

Effects of Benzo[]pyrene on DNA Damage and Histological alterations in Gonad of Scallop

Miao Jing-Jing, Pan Lu-Qing, Liu Jing, Zhang Lin

▶ To cite this version:

Miao Jing-Jing, Pan Lu-Qing, Liu Jing, Zhang Lin. Effects of Benzo[]pyrene on DNA Damage and Histological alterations in Gonad of Scallop. Marine Environmental Research, 2008, 67 (1), pp.47. 10.1016/j.marenvres.2008.10.006 . hal-00563061

HAL Id: hal-00563061 https://hal.science/hal-00563061

Submitted on 4 Feb 2011

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Accepted Manuscript

Effects of Benzo[*a*]pyrene on DNA Damage and Histological alterations in Gonad of Scallop *Chlamys farreri*

Miao Jing-jing, Pan Lu-qing, Liu Jing, Zhang Lin

PII: DOI: Reference:	S0141-1136(08)00234-1 10.1016/j.marenvres.2008.10.006 MERE 3298
To appear in:	Marine Environmental Research
Received Date:	29 April 2008
Revised Date:	20 October 2008
Accepted Date:	23 October 2008

Please cite this article as: Jing-jing, M., Lu-qing, P., Jing, L., Lin, Z., Effects of Benzo[*a*]pyrene on DNA Damage and Histological alterations in Gonad of Scallop *Chlamys farreri*, *Marine Environmental Research* (2008), doi: 10.1016/j.marenvres.2008.10.006

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1 Effects of Benzo[*a*]pyrene on DNA Damage and Histological

2 alterations in Gonad of Scallop Chlamys farreri

- 3 Miao Jing-jing, Pan Lu-qing^{*}, Liu Jing, Zhang Lin
- 4 The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, No. 5,
- 5 Yushan Road, Qingdao, China
- 6

7 Abstract

- 8 To investigate the biological impact of polycyclic aromatic hydrocarbons (PAHs) on
- 9 reproductive system, scallops *Chlamys farreri* were continuously exposed to benzo[a]pyrene

10 (BaP) (0.5, 3, 10 μ g L⁻¹) during 15 days. DNA damage and histological alterations were

- 11 examined in female gonad. DNA strand break levels significantly increased after 12 h
- 12 exposure, and remained high and significantly different from control values until the end of
- 13 the exposure. In the ovaries of the scallops exposed to $10 \,\mu g \, L^{-1} BaP$ for 10 days, histological
- 14 analysis showed that the cytoplasts of the oocytes in the outer layer of the ovaries became
- 15 sparse, and the nuclear membranes were obscure. Damaging effects on ovaries and oocytes
- 16 were more severe after 15 days exposure. Degenerating oocytes increased and the connective
- 17 tissue of the ovary envelops became loose. Electron microscopic examination revealed
- 18 ultrastructural aspects of degenerating oocyte and degenerated oocyte after 15 days exposure.
- 19 **Keywords:** Benzo[*a*]pyrene; Scallop; DNA strand break; Genotoxicity; Endocrine;
- 20 Histopathology; Ultrastructure; Gonad; Oocyte

^{*}Corresponding author. Tel.:+86 532 8203 2963; fax: +86 532 8289 4024. E-mail address: panlq@ouc.edu.cn (L. Pan).

1. Introduction

22	In recent years, special attention has been given to the disruption of reproduction by
23	organic compounds and the possible consequences on wildlife populations, because
24	reproductive systems appear to be particularly vulnerable to environmental contaminants
25	(Harries et al., 1997; Kovacs et al., 1997). Several studies have demonstrated that endocrine
26	disturbances due to xenobiotics in wildlife include sex changes in marine gastropods
27	(Horiguchi et al., 2002), delay in oocyte maturation and sperm release and perturbation of the
28	neuroendocrine control of spawning in mussels (Binelli et al., 2004; Gagné et al., 2004). Field
29	observations of reproductively abnormal organisms and populations decline in polluted sites
30	stimulated major research efforts to understand stressor-induced changes of some of the
31	reproductive parameters within an organism that could be valuable as early warning indicators
32	of the potential long-term hazard of environmental deterioration at the population level
33	(Thomas, 1990).
34	Bivalves are particularly at risk to aquatic xenobiotic chemicals because they are
35	stationary and filter relatively high volume of water, including suspended particles. Many
36	different effects have been recorded in bivalves exposed to chemical contaminants. Among
37	them, histological alterations have been widely employed as a method of assessming the
38	disruption of reproduction systems (Ketata et al., 2008). Binelli et al. (2004) reported
39	degenerating oocytes in relation to spawning delay in the zebra mussel (Dreissena
40	polymorpha) exposed to DDT. Numerous degenerating ovarian follicles and atretic oocytes
41	have also been observed in female mussels (Mytilus edulis) after exposure to bisphenol A
42	(50 μ g L ⁻¹), BDE-47 (1 μ g L ⁻¹), North Sea oil (0.5 mg L ⁻¹) and a mixture of North Sea oil (0.5

43	mg L^{-1}), alkyphenols (0.1 mg L^{-1}) and polycyclic aromatic hydrocarbons (PAHs) (0.1 mg L^{-1})
44	for three weeks (Aarab et al., 2004; Aarab et al., 2006). These results indicated dramatic toxic
45	effects on reproductive tissues in relation to environmental toxicants. PAHs, owing to their
46	highly mutagenic and carcinogenic features and widespread distributions in the global
47	environment, are considered as one of the major pollutants affecting marine organisms
48	(Menzie et al., 1992). In addition to genetic toxicity, PAHs are also listed by the US
49	Environmental Protection Agency (EPA) as compounds capable of disrupting the endocrine
50	system of animals. However, few laboratory studies of PAHs toxicity on the reproductive
51	system of bivalves have been carried out.
52	In the present study we used benzo[a]pyrene (BaP), a powerful carcinogen that is
53	included in the 16 PAHs designated as primary contaminants, as a representative of PAHs. We
54	investigated the female gonad damage induced by BaP exposure, including DNA damage and
55	histological perturbations in Zhikong scallop Chlamys farreri. The objective of our work was
56	to determine the basic characteristics of the endpoints of genotoxic effects and endocrine
57	disruption of BaP, and to compare the temporal and dose response relationship between BaP
58	exposure and the toxic effects. The study may provide preliminary information on evaluation
59	of gonadal status under the stress of PAHs.
60	
61	2. Materials and methods
62	2.1 Scallops

64 and with shell length of 5.8±0.8 cm, collected from Taiping Bay (Huanghai Sea, Qingdao,

63

Scallops (C. farreri) used for this experiment were rope-cultivated scallops, aged 2 years

65	China) on April 10 th , 2006. The sunken ventral portion of the anterior ear of the right shell of
66	the scallop C. farreri provides an aperture when the two shells are closed. Female scallops
67	were identified after gently stimulating the aperture of the scallop to make it gape widely
68	using forceps, and observing the colour of the gonad. Mature female scallops have a red
69	gonad, whereas a male gonad is white. Female scallops held in aquaria (1 L water per scallop)
70	were acclimated to laboratory conditions for 7 days in filtered seawater pumped from Taiping
71	Bay. The sea water was continuously aerated, and salinity, temperature and pH were
72	respectively maintained at 31%, 17(±1)°C and 8.1. The water was renewed every 24 hours.
73	The scallops were fed daily with dried powder of Spirulina platensis (30 mg for each
74	individual).
75	2.2 Experimental design
76	The background concentration of BaP in seawater from Taiping Bay was analysed by HPLC
77	before the experiment The effects of three waterborne BaP concentrations were studied (0.5, 3
78	and 10 μ g L ⁻¹). BaP was first dissolved in acetone, and then added to seawater to achieve final
79	acetone concentration of 0.0025%. Control groups included a seawater control and an acetone
80	control. There were three aquaria used as replicates per group. Experimental conditions (salinity,
81	pH, temperature, scallop density and feeding) were the same as those used for acclimation, and the
82	exposure media were renewed daily. The exposure experiment lasted for 15 days. During this
83	period, we determined the BaP concentration of the exposed groups every day before renewing the
84	water during the experiments. The analyzed BaP concentrations of each group were 0.52 \pm 0.07 μ g
85	L^{-1} , 2.93±0.13 µg L^{-1} , 9.15±0.11 µg L^{-1} . Female gonads of scallops were excised and frozen
86	immediately at -80°C at days 0, 0.5, 1, 3, 6, 10 and 15 for the subsequent examination of DNA

87	integrity, two to three scallops were sampled per replicate. Female gonads from sea water control,
88	acetone control and 10 μ g L ⁻¹ BaP treatment groups were sampled at day 10 and day 15 for
89	histological evaluation, and sampled for ultrastructural evaluation at day 15. Gonad tissues from
90	six scallops were sampled as 6 replicates. No mortalities were observed during the exposure
91	experiment.
92	2.3 Alkaline unwinding assay
93	DNA was extracted from female gonads by mashing the tissues from two to three scallops
94	with plastic sticks and homogenizing the tissue in 3 mL TE buffer (50 mM Tris, 100 mM
95	EDTA, pH 8.0). 0.45 mL lysate was transferred into 1.5 mL Eppendorf tubes. Then 0.05 mL
96	10% SDS (Sodium dodecyl sulfate) and 3 μ L 20 g L ⁻¹ proteinase K were added to it and the
97	mixture was incubated for 5 h at 55°C. An equal volume of buffered
98	phenol/chloroform/isoamyl alcohol (PCI) (25:24:1, v/v/v, pH 8.0) was then added to the
99	sample. The sample was gently mixed for 15 min and then centrifuged for 10 min at 13 000
100	rpm at 4°C. The aqueous layer was transferred to a new tube and digested with 0.8 μ L Rnase
101	(10 mg mL^{-1}) for 30 min at 37°C and the digesta was extracted twice with PCI. DNA was
102	precipitated from the resulting aqueous layer by adding 2 volumes of absolute ethanol and
103	1/10 volume of 3 M sodium acetate, pH 5.2. The samples were allowed to settle for 2 h at
104	-20°C, and then centrifuged for 15 min at 13 000 rpm. The resulting pellet was rinsed with 1
105	mL 70% ethanol and air-dried, then dissolved in 1 mL of TE buffer (10 mM Tris, 1 mM
106	EDTA, pH 8.0). The amount of DNA was quantified using a UV/Visible spectrophotometer
107	(Ultro spec 2100 pro, Amersham Biosciences, Sweden).

108 The alkaline unwingding assay used in the study was adapted from Ching et al (2001). In

109	the assay, the rate of transition of double-stranded DNA (dsDNA) to single-stranded DNA
110	(ssDNA) under pre-defined alkaline denaturing conditions was proportional to the number of
111	breaks in the phosphodiester backbone, and thus was used as a measure of DNA integrity
112	(Daniel et al., 1985). The amounts of various types of DNA were quantified by measuring the
113	varying degrees of fluorescence resulting from a DNA-binding dye, bisbenzamide. After
114	reaction with the dye, the fluorescence of dsDNA is double that of the ssDNA (Cesarone et al.,
115	1979).
116	The DNA sample was diluted and divided into three equal portions for fluorescence
117	determination of dsDNA, ssDNA and alkaline unwound DNA (auDNA). The fluorescence of
118	the initial DNA or dsDNA was determined by placing 100 μ L of the DNA sample, 100 μ L of
119	25 mM NaCl and 2 μL of 0.5% SDS in a pre-chilled test tube, followed by the addition of 3
120	mL 0.2 M potassium phosphate (pH 6.9), and 3 μ L bisbenzamide (1 mg mL ⁻¹). The contents
121	were mixed and allowed to react in darkness for 15 min. The fluorescence of the sample was
122	measured using a spectrofluorimeter (Molecular Spectroscopy LS 55 from Instruments, P.E.,
123	MA, USA) with an excitation wavelength of 360 nm and an emission wavelength of 450 nm.
124	The fluorescence of ssDNA was determined as above but using a DNA sample that had
125	already been boiled at 80°C for 30 min to completely unwind the DNA. auDNA samples were
126	made by subjecting initial DNA samples to alkaline treatment, i.e. 50 μ L of 50 mM NaOH
127	was rapidly mixed with 100 μ L of DNA sample in a pre-chilled test tube and incubated on ice
128	in darkness for 30 min, followed by a rapid addition and mixing of 50 μ L of 50 mM HCl and
129	2 μ L of 0.5% SDS then the mixture was forcefully passed through a 21G needle several times.
130	The fluoresence of the alkaline unwound DNA sample was measured as described above.

131 The ratio between double-stranded DNA to total DNA ((F value)	was determined as
--	-----------	-------------------

- 132 follows: F value =(auDNA-ssDNA)/(dsDNA-ssDNA)
- 133 2.4 Histological evaluation
- 134 The female gonads were excised and fixed with Bouin's fixative for 18 hours. Following
- dehydration through an ascending ethanol series, the tissues were embedded in paraffin,
- sectioned at 5 µm, stained with Ehrlich's haematoxylin and eosin (H&E), and observed with
- 137 an Olympus BX-41 microscope (Olympus, Japan).
- 138 For transmission electron microscopy (TEM), tissues were prepared as follows: selected
- 139 female gonads of scallops were cut at 1 mm³, fixed in 2.5% glutaraldehyde in phosphorate
- 140 buffer (pH 7.2) at 4°C, postfixed in 1% osmium tetraoxide, dehydrated in an ethanol series,
- 141 and embedded in Epon 812. Ultrathin sections were cut on an LKB ultramicrotome, stained
- 142 with uranyl acetate and lead citrate. Sections were examined in a Hitachi H-7000 transmission
- 143 electron microscope (Hitachi, Japan).
- 144 For quantifying the oocyte degeneration, the degenerating oocytes were counted in the
- 145 histological sections of each ovarian piece. The number of the degenerating oocytes was
- 146 determined in a 90,000 μ m² field at a magnification of x400.
- 147 2.5 Statistical analysis
- All values were expressed as mean ± SD of three replicates in one representative
 experiment. Experiments were performed three times to confirm the results. The analyses
- 150 were carried out using SPSS software (Version 11.5). Data were compared with one-way
- 151 ANOVA, and Newman-Keuls posthoc test when appropriate. The *a* level used was 0.05. All
- 152 data were checked for normality and homogeneity of the variances, and transformed when

153	necessary.
154	3. Results
155	3.1 DNA strand breaks
156	The results of mean F values of each individual treatment group are presented in Figure
157	1. No significant difference in F values was observed over the 15-day exposure period for the
158	control and acetone control groups ($P > 0.05$). F values of control and acetone control groups,
159	respectively, were 0.640±0.084 and 0.633±0.050. F values of samples from 3 and 10 μ g L ⁻¹
160	treatment groups showed marked decreases (0.516 \pm 0.014 and 0.462 \pm 0.063, respectively) (P
161	<0.05) after 12 h of exposure. While the 0.5 μ g L ⁻¹ BaP treatment groups showed marked
162	decreases in mean F values (0.495±0.074, $P < 0.05$) after 1 day exposure. The F values
163	remained low and significantly different from the control values ($P < 0.05$) until day 15 for the
164	0.5 μ g L ⁻¹ (0.369±0.024), 3 μ g L ⁻¹ (0.259±0.035) and 10 μ g L ⁻¹ (0.270±0.020) BaP treatment
165	groups. There were no significant differences between the F values of 3 μ g L ⁻¹ and 10 μ g L ⁻¹
166	BaP exposed groups from day 6 to day 15 ($P > 0.05$).
167	3.2 Histological evaluation
168	Histological and ultrastructural studies of female gonads from both seawater control and
169	acetone control scallops showed the same histological features. The female gonad
170	development of C. farreri can be divided into five stages: proliferation, growth, maturation,
171	spawning and recovery. Histological sections of female gonad displayed numerous ovarian
172	follicles filled with mature oocytes, the interspace among follicles disappeared, indicating that
173	the female gonads of scallops were at the late pre-spawning stage (Figure 2a, 2b). Electron
174	microscopic examination showed that most of the oocytes were at the vitellogenic stage.

175	Oolemma of oocytes formed microvilli, and the oocytes' ooplasm was rich in mitochondria,
176	cisternae of rough surfaced endoplasmic reticulum and ribosomes, vast amounts of yolk
177	bodies and cortical granules. Nucleoli were visible in nucleus, nuclear membrane
178	protuberated at some site, and the euchromatins uniformly distributed in nucleus (Figure 3a,
179	3b).
180	Histological analysis of the ovaries indicated that after 10 and 15 days exposure of 10 μ g
181	L ⁻¹ BaP degenerating oocytes increased especially in the outer layer of the ovaries. The
182	degenerating oocytes appeared irregular or polyhedric, and were deformed by compression of
183	the oocyte (Figure 2c, 2d, 3c, 3f). Cytoplasts of the degenerating oocytes were sparse, and the
184	nuclear membranes were obscure compared with the control. More severe damaging effects
185	on ovaries and oocytes were observed after 15 days exposure. Degenerating oocytes increased,
186	meanwhile the connective tissue of the ovary envelops became loose in most of the ovaries
187	observed (Figure 2c, 2d). Oocyte count indicated that degenerating oocytes increased
188	significantly ($P < 0.05$) after 10 days and 15 days exposure compared with control (Table 1).
189	Ultrastructural sections of female gonad from 10 μ g L ⁻¹ BaP treatment group after 15 days
190	exposure displayed degenerating oocyte and degenerated oocyte. The degenerating and
191	degenerated oocytes appeared irregular or polyhedric, and were deformed by compression of
192	the oocyte (Figure 2c, 2d, 3c, 3f). During the gradual disintegration of the oocytes, numerous
193	vacuoles appeared in the ooplasm of oocytes. A few lysosomes (phagosomes) and vacuoles
194	also appeared in the cytoplasm of the follicle cells which were attached to the degenerating
195	oocyte. (Figure 3c, 3d, 3e). In degenerated oocytes, endoplasmic reticulum, mitochondria, and
196	the quantity of yolk bodies decreased, resulting in the electron density reduction of the

197	ooplasms. The microvilli were shed and numerous glycogen particles occurred in cytoplasm.
198	Nuclear membranes were anomalous, and the distribution of euchromatins in nucleus was not
199	uniform (Figure 3f).
200	4. Discussion
201	BaP is a genotoxic agent capable of binding to DNA via CYP transformation to arene
202	oxides, forming DNA adducts that are more effective sites for the production of strand breaks.
203	It may also increase the presence of reactive oxygen species (ROS) via redox cycling, which
204	can be responsible for lipid peroxidation processes and result in DNA strand break eventually
205	(Martinez and Livingstone, 1995; Canova et al., 1998). The micronucleus frequency observed
206	for adult oysters Crassostrea gigas contaminated for 48 h with BaP (0.05, 0.5, 1 and 500 μ g
207	L ⁻¹) showed the clastogenic action of BaP and a dose dependent effect. Siu et al. (2003, 2004)
208	and Ching et al. (2001) studied BaP (0.3, 3, 30 μ g L ⁻¹) effects on DNA strand breaks of
209	haemocytes and hepatopancreas in mussels Perna viridis, and the results suggested that the
210	response of DNA alteration upon BaP exposure may be tissue-specific and threshold
211	dependent in the species. In a previous study, Pan et al. (2007) reported that the F values in
212	gill and digestive gland of 0.5 and 3 μ g L ⁻¹ BaP treatment groups decreased until day 6 and
213	then showed a recovery. This was considered to be due to an early elicitation of the DNA
214	repair system. While, in this study, DNA strand breaks of gonads from 0.5, 3 and 10 μ g L ⁻¹
215	treatment groups showed marked decrease after 12 h or 1 day exposure, and no recoveries
216	appeared until the end, indicating a decreased capacity for DNA repair activity. The result
217	corresponds with the findings of Gagné et al. (2004) which suggests that ripe mussels whose
218	oocytes were meiose-arrested might have reduced DNA synthesis/repair activity during the

219	mature stage. However, further studies about the relationship between DNA repair activity of
220	oocytes and the gonad mature status are needed. In addition, a dose-dependent relationship
221	was observed between the DNA strand break levels and the BaP exposure dose (from 0.5 to 3
222	μ g L ⁻¹), while the DNA strand break levels had no marked difference between 3 and 10 μ g L ⁻¹
223	BaP from day 6 to day 15, indicating that the toxic effects on DNA in gonads may be
224	threshold dependent.
225	Microscopic observations in the present work showed time course of the BaP toxic
226	effects towards ovaries of scallops. During the 15 days exposure, degenerating oocytes
227	significantly increased in ovaries (Table 1). Ultrastructure of the ovaries was studied to find
228	out more detailed effects. Results indicated that oocytes were at the vitellogenesis stage and
229	yolk granules were accumulating. After 15 days exposure, degenerating oocytes increased in
230	the treatment group and ultrastructural sections displayed degenerated oocytes with reduced
231	density of the ooplasms and yolk granules, which could be the reason for the obscure nuclear
232	membrane observed under the microscopic. As a result of reductions in yolk bodies and cell
233	organelles in degenerated oocytes, and numerous glycogen particles appeared in cytoplasm,
234	there was a reduction in the electron density of the ooplasms, and the chromatin distributed
235	around the nuclear membrane. Consequently, the electron density of cytoplasm and nucleus
236	became similar and made the nuclear membrane appear obscure (Figure 2c, 2d, 3f). Oocyte
237	degeneration is a continuous process throughout the development of oocyte, and it seems to
238	be most important for vitellogenic oocytes (Gaulejac et al., 1995; Chung et al., 2007).
239	Degenerated oocytes may be observed in the ovaries amongst the normal oocytes at any stage

240 of development. It may be caused by overproduction of oocytes in spawners as a result of

241	environmental stress (Leino and Maccormik, 1997). Oocyte degeneration due to xenobiotic
242	and heavy metal contamination was reported in several bivalve species (Maung and Tyler,
243	1982; Rasmussen et al., 1983). Lowe and Pipe reported a high level of gamete atresia in M.
244	edulis treated with hydrocarbons, and presumed that the degeneration was due to the direct
245	action of these chemicals on gametes by the destabilization of lysosomes and yolk granules
246	which contain lysosomal enzymes (1986). The pathological effects in gill and digestive gland
247	of C. farreri exposed to $10 \ \mu g \ L^{-1}$ BaP were also reported (Miao et al., 2007). Considering the
248	results of DNA strand break in this work, it was suggested that the oocyte degeneration can be
249	considered to be subsequences of the effect of BaP reactive intermediates on the
250	biomacromolecules, which caused DNA, protein and the cell membrane system damages.
251	On the other hand, BaP is also a compound capable of disrupting the endocrine system of
252	animals. Fong et al. (1994) observed that methiothepin, a serotonin (5-hydroxytryptamine,
253	5HT) receptor antagonist, caused oocyte degeneration, with morphological aspects similar to
254	those observed in this work. Degenerating oocytes in relation to spawning delay have also
255	been reported in association with endocrine disruption induced by DDT in zebra mussel
256	Dreissena polymorpha (Binelli et al., 2004). In our results, ultrastructure of the ovaries was
257	studied to find out more detailed effects. The ultrastructure characteristics of degenerating and
258	degenerated oocytes displayed the same aspects with the natural interdigitation phenomena
259	reported in the marine bivalve Pina nobilis (Gaulejac et al., 1995) and Cyclina sinensis
260	(Chung et al., 2007). Meanwhile, it was reported in C. sinensis that follicle cells appear to
261	play an integral role in oocye degeneration (Chung et al., 2007), which were also observed as
262	a common phenomenon in our results (Figure 3d). Furthermore the ultrastructure observation

263	indicated that quantity of yolk granules in exposed samples decreased significantly during the
264	oocyte degenerating which suggested that oocyte degeneration caused by PAHs exposure
265	could be a reason for vitellogenin-like protein levels variation reported in mussels M. edulis
266	and D. polymorpha (Aarab et al., 2004; Lafontaine et al., 2000). A long-term and low-dose
267	effect of PAHs needs to be further studied to examine the endocrine effects and the
268	mechanisms of PAH impact on bivalve reproductive systems.
269	
270	5. Conclusion
271	The results of the present study confirmed that BaP exposure resulted in DNA damage
272	and perturbations in histological structure of female gonad in scallops. According to the
273	results, the effect of BaP reactive intermediates on biomacromolecules, which caused DNA
274	and cell membrane system damage in scallop female gonad, were corroborated. The
275	experiment indicated that DNA damage in gonad was more sensitive than other tissues, and
276	gonad DNA strand break could be a potentially suitable biomarker as early warning indicator
277	for toxicity of PAHs. However, the mechanism of BaP effects needs to be studied further to
278	understand the phenomenon of increased oocyte degeneration.
279	6
280	Acknowledgement
281	We wish to express our sincere gratitude to all the staff of the Laboratory of Aquatic
282	Environmental Physiology for the organization of the exposure experiment. This work was
283	supported by Science and Technology Development Project of Qingdao City of China
284	(06-2-2-21-jch) and Science Foundation of The Key Laboratory of Mariculture, Ministry of

285 Education, Ocean University of China.

286

287 References

- Aarab, N., Lemaire, S., Unruh, E., Hansen, P.D., Larsen, B.K. & Andersen, O.K., et al., 2006.
- 289 Preliminary study of responses in mussel *Mytilus edilus* exposed to bisphenol A, diallyl

290 phthalate and tetrabromodiphenyl ether. Aquatic Toxicology 78, 86-92.

- 291 Aarab, N., Minier, C., Lemaire, S., Unruh, E., Hansen, P.D.& Larsen, B.K. et al., 2004.
- 292 Biochemical and histological responses in mussel (*Mytilus edulis*) exposed to North Sea
- 293 oil and to a mixture of North Sea oil and alkylphenols. Marine Environmental Research
- 58, 437-441.
- Binelli, A., Bachetta, R., Mantecca, P., Ricciardi, F., Provini, A., Vailati, G., 2004. DDT in

296 zebra mussels from Lake Maggiore (N. Italy): level of contamination and endocrine

- disruptions. Aquatic Toxicology 69, 175-188.
- 298 Canova, S., Degan, P., Peters, L. D., Livingstone, D. R., Voltan, R., Venier, P., 1998. Tissue
- 299 dose, DNA adducts, oxidative DNA damage and CYP1A-immunopositive proteins in
- 300 mussels exposed to waterborne benzo[*a*]pyrene. Mutation Research 399, 17-30.
- Cesarone, D. F., Bologenesi, C., Santi, L., 1979. Improved microfluorometric DNA
 determination in biological material using 33258 Hoechst. Analytical Biochemistry 100,
 188-197.
- 304 Ching, E. W. K., Siu, W. H. L., Lam, P. K. S., Xu, L., Zhang, Y., Richardson, B., Wu, R. S. S.,
- 305 2001. DNA Adduct formation and DNA strand breaks in green-lipped mussels (*Perna*
- 306 *viridis*) exposed to benzo[a]pyrene: dose- and time- dependent relationships. Marine

307	Pollution Bulletin 42, 603- 610.
308	Chung, E., Koh, C. H., Park, G. M., 2007. Oogenesis, oocyte degeneration and sexual
309	maturation in female Cyclina sinensis (Gmelin, 1971) (Bivalvia: Veneridae) in Korea.
310	Integrative Biosciences 11, 191-198.
311	Daniel, F. B., Haas, D. L., Santi, L., 1985. Quantitation of chemically induced DNA strand
312	breaks in human cells via an alkaline unwinding assay. Analytical Biochemistry 144,
313	390- 402.
314	Fong, P.P., Hardege, J.D., Ram, J.L., 1994. Long-lasting, sex-specific inhibition of
315	serotonin-induced spawning by methiothepin in the zebra mussel, Dreissena polymorpha
316	(Pallas). Journal of Experimental Zoology 270, 314-320.
317	Gagné, F., Blaise, C., Hellou, J., 2004. Endocrine disruption and health effects of caged
318	mussels, Elliptio complanata, placed downstream from a primary-treatedmunicipal
319	effluent plume for one year. Comparative Biochemistry and Physiology Part C 138,
320	33-44.
321	Gaulejac, B. D., Henry, M., Vicente, N., 1995. An ultrastructural study of gametogenesis of
322	the marine bivalve Pinna nobilis (Linnaeus 1758) I. Oogenesis. Journal of Mollusc Study
323	61, 375-392.
324	Harries, J.E., Sheahan, D.A., Jobling, S., Matthiessen, P., Neall, P., Sumpter, J.P., et al., 1997.
325	Estrogenic activity in five United Kingdom rivers detected by measurement of
326	vitellogenesis in caged male trout. Environmental Toxicological Chemistry 16, 534-542.
327	Horiguchi, T., Kojima, M., Kaya, M., Matsuo, T., Shiraishi, H. & Morita, M. et al., 2002.
328	Tributyltin and triphenyltin induce spermatogenesis in ovary of female abalone, Haliotis

329	gigantea. Marine Environmental Research 54, 679-684.
330	Ketata, I., Denier, X., Hamza-Chaffai, A., Minier, C., 2008. Endocrine-related reproductive
331	effects in mollusks. Comparative Biochemistry and Physiology Part C 147, 261-270.
332	Kovacs, T.G., Voss, R.H., Megraw, S.R., Martel, P.H., 1997. Perspectives on Canadian field
333	studies examining the potential of pulp and paper mill effluent to affect fish reproduction.
334	Journal of Toxicology and Environmental Health 51, 305-352.
335	Lafontaine, Y., Gagné, F., Blaise, C., 2000. Biomarkers in zebra mussels (Dreissena
336	polymorpha) for the assessment and monitoring of water quality of the St Lawrence
337	River (Canada). Aquatic Toxicology 50, 51-71.
338	Leino, R. L. and Mccormik, J. H., 1997. Reproductive characteristics of ruffe,
339	Gymnocephalus cernuus, in the St. Louis River estuary on western Lake Superior: A
340	histological examination of the ovaries over one annual cycle. Canadian Journal of
341	Fisheries and Aquatic Sciences 54, 256-263.
342	Lowe, V.L., Pipe, R.K., 1986. Hydrocarbon exposure in mussels: a quantitative study of the
343	responses in the reproductive and nutrient storage cell systems. Aquatic Toxicology 8,
344	265-272.
345	Martinez, P. G.and Livingstone, D. R., 1995. Benzo[a]pyrene -dione-stimulated oxyradical
346	production by microsomes of digestive gland of the common mussel, Mytilus edulis L.
347	Marine Environmental Research 39, 185-189.
348	Maung Myint, U., Tyler, P.A., 1982. Effects of temperature, nutritive and metal stressors on
349	the reproductive biology of Mytilus edulis. Marine Biology 67, 209–223.
350	Menzie, C. A., Potocki, B. B., Santodonato, J., 1992. Exposure to carcinogenic polycyclic

351	aromatic hydrocarbons in the environment. Environmental Science and Technology 26,
352	1278-1284.
353	Miao, J-J, Pan, L-Q., Wang, J., 2007. Effects of B[a]P on micro and ultrastructure of gill and
354	digestive gland of Chlamys farreri. Acta Scientiae Circumstantiae 27(9), 1497-1503.
355	Pan, L-Q., Miao, J-J., Wang, J., Liu, J., 2007. AHH activity, tissue dose and DNA damage in
356	different tissues of the scallop Chlamys farreri exposed to benzo[a]pyrene,
357	Environmental Pollution 153, 192-198.
358	Rasmussen, L.P.D., Hage, E., Karlog, O., 1983. Light and electron microscopic studies of the
359	acute chronic toxic effects of N-nitroso compounds on the marine mussel, Mytilus
360	edulis (L.). 1. N-nitrosodimethylamine. Aquatic Toxicology 3, 285–299.
361	Siu, W.H.L., Cao, J., Jack, R. W., Wu., R. S. S., Richardson, B. J., Xu, L., Lam., R. K. S.,
362	2004. Application of the comet and micronucleus assays to the detection of B[a]P
363	genotoxicity in haemocytes of the green-lipped mussels (Perna viridis). Aquatic
364	Toxicology 66, 381-392.
365	Siu, W.H.L., Hung, C.L.H., Wong, H.L., et al., 2003. Exposure and time dependent DNA
366	strand breakage in hepatopancreas of green-lipped mussels (Perna viridis) exposed to
367	Aroclor 1254, and mixtures of B[a]P and Aroclor 1254. Marine Pollution Bulletin 46,
368	1285e1293.
369	Thomas, P., 1990. Molecular and biochemical responses of fish to stressors and their potential
370	use in environmental monitoring. American Fisheries Society Symposium 8, 9-28.

Table 1

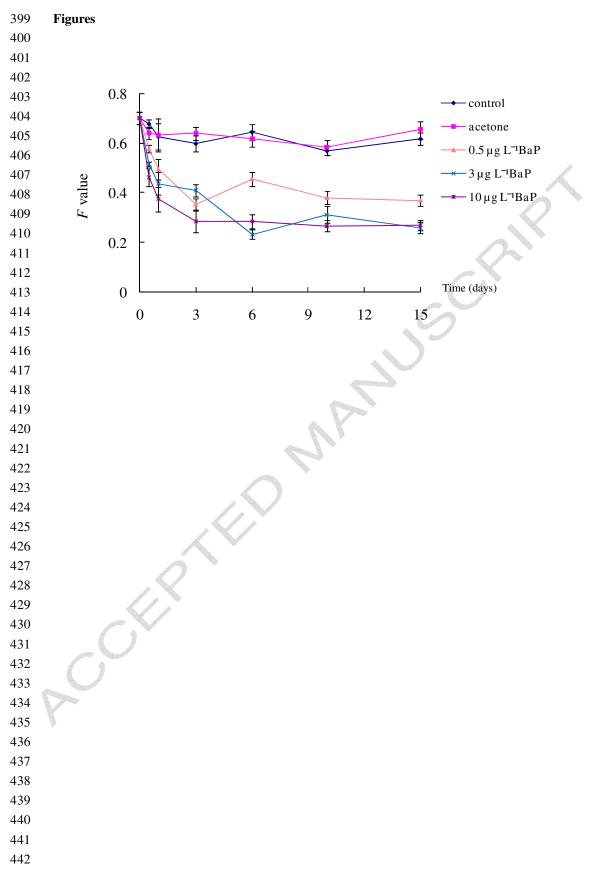
Effect of Benzo[a]pyrene on oocyte degeneration in mature ovarian tissues prepared from scallop

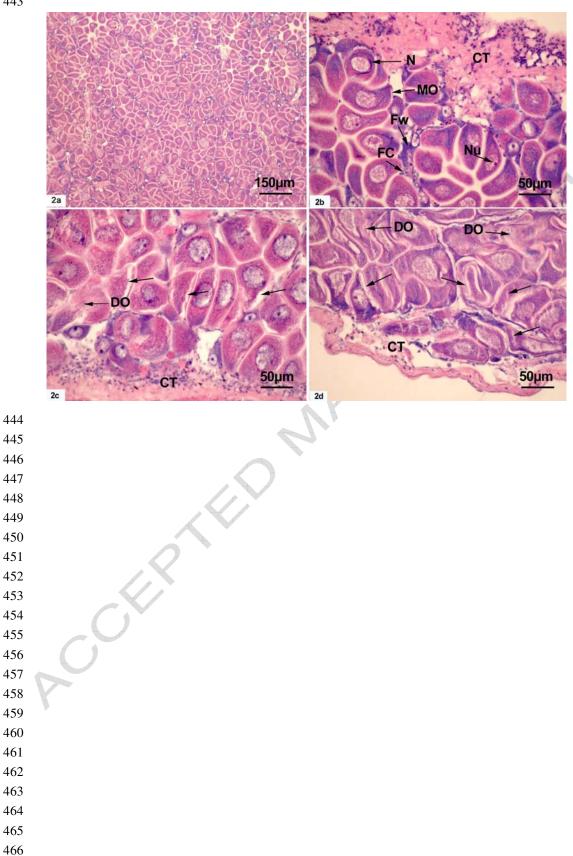
- (Chlamys farreri)

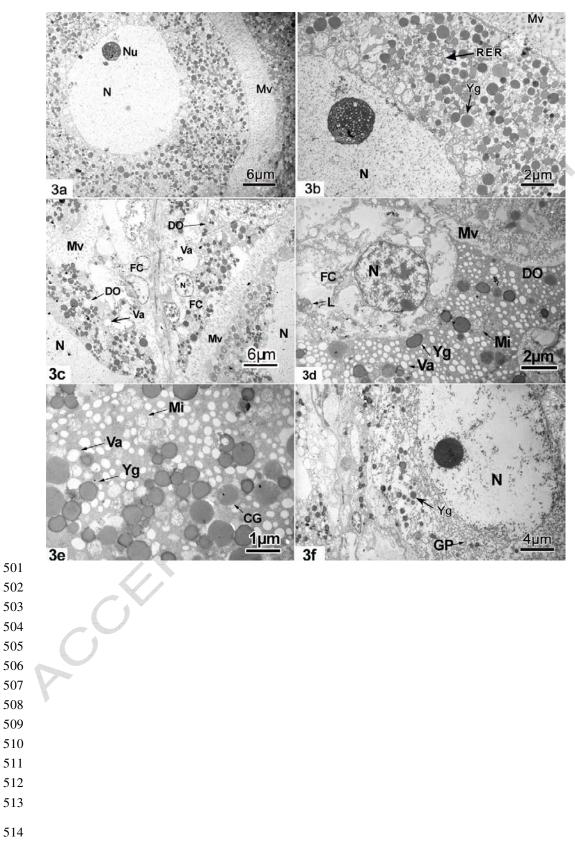
Treatment	Rate of degen	erating oocyte (%))
	0 day	10 days	15 days
Seawater control	2.33 ± 1.55	2 ± 0.57	2.33 ± 1.52
Acetone control		1.67 ± 0.33	2±1.15
10 μg L ⁻¹ BaP		9.67 ± 2.08	25.67 ± 4.04
Values are means \pm	S.E. (n=6)		
			Y
		\wedge	
	$\langle \rangle$		
Cr'	1		

376 Figure Captions

377	Fig.1.	Variations	in the ratio	between	double-	stranded	DNA	to total	DNA (F value) (mean
511	1 15.11	, an i actionio	III the ratio	0000000	404010	Stranaca	D 1111	to total	21111	i raiae	(Incan-


- 378 SD) in mature female gonads of scallop (*Chlamys farreri*) groups exposed to various
- 379 concentrations of BaP over a 15-day period (n=3).


			gonad section.	
381				


- 382 exposed to 10 µg L⁻¹ BaP for 10 days. Arrows indicate the sparse cytoplasts of oocytes; 2d -
- 383 exposed to $10 \ \mu g \ L^{-1}$ BaP for 15 days. Ovarian follicles filled with attretic oocytes. Arrows
- 384 indicate the sparse cytoplasts of oocytes. (CT- connective tissue; DO-
- 385 degenerating/degenerated oocyte; FC- follicle cell; Fw- follicular wall; MO- mature oocyte;
- 386 N- nucleus; Nu-nucleolus) (Paraffin sections, 5µm-thick, hematoxylin-eosin-saffron.)
- 387

388	Fig.3. Effects of BaP on ultrastructure of scallop Chlamys farreri oocytes. 3a and 3b -control;
389	3c, 3d, 3e and 3f - exposed to 10 μ g L ⁻¹ BaP for 15 days. 3c showed perivitelline space of
390	several degenerating oocyte. 3d showed part of a degenerating oocyte and a follicle cell. 3e
391	showed a degenerating oocyte with numerous vacuoles and modified mitochondrion. 3f
392	showed a degenerated oocyte with large quantity of glycogen in the cytoplasm. (CG- cortical
393	granules; DO- degenerating oocyte; FC- follicle cell; Fw- follicular wall; GP- glycogen
394	particle; L- lysosome; Mi-mitochondrion; Mv-microvillus; N- nucleus; Nu-nucleolus;
395	RER-rough endoplasmic reticulum; Va-vacuoles; Yg-yolk granules) (Epon 812 embedded,
396	stained with uranyl acetate and lead citrate.)

- 397
- 398

