF] Abu-Saba | Indirect reduction of hexavalent chromium by copper in the presence of superoxide[END_REF]. Until now, the studies of species transformation of chromium, especially the mechanism of reduction, were focused on single environmental factor such as marine bacteria [START_REF] Smillie | Reduction of chromium(VI) by bacterially produced hydrogen sulphide in a marine environment[END_REF][START_REF] Yang | Speciation transformation of chromium in seawater by bacteria[END_REF], hydrogen peroxide (Pettine and Millero,1990;[START_REF] Pettine | Chromium(Ⅲ) interaction in seawater through its oxidation kinetics[END_REF], iron (Deng et al., 1996;[START_REF] Buerge | Kinetics and pH dependence of chromium(VI) reduction by iron(II)[END_REF][START_REF] Hug | Iron(III) catalyzed photochemical reduction of Chromium(VI) by oxalate and citrate in aqueous solutions[END_REF] and copper [START_REF] Abu-Saba | Indirect reduction of hexavalent chromium by copper in the presence of superoxide[END_REF], which could not provide conclusive reasons for the species transformation and the distribution of chromium in the sunlit surface seawater.

The kinetic effects of biological uptake [START_REF] Roitz | The biogeochemical cycling of manganese in San Francisco Bay: temporal and spatial variations in surface water concentrations[END_REF][START_REF] Li | Influence of nitrate on metal sorption and bioaccumulation in marine phytoplankton, Dunaliella salina[END_REF], redox and photochemical reaction from biological activity on the species transformation and biogeochemical cycle of trace elements in natural waters were very important, in fact may dominate [START_REF] Costa | Photoreduction and evolution of mercury from seawater[END_REF][START_REF] Powell | Photochemical degradation of organic iron complexing ligands in Seawater[END_REF][START_REF] Rose | Predicting iron speciation in coastal waters from the kinetics of sunlight-mediated iron redox cycling[END_REF]. As the effects on the formation and decay of hydrogen peroxide and hydroxyl radicals by some green and blue algae in freshwater were detected [START_REF] Zepp | Influence of phytoplankton on photolysis rates of chemicals in water[END_REF][START_REF] Zuo | Formation of hydrogen peroxide and depletion of oxalic acid in atmospheric water by photolysis of iron(III)-oxalato complexes[END_REF][START_REF] Zuo | Evidence for photochemical formation of H 2 O 2 and oxidation of SO 2 in authentic fog water[END_REF][START_REF] Liu | Photoproduction of hydroxyl radicals in aqueous solution with algae under high-pressure mercury lamp[END_REF][START_REF] Wu | Quantitation for photoinduced formation of hydroxyl radicals in the water-containing Fe(III) and oxalate salts[END_REF], the species transformation of trace elements might be affected by photochemical behavior that is driven by marine phytoplankton. In our previous study, the photo-oxidation of Sb(III) in seawater was observed for the first time and could be accelerated by marine phytoplankton (Li et al., 2006a). Dissolved organic matter (DOM) derived from phytoplankton could facilitate Cr reduction in the presence of light [START_REF] Sanders | Control of trace element reactivity by phytoplankton[END_REF]. A field experiment implies that Cr(III) concentrations were greatest during periods of high biological activity, as indicated by strong correlations between the ratio of Cr(III):Cr(VI) and primary productivity [START_REF] Connelly | Seasonal changes in speciation of dissolved chromium in the surface Sargasso Sea[END_REF]. Both the influence of marine phytoplankton itself (excluding its exudates such as DOM) on the photo-reduction of trace metals and the information on species specific differences in how different phytoplankton might facilitate this reaction have not yet been published.

Transition metals in seawater, including iron, manganese and copper, are usually complexed with organic ligands, forming coordinated complexes [START_REF] Deng | Progress in research on formations and photochemical reactions of hydrogen peroxide in natural waters[END_REF][START_REF] Powell | Photochemical degradation of organic iron complexing ligands in Seawater[END_REF]. Since the electrons in these coordinated metal complexes and their organic ligands are easy to transport, they could readily absorb ultraviolet and visible light and have remarkable photochemical activities. Reaction could affect the redox potential of seawater in the euphotic layer and the speciation of trace elements [START_REF] Zhang | light and Iron(III)-induced oxidation of chromium(III) in the presence of organic acids and manganese(II) in simulated atmospheric water[END_REF][START_REF] Zhang | Studies on marine photochemistry of Fe, Mn, and Cu: A review[END_REF]. For example, photo-induced reduction of Fe(III)-multi-hydroxyl-acid complex and Fe(III)-hydroxy complexes was the significant source of Fe(II), active oxygen species and hydroxyl radicals [START_REF] Deng | Progress in research on formations and photochemical reactions of hydrogen peroxide in natural waters[END_REF][START_REF] Zhang | Photochemical reduction of Cr(VI) in aqueous solutions containing Fe(III)-hydroxy complexes[END_REF][START_REF] White | Role of the photo-Fenton reaction in the production of hydroxyl radicals and photobleaching of colored dissolved organic matter in a coastal river on the southeastern United States[END_REF]. In sunlit oxygenated seawater, the dissolved manganese present can be found in the reduced Mn (II) form. [START_REF] Zhang | Studies on marine photochemistry of Fe, Mn, and Cu: A review[END_REF]. The photo-reduction of Cr(VI) could be similarly driven by photo-redox from transition metals with light, e.g., the photocatalytic cycle of iron contributed to reduction of Cr(VI) [START_REF] Kocot | Photochemistry of the [FeIII(edta)(H2O)]-and [FeIII(edta)(OH)]2complexes in presence of environmentally relevant species[END_REF]. The non-living substances in seawater facilitate the photoreduction of Cr(VI), including inorganic substances such as iron(II) [START_REF] Buerge | Kinetics and pH dependence of chromium(VI) reduction by iron(II)[END_REF][START_REF] Zhang | Iron(II) in rainwater, snow, and surface seawater from a coastal environment[END_REF], Cu(I) [START_REF] Millero | Effect of ionic interactions of the oxidation of Fe(II) and Cu(I) in natural waters[END_REF], hydrogen sulfide [START_REF] Pettine | Reduction of chromium(VI) with hydrogen sulfide in NaCl media[END_REF], superoxide (O 2 -) [START_REF] Abu-Saba | Indirect reduction of hexavalent chromium by copper in the presence of superoxide[END_REF],

and organic compounds such as oxalate and citrate [START_REF] Hug | Iron(III) catalyzed photochemical reduction of Chromium(VI) by oxalate and citrate in aqueous solutions[END_REF]. The presence of Mn(II) affects the oxidation of Cr(III) [START_REF] Zhang | light and Iron(III)-induced oxidation of chromium(III) in the presence of organic acids and manganese(II) in simulated atmospheric water[END_REF], but the presence of manganese on the influence of photoreduction of Cr(VI) in seawater is still not understood. Furthermore, multifactor mechanisms of photo-induced species transformation of chromium have not been discussed to date.

The key parameters affecting the species transformation of trace elements in sunlit surface seawater should include sunlight, marine phytoplankton due to their bioactivity and photo-reactivity and non-living substances 

Materials and methods

Apparatus

A Model GBC 932AA atomic absorption spectrometer (GBC Co., Australia) with a chromium hollow-cathode lamp operated at 6.0 mA was used for all the determinations of chromium. A slit of 1.3 nm was selected in order to isolate 357.9 nm chromium absorption line. A UV-1200 PC spectrophotometer (Pekin Ruili Co., China) was used for the determination of the optical density of algal suspensions. The irradiation experiments were performed with a high-pressure mercury lamp (125 W, its photoemission spectrum was illustrated in Fig. 1) that was covered by glass tube as a filter in order to keep the wavelength of the transmitted light over 300nm. The illuminating intensity was 10000 µmol•photons.m -2 •s -1 , which was detected with a Digit Lux meter (TES 1332, Taiwan, China).

Reagents

All other chemicals were of analytical grade from Shanghai Experiment Reagent Co., China. Double de-ionized water of 18 M ohms cm -1 specific resistivity, obtained in a Milli-Q plus Millipore system, was used to prepare all the solutions and to rinse the previously cleaned laboratory material. Standard stock solutions of Cr(III) and Cr(VI) were prepared, respectively, by dissolving an appropriate amount of CrCl 3 and K 2 Cr 2 O 7 (Merk Co.) in 0.5 mol L -1 HCl solution. All stock solutions were stored in the dark at 4 ℃. Working standard solutions of lower concentrations were prepared daily by appropriate dilution. In order to avoid the adsorption of chromium and contamination, Teflon vessels and 0.45 µm Nuclepore membrane filter (Teflon) were used, which were precleaned in concentrated hydrochloric acid for 24 h. All solutions were sterilized in an autoclave for 20 min at 121℃ and 2 bar, and prepared in a dark chamber.

Marine phytoplankton cultures

Seven species of marine phytoplankton, including the diatom Phaeodactylum tricornutum (A), red alga 

Determination of the biomass

The size of different microalgal genera was different. If the cells were from the same algal specie and cultivated at the same time, the dry weight of the cells was linearly correlated with the optical density of the alga suspension [START_REF] Schmitt | The adsorption kinetics of metal ions onto different microphytoplankton and siliceous earth[END_REF][START_REF] Wang | Determining Surface Areas of Marine Alga Cell by Acid-base titration method[END_REF]. The dry weight of the biomass was determined gravimetrically at several optical densities of 500 ml alga suspension after being dried at 105℃ for 24 h. The optical density was determined with a UV-Vis spectrophotometer at specific wavelengths for A (750 nm), B (750 nm), C (545 nm), D (486 nm), E (545 nm), F (475 nm), G (443 nm). Calibration of the dry weight of the biomass against the optical density was carried out respectively. With the help of these calibrations, a fast determination of marine phytoplankton concentration was feasible.

Verification of the bioactivity

Because the chromium concentration in ocean water is in a range of 0.2 to 50 µg L -1 (U.S. EPA, 2006) and the content of total chromium in coastal seawater was found to be 4 µg L -1 [START_REF] Nicolai | Trace metals analysis in estuarine and seawater by ICP-MS using on line preconcentration and matrix elimination with chelating resin[END_REF], the initial concentration of chromium in artifical seawater was 5µg L -1 in the irradiation experiments and dark controls throughout this study. Tests were carried out to ensure that marine phytoplankton could survive and keep normal bioactivity under the experimental conditions. Marine phytoplankton with concentrations ranging from 5 to 20 ng ml -1 were transferred to artificial seawater containing 5 µg L -1 Cr(VI) or Cr(III) and kept 24 h under irradiation. The cells from the filters were resuspended into fresh medium under normal growth conditions. The specific growth rates over the next 5 days and the cell shapes were recorded in triplicate cultures, and compared with the normal growth rates and cell shapes. Abnormal phenomena were not observed, so it could be concluded that 5 µg L -1 of Cr(VI) and Cr(III) were not toxic to the marine phytoplankton, i.e. living algal cells were used in our photochemical experiments.

Determination of Cr(VI) and Cr(III)

Speciation analysis of chromium was performed following the procedures of [START_REF] Zhu | Separation and preconcentration of chromium species by selective absorption on lemna. Minor. and determination by slurry atomization electrothermal atomic absorption spectrometry[END_REF]. The detection limit (3 σ, n = 11) was 0.03 µg L -1 for Cr(VI) and 0.01 µg L -1 for Cr(III), respectively, at the level of 0.1 µg L -1 , the precision (relative stand deviation ) was 3.3% for Cr(VI) and 2.8% for Cr(III), respectively. For samples spiked with both Cr(III) and Cr(VI), the recovery varied from 97 to 102% for Cr(III) and from 96 to 103% for Cr(VI).

To study the accuracy of this method, a synthetic artificial seawater sample with 0.1 µg L -1 Cr(VI), 0.1 µg L -1 Cr(III), and interfering substances (55 ng L -1 Fe(III), 250 ng L -1 Cu(II), 14 ng L -1 Mn(II), the exudates of 20 ng ml -1 marine phytoplankton), was analyzed. The concentration measured in synthetic water sample was Accumulation of anionic Cr(VI) (as chromate) in marine phytoplankton is generally slow (Wang, et al., 2001). The preliminary study showed that the total concentration of chromium in solution or filtrate of marine phytoplankton suspension could be kept at 5±0.06 µg L -1 . In other words, the interferences of adsorption, the deviation of adsorptive property between Cr(VI) and Cr(III), and the algae exudates on the determination could be avoided through above-mentioned methods, and the influence from bio-absorption and biological transformation on the distribution of chromium could be ignored.

Photochemical experiments

The cultures in the log phase were chosen to start photochemical experiments. Prior to the illumination experiment, the procedure described by [START_REF] Tovar-Sanchez | A trace metal clean reagent to remove surface-bound iron from marine phytoplankton[END_REF] was used to remove trace metals that might have adsorbed on the algae cells, and it was harmless to live alga cells, and used in experiments. This procedure involved washing the cells by gentle agitation with trace metal clean reagent [START_REF] Tovar-Sanchez | A trace metal clean reagent to remove surface-bound iron from marine phytoplankton[END_REF] for 5 min, filtering with 0.45 µm membrane filter. The filters were rinsed three times with 5 ml of artificial seawater.

Photo-induced reduction of 5 µg L -1 Cr(VI) in 500 ml artificial seawater (pH 8.1, 18±0.5 ℃) in the presence of marine phytoplankton, transition metals, and the combination of both was studied. The vessel temperature was controlled as 18±0.5℃. Because phytoplankton densities in subsurface water and at 20 m depth were 870.9×10 3 L -1 and 327.8×10 3 L -1 , respectively (Tengku-Rozaina and Ibrahim, 2001), the concentration of marine phytoplankton was 5, 8, 10, 15, 20 ng ml -1 for marine phytoplankton-light system and 10 ng ml -1 for marine phytoplankton-transition metals-light system respectively. The concentration of transition metals was 55 ng L -1 for Fe(III), 250 ng L -1 for Cu(II), and 14 ng L -1 for Mn(II), i.e., the average concentration of trace elements in actual seawater [START_REF] Feng | Marine Science[END_REF]. The suspension or solution was agitated in an orbital shaker at 100 rpm. The suspension or solution was sampled 50 ml after irradiation for 0.5, 1, 1.5, 2, 3, 4, 5, 6, 7, and 8 h.

These samples were filtered with 0.45 µm membrane filter and the concentration of Cr(VI) and Cr(III) in the filtrates was determined respectively by FI-HG-AAS. The suspension or solution was covered with aluminum foil and kept in the dark before and after irradiation. Dark controls were carried out in parallel. The conversion percent was the concentration ratio between Cr(III) and total chromium at steady state.

Results and discussion

Effect of marine phytoplankton on the reduction of Cr(VI)

Light irradiation of 5 µg L -1 Cr(VI) in artificial seawater with marine phytoplankton resulted in the formation of Cr(III), but Cr(III) could not be detected in the dark control experiments. Its conversion ratio under different species and concentrations of marine phytoplankton and different irradiation times was shown in Fig. 2. The redox equilibrium between Cr (VI) and Cr (III) was also observed from Fig. 2.

Light irradiation was essential to drive the reduction of Cr(VI) by marine phytoplankton, because Cr(VI) is thermodynamically stable in the presence of oxygen, its reduction in aerobic environment is an endergonic process, requiring investment of energy from an external source. To our knowledge, this was the first time that marine phytoplankton itself could achieve the photoreduction of Cr(VI) was confirmed, because that: (a)

although DOM derived from phytoplankton has been proved to facilitate Cr reduction in the presence of light, DOM is just the exudate from marine phytoplankton, not marine phytoplankton itself; (b) prior to our photochemical experiments, the marine phytoplankton were rinsed three times with 5 ml of artificial seawater to remove exudates such as DOM; and (c) after light irradiation 30 min, Cr(III) could be detected, at the same time, the concentration of total organic carbon in seawater at this time is less than the detection limit of 4 µg L -1 detected with to use a TOC-Vcph (Shimadzu Co.) analyzer.

In alkaline oxygenated solutions such as sunlit surface seawater, the CrO 4 2-anions are predominant [START_REF] Mytych | Photochemical reduction of chromium(VI) by phenol and its halogen derivatives[END_REF]. Two kinds of mechanism were suggested to be responsible for the transformation of by the electron donor (e.g. phenol and 2,3-butanediol) can proceed in alkaline oxygenated solutions [START_REF] Mytych | Mechanism of photochemical reduction of chromium(VI) by alcohols and its environmental aspects[END_REF][START_REF] Cieśla | Photoredox behaviour of the Cr-EDTA complex and its environmental aspects[END_REF]; (b) Cr(VI) could be thermal reduced by hydrated electrons photogenerated by phenol [START_REF] Mytych | Photochemical reduction of chromium(VI) by phenol and its halogen derivatives[END_REF]; (c) the hydrated electron can be produced by the photolysis of the aromatic carboxyl acids [START_REF] Calza | Reactivity of chloromethanes with photogenerated hydrated electrons[END_REF]; and (d) the surface acid groups such as phenolic hydroxyl and carboxylic acids are on the surface of marine phytoplankton cells (Garden-Torresdey et al., 1990;[START_REF] Wang | Determining Surface Areas of Marine Alga Cell by Acid-base titration method[END_REF]Li et al., 2006b). The possible mechanism of the influence of marine phytoplankton itself on the photochemical reduction of Cr(VI) was proposed as follows:

Cr(VI) + ROH + OH -+ hν→Cr(V) + RO ˙ +H 2 O ROH +OH -+ hν→ RO ˙ +e solv - ˙ +H 2 O or RCOOH+OH -+ hν→ RCOO ˙ +e solv - ˙ +H 2 O Cr(VI) + e solv - ˙ → Cr(V) 3Cr(V) → 2Cr(VI)+Cr(III)
and/or Cr(V) + ROH → Cr(III)+aldehyde/ketone

The concentration of the coloured dissolved organic matter (CDOM) derived from phytoplankton increased with increasing the light irradiation time from 0.5 h to 8 h. The hydrated electron could be produced by the photolysis of CDOM, then could facilitate Cr(VI) reduction (Thomas-Smith and Blough, 2001). The photo-production of hydroxyl radical in seawater with marine phytoplankton under high-pressure mercury lamp was observed by us [START_REF] Li | Effects of macronutrients, lead and mercury on the photoproduction of hydroxyl radicals in seawater with marine algae ,Dunaliella salina[END_REF]. The photo-production of hydroxyl radical enhances the concentration of Fe(II), Cu(I) and Mn(II) in the sunlit surface seawater, induced the Cr(VI) reduction. At the same time, marine phytoplankton could adsorb and complex chromium by their surface acid groups, which could change the redox potential of chromium.

Fig. 2. indicated that the conversion ratio of Cr(VI) of Cr(III) was greatly affected by the species of marine phytoplankton, its concentrations and the irradiation time. The conversion ratio increased and the oxidation-reduction equilibrium time shortened with increasing algae concentration. As the influence factors of marine phytoplankton on the photochemical reduction of Cr(VI), the surface acid amount on the surface of marine phytoplankton cells [START_REF] Wang | Determining Surface Areas of Marine Alga Cell by Acid-base titration method[END_REF], the components and contents of CDOM, and the interaction between marine phytoplankton (or CDOM) and trace metals (chromium, iron, copper and manganese), were different for different species of marine phytoplankton.

Effect of transition metals on the reduction of Cr(VI)

Our experiments proved remarkable but different photochemical activity on the species transformation of chromium from transition metals (Fe(III), Cu(II), and Mn(II)). Cr(III) could not be detected in the dark control experiments, so irradiation must also be essential for photochemical activity for transition metals. In seawater, Fe(III),Cu(II), and Mn(II) could be chelated by organic substances such as citrate and gluconate [START_REF] Zhang | Studies on marine photochemistry of Fe, Mn, and Cu: A review[END_REF], and electronic transition from such coordinated transition metals complexes could be induced easily by light.

Through photo-induction, Fe(III) and Cu(II) were reduced into Fe(II) and Cu(I), and Mn(II) was oxidized into Mn(III) and Mn(IV) oxide (MnO x ); at the same time, Fe(II) and Cu(I) were oxidized by oxidants such as hydroxyl and superoxide radicals, H 2 O 2 , and MnO x was reduced to Mn(II) by photo-activation [START_REF] Zuo | Formation of hydrogen peroxide and depletion of oxalic acid in atmospheric water by photolysis of iron(III)-oxalato complexes[END_REF][START_REF] Zuo | Evidence for photochemical formation of H 2 O 2 and oxidation of SO 2 in authentic fog water[END_REF][START_REF] Zhang | Iron(II) in rainwater, snow, and surface seawater from a coastal environment[END_REF][START_REF] Voelker | Iron reduction by photoproduced superoxide in seawater[END_REF][START_REF] Zuo | Photochemistry of natural dissolved organic matter in lake and wetland watersproduction of carbon monoxide[END_REF][START_REF] Zhang | Studies on marine photochemistry of Fe, Mn, and Cu: A review[END_REF][START_REF] Voelker | Chemistry of superoxide radical in seawater; reactions with organic Cu complexes[END_REF][START_REF] Thomas-Smith | Photoproduction of hydrated electron from constituents of natural waters[END_REF][START_REF] Deng | Iron-catalyzed photochemical transformation of benzoic acid in atmospheric liquids: Product identification and reaction mechanisms[END_REF]. Photolysis of the monohydroxyl complex of Fe(OH) 2+ and oxidation reaction between transition metals (Fe(II),Cu(I),Mn(II)) and oxidants (O 2 , H 2 O 2 ) have been proposed as major sources of •OH and •O 2 -in sunlit surface waters [START_REF] Zuo | Formation of hydrogen peroxide and depletion of oxalic acid in atmospheric water by photolysis of iron(III)-oxalato complexes[END_REF][START_REF] Zuo | Evidence for photochemical formation of H 2 O 2 and oxidation of SO 2 in authentic fog water[END_REF][START_REF] Zuo | Photochemistry of natural dissolved organic matter in lake and wetland watersproduction of carbon monoxide[END_REF][START_REF] Wang | Photochemical reaction of inorganic matters in seawater[END_REF]. Superoxide and its conjugate acid, hydroperoxyl radical (HO 2 , [START_REF] Zafiriou | Chemistry of superoxide ion-radical (O 2 -) in seawater. I. pK * asw (HOO) and uncatalyzed dismutation kinetics studied by pulse radiolysis[END_REF], are produced in sunlit natural waters through photochemical reactions. The bimolecular dismutation of superoxide has been postulated as the main source of hydrogen peroxide in the open ocean [START_REF] Petasne | Fate of superoxide in coastal seawater[END_REF]. Hydrogen peroxide is produced by photochemical reactions in surface waters and occurs at concentration levels between 10 -6 and 10 -8 mol L -1 [START_REF] Sulzberger | Oxidative transformations of contaminants in natural and in technical systems[END_REF]. The redox reaction of transition metals could induce the species transformation of chromium. For example, Fe(II) has been shown to act as the electron donor in Cr(VI) reduction [START_REF] Gaberell | Role of dissolved organic matter composition on the photoreduction of Cr(VI) to Cr(III) in the presence of iron[END_REF] and the excited Fe(III) complexes, e.g. [Fe(edta)OH] 2-behave as even stronger electron donors towards Cr(VI) [START_REF] Cieśla | Role of iron and chromium complexes in environmental self-cleaning processes[END_REF][START_REF] Kocot | Photochemistry of the [FeIII(edta)(H2O)]-and [FeIII(edta)(OH)]2complexes in presence of environmentally relevant species[END_REF].

The electronic shell distribution and organic ligands of iron, copper and manganese are different. The value of E 0 , i.e., the ability of coordinated complex to accept or donate electron is different, so the effect of different transition metals on the photo-reduction of Cr(VI) is quite different. The conversion ratio and redox equilibration time were listed in Table 1.

In the single transition metal experiments, copper showed the strongest photochemical activity and manganese the weakest. In the presence of two transition metals, the photo-oxidation activity was higher than the respective single metal. When all the three transition metals were present, the conversion ratio of chromium was higher than that of each of the single metal and two metal pair. Though all of the transition metals, including iron, copper and manganese, have photochemical activity, the co-existence of bi-or tri-valent elements could increase the yield of radicals. At the same time, collisional deactivation of radicals could also occur. Therefore, the co-existence of transition metals did not simply show additive property or synergistic effect on the photo-oxidation activity.

Combined effect of marine phytoplankton and transition metals on the reduction of Cr(VI)

The photo-reduction of Cr(VI) was facilitated not only by marine phytoplankton, but also by transition metals; the combination effects of both were shown in Fig. 3. It could be seen from Fig. 3 that the reduction behavior of Cr(VI), including conversion ratio, conversion rate and redox equilibration time varied with the constituents of the photochemical system that was made up of same transition metals and different species of marine phytoplankton or same species of marine phytoplankton and different transition metals. The difference of the combined effect of marine phytoplankton and transition metals on the reduction of Cr(VI) was due to two reasons: (a) if the species of marine phytoplankton is different, the influence factors of marine phytoplankton on the photochemical reduction of Cr(VI) as mentioned above were all different; and (b) if the transition metal is different; the complexing reaction with marine phytoplankton is different, too.

Chromium(VI) could be reduced to Cr(III) by the marine phytoplankton-light, transition metals-light, and marine phytoplankton-transition metals-light systems. The photochemical activity for the reduction of Cr(VI)

was analyzed and compared in Table 2. The photochemical behaviors of marine phytoplankton-transition metals-light systems (S 3 ) on the conversion ratio of Cr(VI) were the combination effects from the photoreduction activity of marine phytoplankton (S 1 ), as the main contributor, and the photoreduction activity of transition metals (S 2 ).

The photoreduction activity of the marine phytoplankton-transition metals-light system was higher than that in the transition metals-light system, i.e., the value of (S 3 -S 2 ) in Table 2, for three reasons: (a) marine phytoplankton on its own has photoreduction activity, especially for photo-production of hydrated electrons and releasing of the electron donors; (b) marine phytoplankton could adsorb, concentrate and coordinate transition metals and chromium and thus change the redox potentials of transition metals and chromium; and (c) the content of the potential Cr(VI) reductants, including Fe(II), Cu(I), Mn(II) and O 2 -by transition metals might be enhanced by their organic ligands. For example, organic Fe(III) complexes (Fe 3+ -org) are the main species of Fe(III) in the solution of Fe 3+ with algae [START_REF] Zuo | Formation of hydrogen peroxide and depletion of oxalic acid in atmospheric water by photolysis of iron(III)-oxalato complexes[END_REF][START_REF] Zuo | Evidence for photochemical formation of H 2 O 2 and oxidation of SO 2 in authentic fog water[END_REF][START_REF] Zuo | Photochemistry of natural dissolved organic matter in lake and wetland watersproduction of carbon monoxide[END_REF][START_REF] Liu | Photoproduction of hydroxyl radicals in aqueous solution with algae under high-pressure mercury lamp[END_REF]. The effects of Fe 3+ are described below.

Fe 3+ -org+ hν →Fe 2+ + org radical

org radical + O 2 →O 2 - •+ oxidized org
The presence of transition metals increases the Cr(VI) reduction for 3 of the algae (A , C and G), has no impact for the algae B, but inhibits the reduction for 3 of the alga (D, E and F), according to the values of (S 3 -S 1 )

in Table 2. The species and concentration of Cr(VI) on the surface of algae or transition metal complexes might be affected by the coexistence of the alga and transition metal. A different mechanism is probably responsible for the Cr(VI) reduction by absorbing surfaces such as alga, transition metal complexes.

In marine phytoplankton-transition metals-light systems which are very close to the sunlit surface seawater, Cr(VI) was transformed into Cr(III) by photo-reduction. The ratio of Cr(VI) to Cr(III) was 0.48 for Phaeodactylum tricornutum (diatom), 0.71 for Porphyridium purpureum (red alga) , and ranged from 1.45 to 2.16 for five green algae(Tetraselmis levis, Chlorella autotrophica, Dunaliella salina, Nannochloropsis sp. and

Tetraselmis subcordiformis).

The most effective at reducing Cr (VI) was a diatom that are known to produce high concentrations of organic matter in the form of transparent exopolymer particles [START_REF] Passow | The role of particulate carbohydrate exudates in the flocculation of diatom blooms[END_REF], dissolved organic matter mediated control of Cr reduction might be possible. The results were listed in Table 3, providing explanation for the distribution of Cr(VI) and Cr(III), obtaining useful information to understand the biogeochemical cycle of chromium. This study is beneficial to deal with assessment of the risk/bioavailability of Cr(VI)/Cr(III) in sunlit surface seawater.

Summary

The influence of marine phytoplankton itself (excluding its exudates such as DOM) on the photo-reduction of trace metals was confirmed for the first time. The conversion ratio of Cr(VI) to Cr(III) increased with increasing algae concentration and irradiation time. Different species of marine phytoplankton were found to have different photo-reducing abilities. In addition to the photo-production of hydrated electrons, marine phytoplankton could adsorb, concentrate and coordinate transition metals and chromium, change their redox potentials, and affected their photochemical activities. The effect of the marine phytoplankton-transition metal-light system on the chromium species transformation, especially the addition of marine phytoplankton, was most important. We tried to interpret the observed relationships between Cr(VI) and Cr(III), and provided further information for the understanding of the biogeochemical cycle of chronium, as well as for the risk assessment of chromium in the sunlit surface seawater. and Mn(II) g: Fe(III), Cu(II) and Mn(II)

  such as transition metals due to photochemical activity. Here we report our study on the photo-induced reduction of Cr(VI) in the presence of marine phytoplankton with light, transition metals with light, and the combination of both. Our objectives were to (a) study the influence of marine phytoplankton itself and Mn(II) on the photochemical reduction of Cr(VI) for the first time; (b) exploit the combined effects from the coexistence of bi-and tri-valent transition metals or the co-presence of marine phytoplankton and transition metals on the photochemical reduction; (c) provide mechanistic explanations for the distribution of Cr(VI) and Cr(III); (d) offer new insights into chromium biogeochemical behavior; and (e) assist in risk or bioavailability assessment of Cr(VI)/Cr(III) in the sunlit surface seawater.

  Porphyridium purpureum (B), and the green algae Tetraselmis levi (C), Chlorella autotrophic (D), Dunaliella salina (E), Nannochloropsis sp. (F), and Tetraselmis subcordiformis (G), were obtained from the Microbial Culture Laboratory, Ocean University of Qingdao, China. Marine phytoplankton were cultivated in f/2 media prepared with sterile-filtered (Whatman GF/F glass fiber filter) artificial seawater prepared with the formula of Keller (pH 8.1), with a cultivation temperature of 18±0.5℃, and at a photon flux density of 140 µmol•photons.m -2 •s -1 with a day-night cycle of 12:12 h.

  0.10±0.01 µg L -1 for Cr(III), 0.10±0.01 µg L -1 for Cr(V). The results demonstrated that: (a) the concentrations of Cr(III) and Cr(VI) in synthetic artificial seawater sample agreed well with the added concentrations; (b) this method avoided the reduction of Cr(VI) during the preliminary concentration and analysis process; (c) no interference from the components of photochemical experimental system was observed.Precautions were also taken to minimize the adsorption of Cr(III) and Cr(VI) during the experiments. These included: (a)Teflon flasks were employed as the reactors for their good transparence and weak adsorptive property; (b) the solutions or algal suspensions were stirred at 100 rpm during the irradiation experiments and dark controls to simulate the current of seawater; (c) marine phytoplankton which have reached adsorption equilibrium with 5 µg L -1 Cr(VI) in artificial seawater were used to reduce the adsorption from marine phytoplankton in photochemical experiments; our preliminary study showed that the adsorption behaviors of Cr(VI) and Cr(III) by marine phytoplankton were similar; (d) A relatively larger volume (500 ml) solution or marine phytoplankton suspension was used to enhance the absolute mass of Cr(VI) in it, to weaken the relative effects from the adsorptions.

  photoinduced electron transfer; and (b) solvated electrons reduce the CrO 4 2-anions in their ground state by

Fig. 2 .Fig. 3 .

 23 Fig. 1. Emission spectrum of the high-pressure mercury lamp

Table 1

 1 Photoreduction of Cr(VI) by transition metals The content of marine phytoplankton was 10 ng/mL. The concentration of Fe(III), Cu(II) and Mn(II) was 55, 250 and 14 ng/L, respectively.

	Transition metals	Fe(III)	Cu(II)	Mn(II)	Fe(III)+Cu(II)	Fe(III)+Mn(II)	Cu(II)+Mn(II)	Fe(III)+Cu(II)+Mn(II)
	Conversion percent (%)	8.1	10.8	6.8		12.5	10.0	11.2	13.3
	Redox equilibration time (hour)	3 h	5 h	6 h		5 h	6 h	6 h	6 h
	Table 2							
	Photoreduction of Cr (VI) by marine phytoplankton, transition metals, marine phytoplankton and transition metals	
	Photoreduction System					Conversion percent (%)	
		Phaeodactylum	Porphyridium	Tetraselmis	Chlorella	Dunaliella	Nannochloro	Tetraselmis
			tricornutum	purpureum	levi	autotrophic	salina	psis sp.	subcordiformis
	Alga and Cr(VI)(S 1 )		46.9	56.7		32.9	47.1	52.9	44.3	26.4
	Fe(III),Cu(II),Mn(II) and Cr (VI) (S 2 )						13.3	
	Alga,Fe(III),Cu(II),Mn(II) and Cr (VI) (S 3 )		67.6	58.7		40.9	31.7	35.1	33.3	32.4
	S 3 -S 1		20.7	2.0		8.0	-15.4	-17.8	-11.0	6.0
	S 3 -S 2		54.3	45.4		27.6	18.4	21.8	20.0	19.1

Table 3

 3 Ratio of Cr (VI) to Cr( ) after photoreduction by marine phytoplankton-transition metals-light system The content of marine phytoplankton was 10 ng/mL. The concentration of Fe(III), Cu(II) and Mn(II) was 55, 250 and 14 ng/L, respectively.

	Alga	Phaeodactylum tricornutum	Porphyridium purpureum	Tetraselmis levi	Chlorella autotrophic	Dunaliella salina	Nannochloropsis sp.	Tetraselmis subcordiformis
	Ratio of Cr(VI) to Cr(III)	0.5	0.7	1.4	2.2	1.8	2.0	2.1
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