

A review of subtidal benthic habitats and invertebrate biota of the Strait of Georgia, British Columbia

B.J. Burd, P.A.G. Barnes, C.A. Wright, R.E. Thomson

▶ To cite this version:

B.J. Burd, P.A.G. Barnes, C.A. Wright, R.E. Thomson. A review of subtidal benthic habitats and invertebrate biota of the Strait of Georgia, British Columbia. Marine Environmental Research, 2008, 66, 10.1016/j.marenvres.2008.09.004. hal-00563056

HAL Id: hal-00563056 https://hal.science/hal-00563056v1

Submitted on 4 Feb 2011

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Accepted Manuscript

A review of subtidal benthic habitats and invertebrate biota of the Strait of Georgia, British Columbia

B.J. Burd, P.A.G. Barnes, C.A. Wright, R.E. Thomson

PII: S0141-1136(08)00212-2

DOI: 10.1016/j.marenvres.2008.09.004

Reference: MERE 3288

To appear in: Marine Environmental Research

Received Date: 14 November 2007 Revised Date: 28 August 2008 Accepted Date: 20 September 2008

Please cite this article as: Burd, B.J., Barnes, P.A.G., Wright, C.A., Thomson, R.E., A review of subtidal benthic habitats and invertebrate biota of the Strait of Georgia, British Columbia, *Marine Environmental Research* (2008), doi: 10.1016/j.marenvres.2008.09.004

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	8/20/2008
2	
3	
4 5	A review of subtidal benthic habitats and invertebrate biota of the Strait of Georgia, British Columbia
6 7 8 9 10	
12	B.J. Burd ¹ , P.A.G. Barnes ² , C. A. Wright ³ , R.E. Thomson ³
13 14 15 16 17	
19 20 21	¹ Ecostat Research Ltd., 1040 Clayton Rd. North Saanich, B.C. V8L 5P6
21 22 23 24	² Barnes Marine Research Ltd., 942 Sunset Drive, Salt Spring Island, B.C. V8K 1E6
23 24 25	³ Institute of Ocean Sciences, Box 6000, Sidney, B.C. V8L 4B2
26	
27	
28 29 30	
31	

Abstract

2	2
Э	3

The initial phase of a collaborative Ambient Monitoring Program (AMP) for the Strait of
Georgia (SoG) (Marine Environmental Research Vol. x, pp.) has focused on the benthos,
sedimentary regimes, organic and contaminant cycling in subtidal regions of the strait. As part
of that project, we review the primarily subtidal benthic invertebrate faunal communities found
in the SoG, with particular reference to habitats and sediment conditions. This topic has not been
addressed in the primary literature for over 20 years. Benthic biota are the baseline sentinels of
the influence of natural and anthropogenic inputs to sediments. They are also a fundamental
component of the food chain at the seafloor, and their community ecology must be clearly
understood in order to predict how anthropogenic activities and climate change will affect our
coastal oceans. The purpose of this review is to provide context on habitats and biota in the SoG,
and to highlight topics and geographic areas where our knowledge of the benthos is limited or
lacking.

- 47 Keywords: benthos; Strait of Georgia; subtidal communities; intertidal communities;
- 48 British Columbia; anthropogenic influences

1. Introduction

- 52 The introduction (Section 1) includes the background to this review (Section 1.1), plus
- overviews of the oceanography (Section 1.2) and sedimentary regimes (Section 1.3) of the SoG.
- Section 2 reviews information available on the SoG's benthic habitats and invertebrate

communities, with specific sections on intertidal (Section 2.1) and subtidal (Section 2.2)	
communities and habitats. Section 2.2 is further divided into subsections based on subtidal dep	oth
range and substrate type. Anthropogenic influences on benthic environments and invertebrates	
of the SoG are summarized in Section 3; case studies of each type of anthropogenic influence a	re
also presented. Section 4 provides a brief summary of the review paper.	
1.1 Background	
Sources, and availability, of information for this review depended largely on the depth range of	•
interest. For example, one source of information on intertidal habitats and biotic conditions for	
the SoG includes broad-scale mapping, or monitoring, studies with the purpose of managing	
broader geographic regions for multi-user inputs and conservation. Mapping data are limited to)
intertidal zone and the shallow subtidal (<30 m) habitats that have broad aerial, or ground surve	Эy
coverage. Unfortunately, at depths >30 m, such mapping and survey data do not exist for the	
SoG. Rather, information for these depths comes primarily from ship-board sampling as part of	f
studies designed to address specific questions for limited geographic areas. These studies tend,	,
therefore, to be focused on a defined area, a specific anthropogenic influence and/or on data	
collection in support of fisheries and/or environmental management. Similar sources of	
information are also available for intertidal and shallow subtidal (0-30 m) habitats for the SoG.	
While most marine habitats are discussed, at least briefly, in this review, the paper was	
conceived within the context of a project which was biased towards subtidal, sedimentary	
habitats, and hence it is these latter habitats that are the focus of this review.	

In temperate coastal areas world-wide, most benthic biological research and monitoring programs focus on macrobenthic invertebrates (those captured with ≥500 μm mesh screens). For this reason, macrobenthic invertebrate communities are the main subject of this review. In addition to size, the life histories, responses to natural and anthropogenic conditions and changes, and trophic strategies of macrobenthic invertebrates are far better understood and documented than those of smaller invertebrates and protozoans. For example, many commercially important macroinvertebrate species live within the sediments (e.g., clams) or on the surface of the sediments or hard substrata (e.g., crabs). In addition, benthic macroinvertebrates have often been the subject of antropogenic impact studies; as a result of being largely sedentary, these organisms are exposed to ambient conditions and may serve as the first-line sentinels reflecting localized impacts (c.f. Warwick and Clark, 1993; Pohle et al., 2001). It should be noted that many benthic macroinvertebrates have a pelagic larval development stage and, as a result, are part of an extensive and intricate food chain which is not limited to the benthos but which can extend throughout the water column.

Benthic invertebrates process the particulate, organic materials (detritus, small organisms) that are deposited on the seafloor or that are suspended within reach of the organisms, using a wide range of feeding strategies such as deposit feeding, suspension feeding, filter feeding, or scavenging. Benthic invertebrates may also be predators, herbivores (grazing on living plant material) or they may rely, at least partially, on chemoautotrophy via symbioses with bacteria for their nutrition (Barnes, 1987). Schwinghamer (1983) estimated that, in soft sediments in temperate coastal regions, macroinvertebrates constitute approximately 95% of the total invertebrate biomass. Similarly, Rowe et al. (1991) found that in coastal areas in global

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

temperate regions, benthic macroinvertebrates tend to dominate the benthic biomass (excluding fish) in mid-depth subtidal areas (i.e. below the euphotic zone) followed by the other two major benthic consumer groups, the meiofauna (interstitial invertebrates sized 42 µm to 1 mm) and the single-celled organisms (primarily bacteria). While single-celled organisms are beyond the scope of this review, meiofaunal community studies, where applicable, have been incorporated. With the exception of foraminifera (for which taxonomy based on shell morphology has been extensively used in modern and ancient sediments for interpolation of biological and environmental conditions), however, the availability of information on meiofaunal taxonomy, life histories, and environmental tolerances is limited. In contrast to diversity and biomass patterns, Schwinghamer (1981) estimates that, because of their small size, approximately 95% of the total abundance of benthic invertebrates consists of nematodes and harpacticoid copepods. Included in this total abundance estimate are the larvae of larger invertebrates and a series of less common phyla, typically captured only by 63 µm mesh screens, which prey on benthic bacteria, flagellates, ciliates, foraminifera, and diatoms or bluegreen algae in shallower muds (Schwinghamer, 1981; Gerlach et al., 1985). The importance of meiofauna as the base heterotrophs in the food chain varies depending on habitat type and depth (Coull and Bell, 1979). Certainly, components of the meiofauna can be very important in intertidal, and shallow subtidal (i.e. photic zone) benthos where there is considerable primary production occurring in the sediments (Schwinghamer, 1981, 1983; Rowe et al., 1991). Copepods, in particular, can be a vital food resource for juvenile fish in near-shore nursery areas (for review see Tito de Morais and Bodiou, 1984). Harpacticoid copepods in sediment core samples from Zostera marina beds in the Nanaimo River Estuary and the Cowichan Estuary were diverse (over 50 species from the Nanaimo River Estuary) and abundant (Levings et al.,

1983). In contrast to their global findings for mid-depth subtidal coastal areas, Rowe et al.
(1991) suggest that meiofauna may be a more important component of deep subtidal biomass
than are macroinvertebrates. In the SoG, a moderately deep coastal area, it is reasonable to
assume, therefore, that benthic macroinvertebrates are the primary consumers at the base of the
(benthic) food chain and are more important than meiofauna in this regard.
The SoG is part of the broader coastal region of southwest BC and northwest Washington State.
Therefore, biological reference materials for the Pacific northwest (e.g. Carefoot 1977; Kozloff
1987) have general applicability to the SoG. The most recently published review of the benthos
of the SoG is Levings et al. (1983). This review included reference to broad-scale, historical
biological surveys from the 1960s and 1970s that were based primarily in intertidal and shallow
subtidal areas; at the time of the review, there was very little available research on mid-subtidal
to deep subtidal benthic invertebrate fauna. These surveys included a few studies of soft
substrate infaunal invertebrates (Ellis, 1967a, b, 1968a, b, c) and descriptions of an extensive
trawl survey of larger epifauna (Bernard 1978). A general description of fjord cliff fauna, based
on submersible surveys from three contiguous fjords, was also included in the review of Levings
et al. (1983). Although not included in the subject matter of this review, intertidal research on
algal and marine vascular plant communities in the SoG was reviewed by Levings et al. (1983)
and, more recently, by Watson (1998). In addition to the general lack of research on subtidal
invertebrate fauna, Levings et al. (1983) point out that there were no data at all from the deep
basin of the SoG and also that little was known about the type, source or composition of
sediments, or sedimentation rates, in the SoG. In the past twenty-five years, a great deal of effort
has been expended to map biophysical conditions in the substrates of the intertidal and shallow
subtidal zones in the SoC: this information is reviewed in Sections 2.1 and 2.2. However, this

146	review concentrates, primarily, on the less accessible and less well understood, subtidal regions
147	of the SoG.
148	From 1986 to 1992, a series of primarily deeper (>30 m) subtidal benthic surveys were
149	conducted by the Canadian Department of Fisheries and Oceans and Environment Canada in the
150	SoG and surrounding areas (Burd and Brinkhurst, 1990; Cross and Brinkhurst, 1991; Burd and
151	Brinkhurst, 1992). Only one study, carried out in Boundary Bay, conducted both intertidal and
152	shallow subtidal benthic surveys (Burd et al., 1987). These surveys were briefly referred to in
153	Brinkhurst et al. (1994) and Watson (1998). The original data, and a meta-analysis for these
154	coastal surveys, are provided in Burd (1992). Wilson et al. (1994) edited a trans-boundary
155	(Canada-USA) symposium report reviewing the marine environment and biota of the SoG, Puget
156	Sound and Juan de Fuca Strait. Several research papers from this report are included in this
157	review. A broadly based trans-boundary trawl survey of macroinvertebrates and bottom fish
158	species, which included the southern SoG (Canadian and US), was conducted in 2001 by the
159	Washington State Department of Fish and Wildlife (Palsson et al., 2003). Although 117 taxa of
160	large invertebrates were enumerated from trawls, the focus of the survey was on fish stocks,
161	historical trends, and exploitation rates. However, the distributions of commercial invertebrates
162	(notably Dungeness crab and pandalid shrimp) were highlighted.
163	
164	Aside from a small number of government studies focused on historical environmental issues
165	(e.g. the Brittania Mine in Howe Sound (G3 Consulting, 2003; Hagan et al., 2004; Levings et al.,
166	2004; Zis et al., 2004), the remaining benthic subtidal habitat and invertebrate sampling has been
167	carried out, primarily, as part of monitoring programs (data collection either for establishing a

baseline or as part of an ongoing program) related to specific anthropogenic inputs into the SoG or its fjords.

Much of the benthic infaunal data available from the SoG since 1986 has been collated into a taxonomically coded and consistent meta-database which includes data from background (or reference) areas, data from areas of known anthropogenic input, and accompanying sediment physical and geochemical data (Burd et al., in press). Burd et al. (in press) also provide a detailed discussion of the biotic responses of benthic invertebrate communities in the SoG to sedimentation rate and organic flux.

1.2. Oceanography

The oceanography of the SoG, and a number of surrounding fjords and inlets, is described by Thomson (1981), LeBlonde (1983), Crean et al. (1988), and Stacey et al. (1991), with updates by Thomson (1994, 1998), Li et al. (1999), and Masson and Cummings (2004). Early numerical tidal current models for the SoG were reported by Thomson (1981) and Crean et al. (1988); more recent tidal current models are described in Foreman et al. (1995, 2004). Models of current variability due to wind, river discharge (estuarine circulation), winter cooling and other non tidal factors, as well as bio-physical aspects of the water column variability, are currently being developed by scientists at the University of British Columbia, (through the STRATOGEM project (http://www.stratogem.ubc.ca/), the University of Victoria (VENUS project; http://www.venus.uvic.ca/index.html) and the Canadian Department of Fisheries and Oceans Institute of Ocean Sciences (IOS) (Masson and Cummings, 2004).

The SoG is 222 km long and approximately 28 km wide with a mean depth of roughly 155 m (Thomson, 1981; Davenne and Masson, 2001). Additional characteristic features of the SoG, taken from England et al. (1996), Thomson (1998), and Thomson and Foreman (1998) are summarized in Table 1. Fig. 1 shows the depth topography, sills and surrounding inlets of the Strait.

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

191

192

193

194

195

The two primary components of circulation in the SoG, and the dominant factors determining the rate of basin flushing and exchange, are the diurnal and semidiurnal tidal currents and the seasonally variable estuarine circulation driven by fresh water fluxes into the strait. The strength of estuarine circulation in the SoG is affected seasonally by the volume of runoff discharge from the major rivers (mainly the Fraser River) which enter mostly in late spring to early summer, with a secondary surge in late fall. Estuarine circulation is strongly affected by the intensity of vertical tidal mixing which becomes maximal in the narrow channels leading into the strait. Winds, surface heating and cooling, intrusions from adjoining Juan de Fuca Strait and Discovery Passage, and variations in offshore oceanic conditions also affect the circulation in the strait. Other factors influencing the circulation are the shape of the coastline and slope of the bottom topography, bottom and internal friction, inertial forces and external factors related to up-strait propagation of oceanic "events" originating over the outer continental margin. These factors are discussed in Thomson (1998) and outlined in detail in Griffin and LeBlonde (1990), Thomson (1994), and Thomson et al. (2007). Detailed discussion on the estuarine circulation in the SoG can be found in Marinone and Pond (1996), Li et al. (1999), Pawlowicz (2001) and Masson (2002).

There are a number of distinct oceanographic regimes in the SoG (Thomson, 1998). These
include the three main basin oceanographic regimes (delineated in Fig. 1) that are described by
Thomson (1981, 1998) as follows:
1) the Southern SoG, which has vigorous flow exchange and mixing between the
southern channels (Haro Strait and Rosario Strait) and the main body of the Strait;
2) the Central SoG, which extends northward to the southern end of Texada Island,
and receives the main volume of fresh water from the Fraser River runoff; and
3) the Northern SoG, which occupies the northern portion of the Strait (from the
southern end of Texada Island northwards) but excludes the margin along the eastern side
of Vancouver Island where the water properties appear to be strongly affected by the
southward density jet entering through Seymour Narrows on the flood tide.
Connecting oceanographic regimes include Juan de Fuca Strait, which extends from the Pacific
continental shelf to the entrance to the southern end of Haro and Rosario straits (two tidally
active channels with very similar temperature and salinity structure (Thomson, 1998). The
northern end of the SoG is connected to the Pacific Ocean through Discovery Passage and
Johnstone Strait (Harrison and Yin, 1998). These oceanic connections at the northern and
southern ends of the SoG have strong tidal flow and intense turbulent mixing, which is further
enhanced through the narrow adjoining channels (Thomson, 1981). At the southern end of the
SoG, for example, a complex topography of islands and sills creates strong vertical and lateral
tidal mixing (Masson and Cummings, 2000; Pawlowicz, 2002; Thomson et al., 2007), which is
also evident in the vertically mixed particulate distributions in this region (Johannessen et al.,
2005b). There is nominal surface outflow at both ends of the SoG, with approximately 85-95%

of the flow volume through Haro and Rosario straits and the remaining flow through Johnstone
Strait. Thomson (1981) examined the cross-sectional areas of all channels leading into the SoG
and found that the southern channels account for 93% of the cross-sectional area and the
northern channels only 7%. The major inlets adjoining the SoG are Burrard Inlet, Howe Sound,
Jervis Inlet (including Sechelt Inlet), Bute Inlet and Saanich Inlet (Harrison and Yin, 1998).
Knight Inlet and Toba Inlet connect through a northern island-strewn archipelago, so can be
considered a separate oceanographic regime. Surface outflow of riverine water strongly affects
the water property structure in this region (Thomson, 1998).
The southern SoG is defined as the area extending south from the main arm of the Fraser River
to the eastern end of Juan de Fuca Strait (Thomson, 1981; Harrison and Yin, 1998; Thomson,
1998). This oceanographic regime is dominated by the Fraser River plume when it moves
southward (e.g. during northwest winds and an ebb tide) and is significantly influenced by tidal
mixing over the shallow sills of Rosario and Haro straits during spring tides. Tidal mixing
injects nutrient-rich water into the southern Strait which lessens the occurrence of nitrogen
limitation episodes in the summer. It is, therefore, considered a highly productive area even
though it has not been well studied (Harrison and Yin, 1998). Haro Strait, which separates the
southern Gulf Islands and Vancouver Island from the San Juan Islands, is the most important of
these channels. The flow exchange through this channel is strongly three-dimensional, with
variation over multiple time scales (Pawlowicz, 2002). The exchange undergoes marked
variability at fortnightly, monthly and seasonal time scales due to corresponding variations in the
intensity of the tidal mixing in the channels (i.e., the hydraulic control mechanism outlined by
Griffin and LeBlonde, 1990). During the neap tide portion of the fortnightly cycle, when the

tidal currents in Haro Strait are minimal, surface brackish waters from the SoG are able to
"slide" seaward over the more dense oceanic waters entering at intermediate to near-bottom
depths from Juan de Fuca Strait. In summer (July to October), the deep estuarine inflow in Juan
de Fuca Strait carries warm, salty (high density), low-oxygen, high nutrient water inward from
the coastal ocean. This water is then able to penetrate to the bottom of the SoG in a series of
monthly pulses, renewing the deep water nutrient levels in the region; in winter (November to
March), this subsurface inflow occurs only to intermediate depths (Masson and Cummings,
2004). Deep water oxygen levels are increased during deep water intrusions of cold highly
oxygenated water in spring. During the spring tidal portion of the fortnightly cycle, when tidal
currents are maximal, turbulent vertical mixing in Haro Strait and other passages prevents the
simple exchange of brackish SoG water with deeper oceanic water. In this case, there is a reflux
of water from the passages back into the SoG at intermediate depths. Additional details on the
exchange processes through Haro Strait are found in Griffin and LeBlonde (1990), Thomson
(1994), Pawlowicz (2002), Masson and Cummings (2004), and Thomson et al. (2007).
The central SoG is defined herein as the area from the south end of Texada Island to a line
drawn from Point Roberts to the Saanich Peninsula (Waldichuk, 1957; Thomson, 1981, 1998).
This oceanographic regime is complex due to the seasonal influences of the Fraser River plume,
which is characterized by low salinity, very high light-extinction coefficients, high SiO ₄ -4, low
chlorophyll and low primary productivity. During freshet, the sediment-laden surface plume is
2-10 m thick (Thomson, 1981), thus reducing the depth of the euphotic zone and primary
production within the surface waters, while greatly enhancing primary (Stockner et al., 1979) and
secondary (Mackas and Louttit, 1988) production at the plume margins. Surprisingly,

chlorophyll levels and the abundance of zooplankton and fish are frequently high under the
plume (Harrison and Yin, 1998). Bacterioplankton production is greatly enhanced within the
brackish plume water (Albright, 1983). The area of the Fraser River plume undergoes marked
seasonal variability, with the maximum variations in extent, as well as chemical and biological
parameters, occurring in June, at which time the plume can dominate the central SoG. At any
given time, the distribution of the plume is influenced by the stage of the tidal currents (flood
verus ebb tide) and by surface wind speed and direction (Harrison and Yin, 1998). After wind
and tidal mixing, the third largest mechanism for transporting deep nutrient inputs into the
surface layer of the SoG is the entrainment of nitrate-rich salt-wedge water directly into the base
of the Fraser River outflow (Harrison and Yin, 1998). Seasonal cycles in nutrients, chlorophyl
and primary productivity are relatively predictable in the central SoG (Harrison et al., 1983) but
the day-to-day variation is high, with values ranging over one order of magnitude in some
months (e.g. June). Nitrogen limitation frequently occurs in July and August, depending on the
magnitude of the wind events. As a consequence, it is difficult to draw a reliable map of annual
primary productivity for the SoG (Harrison and Yin, 1998). Modelling surface layer
productivity is also a major component of the STRATOGEM project
(http://web.uvic.ca/~dower/dowerlab/research.html).

As with the southern passages, flow through the northern passages of Discovery Passage and Johnstone Strait is strongly tidal with a pronounced estuarine circulation component driven by runoff from the Fraser River. Hydraulic processes again modify the fortnightly, monthly and seasonal exchange of waters through this region. Although the flow dynamics in the northern passages are similar to those in the southern passages, the flow tends to have a weaker cross-

channel component and experiences less variability in water properties due to the greater
narrowness of the channels (Thomson, 1981, 1994). Considerable oceanographic information is
available for this region as a result of current and water property surveys conducted in the region
in the 1970s. For data on currents and estuarine-type circulation see Thomson (1976, 1977),
Huggett et al. (1980), Thomson and Huggett, (1980), and Thomson et al. (1980a, b). Haigh and
Taylor (1991) studied microplankton communities in the northern SoG and determined that,
because of the long wind fetch and weak halocline (relatively little influence of the Fraser River
compared to the southern regions), wind mixing is likely to prolong or prevent pronounced
bloom formation. By late summer, the west side of the SoG is diatom-dominated and more
productive due to a nutrient-rich tidal jet flowing out of Discovery Passage during a flood tide.
The east side is more stratified due to surface heating and a somewhat lower salinity due to the
Fraser River plume (mainly in June and July) (Haigh and Taylor, 1991).
The fjords adjoining the SoG represent a separate oceanographic domain due to the relative
isolation of their water masses from the rest of the strait (Thomson, 1998). The mainland fjords
include Howe Sound, Jervis Inlet, Bute Inlet, Toba Inlet, Knight Inlet, and Saanich Inlet (the
latter being the only fjord on the eastern side of Vancouver Island). Toba and Knight inlets are
not always considered to be part of the SoG (Harrison and Yin, 1998). All fjords are separated
from the main basin by sills shallower than the fjord basin. Only Burrard Inlet, discussed later in
this section, lacks a sill and is not a fjord. Behind the sills, the fjords have glacially-carved
basins which are often far deeper than the SoG itself; the deepest fjord basin (700 m) is found in
Tamic Inlet Tidel and estroniae armente even the cills marride for an eventonese of material with
Jervis Inlet. Tidal and estuarine currents over the sills provide for an exchange of material with

conditions inside and outside of the silled basins. The sill regions are characterized by enhanced
tidal currents due to restricted openings and shallow depths; this is particularly true in Knight
Inlet (Farrow et al., 1983; Tunnicliffe and Wilson, 1988) and at the famous Skookumchuk
Narrows opening into Jervis Inlet (Thomson, 1981). However, inlets with especially shallow sills
at the mouth tend to have low bottom currents in the deep basins located behind the sill, which
can lead to stagnation resulting in low dissolved oxygen levels in bottom waters and sediments
(Thomson, 1981). Basic features of basin topography and oceanography for the SoG fjords are
described by D. Stucchi (IOS, Sidney, BC) (http://www.pac.dfo-
mpo.gc.ca/sci/osap/projects/bcinlets/default_e.htm).
Saanich Inlet, the best studied of the SoG inlets in terms of sediments (note that this is not true
with respect to physical oceanography, where Knight Inlet is better understood), is smaller than
most of the mainland fjords and has a relatively minor freshwater input but a substantial
freshwater source just outside the sill (Cowichan River). The Inlet has a shallow sill at 70 m
depth and a maximum basin depth of 225 m. Saanich Inlet is unique in that it is the only marine
fjord in the SoG system with bottom water (>120-140 m) that is anoxic for most of the year.
These conditions are due to high primary production, in addition to restricted bottom water
exchange that occurs over extremely limited duration (Gargett et al., 2003). During fall
upwelling conditions, Saanich Inlet bottom waters are oxygenated for a short time interval only,
with anoxic conditions returning rapidly and extensively throughout the deep waters and
sediments (Anderson and Devol, 1973). Fall upwelling in the SoG usually pushes the bottom
anoxic layer up to mid-water depths prior to complete flushing. Deep water renewal in Saanich
Inlet is described in detail by Anderson and Devol (1973).

352	
353	Howe Sound, a fjord located just north of Vancouver, has the second largest freshwater
354	discharge into the SoG. The Squamish River, along with the Cheakamus River and some input
355	from the Fraser River plume, creates low surface salinities in the head of the fjord, along with a
356	strongly stratified water column with moderate oxygen in the top 30 m. These conditions, in
357	combination with the heavy glacial silt load carried by the Squamish River from May to
358	September, result in a high, near-surface, suspended silt load and brackish surface layer that
359	greatly restrict light penetration (McDaniel, 1973; Hoos and Vold, 1975). Similar conditions are
360	present in other glacially-fed fjords, such as Bute Inlet and Knight Inlet, although fresh water
361	input is lower in these latter two fjords (http://www.pac.dfo-mpo.gc.ca/sci/osap/projects/
362	<u>bcinlets/references_e.htm</u>). Deep water (>180 m) in Howe Sound tends to be seasonally hypoxic
363	with flushing of bottom water occurring at the time of seasonal upwelling (Levings, 1980a, b).
364	
365	Knight Inlet has a maximum depth of 540 m and two basins; the sill to the inner basin is located
366	at 48 m depth and the sill to the outer basin, at the mouth of the inlet, at 60 m depth. Bottom
367	water oxygen levels are higher than most of the mainland fjords (~3 ml/L), indicating frequent
368	renewals and exchange of a large fraction of the deep water (http://www.pac.dfo-
369	mpo.gc.ca/sci/osap/projects/bcinlets/knight_inlet_e.htm). Bute Inlet has a maximum depth of
370	650 m, with a relatively deep sill at 370 m depth and good bottom water oxygenation and
371	renewal. Bute Inlet has two rivers at the head, with mainly glacial sedimentation (D. Stucchi,
372	(http://www.pac.dfo-mpo.gc.ca/sci/osap/projects/bcinlets/ references_ e.htm).

As noted earlier, the deepest mainland fjord is Jervis Inlet, with a maximum depth of 670 m. The
sill to the outer basin in Jervis Inlet is relatively deep (240 m) and bottom water exchange is
sufficient to maintain reasonable oxygen levels in the deep basin all year. This inlet also has the
lowest freshwater input of all the mainland fjords (D. Stucchi, http://www.pac.dfo-mpo.gc.ca/sci/
osap/projects/bcinlets/ references_ e.htm). The oceanographic energetics of Jervis Inlet are
described by Freeland and Farmer (1980). Haigh et al. (1992) and Taylor et al. (1994) described
the seasonal cycle of temperature, salinity, nutrients, chlorophyll, and phytoplankton species for
Sechelt Inlet, an arm of Jervis Inlet. Sechelt Inlet is composed of the well mixed Skookumchuck
Narrows, and the more stratified waters of the main inlet and Salmon Inlet.
Burrard Inlet, composed of Vancouver Harbour, Indian Arm and Port Moody Arm, receives
moderate runoff from the Indian River, with the outer section of the inlet influenced by the
Capilano and Seymour Rivers (Harrison and Yin, 1998). Burrard Inlet is located within the
Greater Vancouver Regional District and is the most heavily industrialized inlet in British
Columbia. The inlet has a maximum depth of 90 m and the main basin, as well as the shallow,
isolated arms, are well oxygenated throughout the year and flush rapidly (Levings and Samis,
2001; Stacey and Pond, 2003). During a large part of the phytoplankton growing season (May to
July), high-silt water from the Fraser River decreases light penetration in the surface layer and
hence, primary productivity is reduced (Harrison and Yin, 1998). Although it does not have a
sill at the mouth, Burrard Inlet does have several constrictions within the Inlet which create high
currents (Thomson, 1981). Partially as a result of the lack of sill, fine silt sediments in the outer
inlet flow out into the main basin of the SoG. Indian Arm, located at the far northeastern end of
Burrard Inlet, is more fjord-like in structure with a 220 m deep basin and a shallow sill (15 m to
25 m).

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

1.3. Sedimentary Regime

1.3.1 Shoreline Description

For the SoG, both the total shoreline length inclusive of fjords (3721 km), and the area of benthic habitat (substrate) types were estimated by Levings et al. (1983). The authors note that, for their estimates, data from hydrographic charts on bottom type was sufficiently detailed only for intertidal and subtidal habitats down to 20 m. The authors use "shoreline" to represent intertidal and subtidal habitats down to 20 m and note that rocky and sandy shores make up 88% of the total shoreline length. However, when area is calculated, sand and mud substrates account for 66.8% (832 km²) of the total 1245 km² of intertidal and shallow subtidal habitats. In contrast, rocky shores contribute only 320 km² or 25.7% to the total area. Using Natural Resources Maps, Levings et al. (1983) computed subtidal areas at depths >20 m. While only 11% of the subtidal area of the SoG is in the 20-50 m depth range, approximately 71% of the subtidal area is within the 50-300 m depth range, encompassing most of the main basin of the Strait, with the majority of the substrate soft sediments (see Figs. 2, 3). Only 18% of the subtidal area is >300 m deep and the majority of these areas are in the mainland fjords (Levings et al., 1983). Zacharias et al. (1998a) used the BC Physical Shorezone Mapping System (Howes et al., 1993) as the basis of an analysis that provides an estimate of the total shoreline length of the SoG, including fjords (4107 km). The SoG's intertidal length is estimated to be composed of 26%

rocky cliffs, 16% rock with gravel beach, 11% sand/gravel flats, 9.5% rock with sand/gravel

beach and an additional 10 representative types each composing <7% of the shoreline; flats are

those areas with slopes <5°, while beaches have slopes from 5°-20° or higher (Zacharias et al.

1998b). The same authors estimate that the intertidal area of the SoG consists of 34% estuary
wetland, 17% sand/gravel flat, 9% sand/gravel beach and an additional 11 types, each composing
≤6% of the intertidal area.
A review of marine ecosystem, or habitat, classification systems available for the SoG benthos,
from the intertidal to the deep subtidal areas, is provided by Watson (1998). One of these, the
British Columbia Marine Ecosystem Classification (BCMEC) system, was first developed in
1995 (Zacharias et al., 1998b, http://ilmbwww.gov.bc.ca/cis/coastal/bcmec/index.html).
BCMEC uses a tiered hierarchical system to define ecological boundaries for planning and
administrative purposes (Howes et al., 1996). There are 12 ecosections in British Columbia,
based on differences in ocean circulation, mixing, salinity, temperature, primary and total
productivity, continental slope and shelf influence and freshwater influence (Harper et al., 1993a,
b; Howes et al., 1996; Zacharias et al., 1998a). The SoG represents one ecosection, which is
divided into smaller ecounits (ecological regions) based on a combination of five physical
characters: wave exposure, depth, subsurface relief, current regime, and substrate type (Table 3–
Wainwright et al., 1995; Howes et al., 1996; Zacharias et al., 1998a). Salinity and temperature
data were later incorporated at the ecounit level into the SoG ecosection (Zacharias and Howes,
1998), as were stratification and slope (http://ilmbwww.gov.bc.ca/cis/coastal/bcmec/index.html).
Depth, current and relief data used to develop BCMEC came from Canadian Hydrographic
Service charts (depth, current, relief) (Lamb and Edgell, 1986; Wainwright et al., 1995), models
(exposure) (Harper, 1995), and Geological Survey of Canada mapping of benthic sediments
(substrate) (see Zacharias and Howes, 1998 for more detail) with intermittent ground-truthing
(Howes et al. 1994: http://ilmhwww.gov.bc.ca/risc/) Fig. 2 illustrates the coarse resolution

443	classification of the SoG, based on the system described above and using much of the collected
444	data from the Provincial Physical Shore Zone Mapping System (Howes et al., 1994).
445	
446	The subtidal components of the ecounits (Fig. 2) are based on extrapolation from data on the
447	intertidal to shallow subtidal zones (≤20 m). This method produces a simplistic rendering of
448	substrate types; the soft substrate areas are typically much more of a mosaic, frequently with
449	mixtures of mud and sand, than are depicted, for example, in Fig. 2. This simple scheme is not
450	designed, therefore, to capture the complexity of substrate types, but rather to provide a general
451	perspective. Much more accurate and detailed information on subtidal slope, topography and
452	substrate diversity is available from multibeam data (Fig. 3), as well as from collated sediment
453	core and grab samples from a variety of sources (see Fig. 4). For example, the multibeam data
454	show the deep subtidal reefs which have been found, using video transects, to be relic (or living)
455	sponge and coral reefs (Conway et al., 2007; Cook, in press). Similarly, multibeam data have
456	shown the complex delta structure and sedimentation around the mouth of the Fraser River and
457	the southern portion of the Strait (Hill et al. in press). Although, the multibeam data is not useful
458	at shallower depths (<30 m) (see Fig. 3), in combination with the physical and biological shore
459	zone data (Howes et al., 1994; Frith et al., 1994), it provides a fairly comprehensive and reliable
460	overview of the full range of benthic habitat depths in the SoG (Fig. 4) (see Burd et al, in press;
461	Cook et al., in press; Hill et al., in press; Macdonald et al., in press).
462	
463	Figure 4 shows a plot of sediment percent fines (silt+clay <63 µm particle size) to illustrate
464	sediment types in the SoG. A more detailed map of the near-shore sediment types around the
465	Fraser River delta north to Burrard Inlet is shown in Hart et al. (1998). Note that the greater

detail in Fig. 4 can aid in identifying localized "anomalies". For example, coarse sand is evident around the Iona outfall (source unclear), at sand heads just south of the mouth of Burrard Inlet, and at the mouth of the south arm of the Fraser River.

1.3.2. Sedimentary Processes

The sedimentary regime for the SoG is extremely complex, particularly around the Fraser River delta and associated areas receiving maximum deposition from the river (see Hart et al., 1998). Sedimentary features of this area are described in detail by Hill et al. (in press). Sedimentation rates, organic and inorganic fluxes for the Strait are described in more detail in Burd et al. (in press). For the sake of simplicity, this section on sedimentary processes divides the SoG into two equal regions north and south of the deepest part of the main basin (~400 m) which is located just south of Texada Island. North of this dividing line (which includes the northern basin regime; Section 1.2), the basin rapidly becomes narrower and much shallower (<200 m) creating a barrier to bottom-transported particulate material from the Fraser River (Johannessen et al., 2005b). Sediment characteristics north of Texada Island suggest that Fraser River material does not contribute to particulate deposition, and that natural sedimentation and organic flux, mainly from marine detritus, are much lower than in the southern half of the basin (Burd et al., in press).

In contrast to the northern half of the basin, the southern half of the basin (which includes the central and southern oceanographic regimes; Section 1.2) receives markedly higher sedimentation (organic and inorganic) (see Macdonald and Crecelius, 1994 for literature review) which is from the Fraser River (Burd et al., in press). This higher sedimentation is related to heavier material deposited primarily at the mouth of the river (up to 10 cm/yr–Hart et al., 1998)

and transported along the bottom northward along the bank straddling the Fraser River mouths,
as well as down the slopes to deeper areas (McClaren and Ren, 1995; Hodgins and Hodgins,
2000). As one progresses northward from the river mouth, sediments become progressively finer
(see Fig. 4), and show characteristics of declining proportions of Fraser River deposits (Burd et
al., in press).
However, the high sedimentation rates to the south of the Fraser River are also related to
particulate deposition from the Fraser River plume during freshet. The dispersion patterns of the
Fraser River plume, which can extend 2-10 m down from the sea surface during freshet
(Thomson, 1981), are aerially visible during the summer months and have been tracked in detail
with satellite imagery (Fig. 5). South of the Fraser River, sedimentation may also be related to
upwelled fine sands (glacial material) from the southern Gulf Islands (Johannessen et al., 2006).
This creates a patchy mosaic of mixed sand and silt substrates in the southernmost portion of the
southern half of the Strait (Fig. 4). The sediments of the deep southern portion of the basin that
are most subject to plume deposition are somewhat sandy, but finer in texture than those along
the slope and bank on the east side of the SOG which receive the coarser, bottom-transported
materials from the Fraser River. Therefore, it can safely be said that the southern and northern
halves of the SoG constitute very different sedimentary regimes (see also Johannessen et al.,
2003).
Boundary areas of high primary production occur in areas of turbulent mixing in the vicinity of
the north and south island chains which constrict the entrances to the SoG (Parsons et al., 1981).
However, the constrictions at both the north and south end of the SoG result in very little

exchange of particulates and, therefore, of contaminants which are bound to particulates,
between the Strait and surrounding waters (Macdonald and Crecelius, 1994, Johannessen et al.,
2003). In contrast, however, water-soluble contaminants can spread broadly outside the confines
of the Strait (Macdonald and Crecelius, 1994).
Sedimentation in the fjords of the SoG is largely isolated from the effects of the Fraser River.
Within the fjords, sedimenting material may arise from freshwater sources, delta slope failures,
marine detritus and/or terrigenous erosion of the steep surrounding rock cliffs. The mainland
fjords are bounded by the coast mountain range, so that much of the runoff in stream sources is
of glacial origin (www.pac.dfo-mpo.gc.ca/SCI/osap/projects/bcinlets). Material sedimenting
within fjords is typically fine and is trapped within the fjords' basins by the shallow sills at the
mouth (Thomson, 1981).
Turbidity in BCs mainland fjords increases as the degree of freshwater and glacial runoff
increases. Turbidity currents originating with delta slope failures at the heads of inlets are likely
responsible for the bottom water turbidity in some inlets (Pickard and Giovando, 1960; Bornhold
et al., 1994). In Knight Inlet, extremely high turbidity and seasonal vertical flux of glacial silt
from the two rivers that discharge into the head of the Inlet result in suspended matter
concentrations >100 mg/L and a delta slope sedimentation rate of 4 kg/m²/d in summer. As
commonly occurs in the mainland fjords, vertical flux and turbidity in Knight Inlet decrease
progressively down the Inlet (Farrow et al., 1983). In contrast, Jervis Inlet has very low
freshwater input and, thus, has remarkably clear water throughout the Inlet and at all depths

534	(www.pac.dfo-mpo.gc.ca/SCI/osap/projects/bcinlets/Jervis_Inlet_e.htm; observations from the
535	submersible PICES IV, Burd, unpublished data).
536	
537	Sedimentation rates for the main basin of Howe Sound have been estimated at 0.4 cm/yr (Hickin,
538	1989) and for the area just outside the Sound's sill at 0.4 to 0.78 cm/yr (Johannessen et al.,
539	2003). Howe Sound has a relatively high freshwater input (Section 1.2) which results in high
540	levels of glacial, suspended particulates near the estuaries. Sediment types and probable
541	transport patterns in Burrard Inlet are complex but have been described by McLaren et al. (1993)
542	and McLaren (1994). Constrictions within the Inlet and high currents create zones of coarse
543	sand grading to hard substrate beds (Thomson, 1981), and tend to maintain particulates in
544	suspension throughout the Inlet. Dredging is required to maintain the channel at First Narrows
545	(near the Lions Gate outfall), suggesting net deposition. Similarly, high net sedimentation rates
546	(1 cm/yr) in Port Moody Arm necessitate continued dredging of the deep-sea berths (Levings and
547	Samis, 2001).
548	
549	In Saanich Inlet, the majority of the shoreline consists of steep, rocky cliff walls with
550	embayments consisting of typical mud/sand flats with some eelgrass beds. The BC Provincial
551	synthesis report for the Saanich Inlet Study initiated in 1994 concisely summarizes the benthic
552	habitats and sediment types for different sections of Saanich Inlet (BC Ministry of Environment
553	Lands and Parks, 1996). The information is limited primarily to habitats at depths ≤50 m
554	adjacent to the shore; due to the hypoxic/anoxic nature of the deeper basin areas >50 m, biotic
555	production is limited considerably.
556	

2. Benthic Habitats and Invertebrate Communities

Although this review is concerned primarily with subtidal habitats in the SoG, Section 2.1 provides a brief overview of pertinent studies on the intertidal invertebrate communities and habitats of the SoG; descriptions of the intertidal invertebrate biota are not included *per se* but can be found in the references cited. For example, Watson (1998) provides a list, and a short review, of studies on intertidal benthic community structure studies that were carried out in the SoG prior to 1997. Major sources of data on the intertidal zone in the SoG, specifically mapping programs and surveys associated with commercially important species, are reviewed in Sections 2.1.2 and 2.1.3, respectively. The bio-physical structure of the intertidal zone can strongly influence the habitat type and biota of the subtidal region and, therefore, aids in providing context for understanding subtidal habitats (Section 2.2).

2.1. Intertidal Zone

2.1.1. Intertidal Habitats

In contrast to subtidal habitats, which tend to be more physically predictable, intertidal habitats are influenced by greater variability in physical factors (e.g. waves, tidal currents, erosion, slope, light, air exposure, temperature, salinity, sediment stability). Factors that also affect subtidal habitats, such as tidal currents, can also affect intertidal areas; for example biodiversity tends to be enhanced in intertidal areas with fast currents (Levings and Thom, 1994). The influence of these factors, as well as biological factors, can lead to spatial heterogeneity of intertidal assemblages in what appear to be similar habitats (Dayton, 1971; Denny et al., 1985; Maurer and

579	Aprill, 2007). Section 1.3 describes the estimated proportions of the intertidal zone of the SoG
580	that are made up of the different habitat types described below.
581	
582	Levings and Jamieson (2001) assessed the fish habitat significance of the marine riparian habitat
583	in the SoG. The marine riparian area is defined, by the authors, as the ecotone where aquatic
584	habitat at higher tides merges into terrestrial habitat (i.e. the supralittoral). Levings et al. (1983)
585	reviewed intertidal benthic communities in the SoG in relation to habitat type, specifically sand
586	beaches, rocky shores, mud flats and vegetated areas. The authors provide a list of invertebrate
587	studies conducted in each habitat type prior to 1982. Several studies on sand beaches, with many
588	focusing on Boundary Bay, report on a range of invertebrates from macrofauna to meiofauna
589	(Kellerhals and Murray, 1969; Harrison, 1981; Smith, 1981; Swinbanks and Murray, 1981). The
590	most extensive mudflats in the SoG, and those most heavily researched in terms of invertebrates,
591	are in the Fraser River estuary (see Levings et al., 1983) but research has also been carried out on
592	the mud flat invertebrate communities of the Squamish Estuary (Levings, 1980b) and Vancouver
593	Harbour (Levings and McDaniel, 1974). In the SoG, there is considerable variation in the slope
594	and geology of the rocky shores, with corresponding biological changes (Bousfield, 1957;
595	Levings et al., 1983). Faunal composition in this intertidal habitat type is thought to be
596	influenced predominantly by these geological factors, in addition to water characteristics, wave
597	energy and biological interactions (Levings et al., 1983). In their review of research on
598	invertebrate communities in vegetated intertidal areas, Levings et al. (1983) demonstrate the
599	importance of algae and eelgrass in structuring these communities.
600	

601	The importance of substrate type and vertical zonation on intertidal community composition is
602	emphasized in most studies in the SoG (c.f. Stephenson and Stephenson, 1961a, b; 1972). For
603	example, Burd et al. (1987) concluded that beach assemblages in Boundary Bay, BC are strongly
604	controlled by sediment grain size. Early synoptic helicopter surveys of rocky shorelines in the
605	strait are described in Ellis (1966), and the concept of vertical zonation and succession developed
606	by Stephenson and Stephenson (1972) in the Strait has also been applied locations outside the
607	SoG in BC (Ellis, 2002, 2003). Rock and gravel habitats are crucial for shellfish species,
608	especially the recreational and commercially harvested bivalves (Levings and Thom, 1994).
609	Larval settlement of Dungeness crabs (Cancer productus), as well as that of Manila clams
610	(Venerupis philippinarum), tends to be higher in areas of shell hash, gravel or eelgrass
611	(Thompson and Cooke, 1991; Dumbauld et al., 1993; Levings and Thom, 1994).
612	
613	Other sources of information on intertidal restoration, conservation and mapping projects in the
614	SoG include the BC Community Mapping Network (http://www.shim.bc.ca/) and
615	the BC Coastal Eelgrass Stewardship Project (http://www.stewardshipcentre.bc.ca/
616	eelgrass/eelgrassfinalreport12_04.pdf). While invertebrate communities in eelgrass beds in the
617	SoG have not been studied extensively, there is some evidence that these communities are
618	biotically more diverse and structurally different than those in nearby bare sediments (Levings
619	and Coustalin, 1975; Sibert, 1979; Burd et al. 1987; Seacology et al., 2001). The roots and
620	rhizomes of eelgrass and the tubes of infaunal invertebrates reduce the mobility of a variety of
621	burrowing species, including polychaetes, bivalves, crustaceans, and some echinoderms
622	(Brenchley, 1982). Not only is burrowing time increased but hard bodied taxa, in particular, are
623	restricted by the biogenic structures (Brenchley, 1982). In addition, eelgrass beds are known to

624	provide protection from predators (Heck et al., 1989) and to encourage the settlement of fine,
625	suspended particulate material, a potential factor in the noted differences in invertebrate
626	community composition (Fonseca and Fisher, 1986).
627	
628	Considerable baseline environmental information on the intertidal zone of Saanich Inlet was
629	generated as a result of two proposed foreshore developments: a ferrochromium production
630	facility in the 1980s (see Rescan Environmental Services, 1988) and, a large-scale residential
631	development at the site of the defunct cement plant at Bamberton (Williams, G.L. & Associates
632	Ltd., 1991; Madrone Consulting Ltd., 1993). Neither of the proposed developments came to
633	fruition, however. An extensive, and more recent, database is available from the sanitary surveys
634	of clam beaches in Saanich Inlet (see Walker, 1995) and from eelgrass restoration projects in
635	Todd Inlet (BC Coastal Eelgrass Stewardship project; http://www.stewardshipcentre.bc.ca/
636	eelgrass/eelgrassfinalreport12_04.pdf). Similarly, the Saanich Inlet Seagrass Survey studied 67
637	locations (40.9 hectares total area) surveying intertidal and shallow subtidal areas; eelgrass was
638	limited to three areas with soft bottom substrates (http://www.env.gov.bc.ca
639	/wat/wq/saanich/siscr.html). There is also a wealth of uncollated information on the foreshore
640	biota of Saanich Inlet from the local shore-keepers surveys (see Section 2.1.2), as well as
641	unpublished data collected by W. Austin (Khoyatan Marine Laboratory, Sidney, BC).
642	
643	At Boatswain Bank, just north of the Saanich Inlet sill, recent intertidal transect surveys were
644	done as part of the baseline assessment for a proposed landfall site for the GSX pipeline
645	(Seacology et al., 2001). This is an area of extensive intertidal eelgrass beds, as well as green
646	algae (e.g. <i>Ulva/Enteromorpha</i>). Such habitats are considered to be important nursery and

feeding grounds for juvenile fish and were meant to be avoided by the pipeline drilling rig.
Although the pipeline project did not go forward, the report contains detailed data listing algae
and invertebrates that are commonly associated with sheltered, near shore habitats in southern
BC fjords. The authors describe this ecotype as a typical south-coast, shallow, sloping beach
with mixed cobble/sand/ gravel substrate (Seacology et al., 2001).
The intertidal wetlands of the Fraser River estuary cover an estimated 17,000 hectares
(<u>http://www.env.gov.bc.ca/cdc/</u>) and are also one of the most biologically productive systems in
Canada (Levings et al., 1983; Kennett and McPhee, 1988; Harrison et al., 1999). Estimated
productivity (based on biomass) for the 14,000 hectares of Sturgeon and Roberts Bank, including
the main mud flats on the outer shores of Lulu Island totals 1440.6 kcal/m², broken down into
vascular plants (eelgrass) (1320 kcal/m²), microbenthic algae (diatoms) (65 kcal/m²), benthic
organisms (invertebrates) (40 kcal/m²), phytoplankton (in water) (15 kcal/m²) and zooplankton
plus epifaunal invertebrates (0.6 kcal/m²) (Levings, unpublished data). Macroalgae such as
Ulva/Enteromorpha are not included in these estimates (Levings, unpublished data) but are
occasionally present (Harrison et al., 1999). Plants clearly make up the greatest bulk of living
material on the mud flats, by far, and likely provide critical habitat and/or food resources for the
benthic invertebrate fauna. The diverse invertebrate fauna are described in Otte and Levings
(1975). Primary benthic production and nutrient dynamics of the delta, as well as the foreshore
area of Boundary Bay at the Canada/US Border (i.e. outside the influence from the Fraser River),
were recently reviewed by Harrison et al. (1999).
All the other major estuaries in the SoG are subject to various conservation and restoration
programs, for which information is available from a variety of sources. For example, research on

the benthos of the Squamish River estuary was reviewed by Hoos and Vold (1975) and Levings et al. (1983), with an inventory of research efforts in the estuary basin provided by Hickin (1992). Research in the Nanaimo River estuary includes a study on the intertidal hyperbenthic populations (Sibert, 1981) and the relationship between meiofaunal abundance and intertidal log storage (Sibert et al., 1979). The Nanaimo and nearby Gulf Island marine shorezone areas were also the focus of rocky shoreline zonation studies by Stephenson and Stephenson (1961a, b; 1972). Reports on the SoG estuaries can also be found on websites, such as that of BC Hydro (http://www.bchydro.com/bcrp/reports/lower_mainland.html).

2.1.2. Shore Zone Mapping Programs

The Provincial Biological Shore Zone Mapping (and database) System (Frith et al., 1994) for British Columbia was designed to integrate with the Physical Shore Zone mapping (Howes et al., 1994; see Section 1.3) and is based on taxonomic groupings. The boundaries for units and components in the physical system, based on geomorphological parameters, are used to define boundaries for species assemblages (bands) in the biological system. A hierarchical coding system for biota is included and is based on taxonomic groupings. Components are sub-divided into across- shore areas of common species assemblages termed bands. Bands are defined by the dominant cover species and the colour and texture of that band visible from aerial videography, photography, or from ground surveys (Frith et al., 1994). Maps on a fine scale resolution can be attained at http://ilmbwww.gov.bc.ca/. Publications describing the development of this system, modeled characterization of intertidal communities and regional diversity are cited in Zacharias et al. (1998a, b, 1999), and Zacharias and Roff (2001).

The Canadian Department of Fisheries and Oceans began the Shorekeepers' program for
monitoring the intertidal zones of the British Columbia coast in 1996 in response to need for a
new data acquisition program. The program, aimed at involving coastal communities and
fostering stewardship of the coastal zone, was designed for the monitoring of intertidal habitat by
non-professionals. Full details including survey design, field sampling, data acquisition, etc., can
be found in Jamieson et al. (1999). Data from surveys conducted between 1996 and 2005 are
accessible online (http://www.shim.bc.ca/atlases/sk/ main.htm). Although the design and
limitations of survey methods for this program tend to produce a bias towards larger macrofauna,
the resulting data set is cumulative and relatively large, which allows comparison of the biomass-
dominant fauna to the physical characteristics used in the BC Shore Zone Mapping System. The
Shorekeepers' program (Fig. 6) provides a refinement to the habitat classification of the BC
system, including not only substrate type but also dominant algal coverage.

2.1.3 Surveys and Studies Associated with Commercially Important Invertebrates

The BC Shore Zone Mapping Program is also used to assess suitable habitat for invertebrate taxa with commercial or recreational fishery value. For example, based on species-specific substrate and habitat preferences, the relative suitability/rating for the success of Pacific oyster viability at beach locations in SoG can be mapped (Fig. 7). Manila clam suitability shows a very similar distribution (Fig. 7). The areas of "good" and "medium" viability correspond to sand and gravel platforms and sometimes the presence of eelgrass (Fig. 7) (http://ilmbwww.gov.bc.ca/).

The BC Clam Atlas was developed as a means of mapping commercial intertidal clam beaches (Manila, Littleneck and Butter) on the BC coast. The maps, area calculations and historical

landings for the SoG area were published by Harbo et al. (1997), and the maps are presently
online (http://www-heb.pac.dfo-mpo.gc.ca/maps/maps-data_e.htm). Information on stocks of
these and other clams can also be accessed using the Canadian Department of Fisheries and
Oceans Stock Status Reports and the Fisheries Management Plans for each species. Geoducks
prefer to burrow in sand, silt and gravel from the intertidal to a depth of 110 m (Canadian
Department of Fisheries and Oceans, 2000). Landings in the SoG are minor (less than 1/3 of the
BC total) and most are collected subtidally by divers. Of the three typical intertidal species,
Manila clams are the species harvested primarily from the SoG (Canadian Department of
Fisheries and Oceans, 1999a, b; 2007). The Fisheries Management Plan for Intertidal Clams
suggests that, presently, stocks are healthy but that the commercial trend is toward reduced
landings as a result of reduction in overall effort, lower prices, and increasing alienation of beach
space for shellfish aquaculture tenures.

2.2. Subtidal Zone

Levings et al. (1983) reviewed the available sources of subtidal benthic biotic data for the SoG up to that time. Examples of several large, unanalyzed data sources noted in that review include Ellis (1967a, b, 1968a, b, c), who provided quantitative data (including abundance of "apparent" species) resulting from comprehensive surveys of the subtidal fauna and sediments from a wide variety of geographic locations with the SoG. These studies employed similar methodologies (grab samples) to those used in more recent, similar studies (see Levings et al., 1983; Burd, 1992; Burd, 2006). Bernard (1978) reported the results of an extensive subtidal bottom survey of invertebrate fauna from the SoG. The author described, but did not enumerate, the dominant organisms captured primarily by trawling and divided the sampled

737	areas according to depth range and substrate type. Although some grab sampling was carried out
738	at key locations, the fauna included in Bernard (1978) are primarily epibenthic.
739	
740	This section is based primarily on background conditions where anthropogenic impacts are
741	expected to be absent or limited. Descriptions of subtidal biotic assemblages based on recent
742	studies are separated by depth range and substrate type in a manner similar to Bernard (1978) but
743	with two notable differences. First, four substrate types (mud/silt, sand, gravel and rock/cobbles)
744	are used in Bernard (1978) while here we employ the following five substrate types: mud,
745	silt/sand, sand, coarse sand/gravel/cobbles and rock (consolidated). Given that trawling was the
746	main sampling method used in Bernard (1978), it is assumed that the rock substrate in
747	rock/cobbles is not consolidated; therefore, the gravel and rock/cobbles substrates of Bernard
748	(1978) are considered equivalent to our coarse sand/gravel/cobbles substrate. Inherent in these,
749	and similar habitat classification systems, is that mixed habitats will have overlapping biotic
750	community types. Second, whereas Bernard (1978) described biota from 20-50 m, and 50-100 m
751	(primarily for logistical reasons related to towed sampling patterns), biota and available
752	information for the SoG are reviewed herein for 3 depth ranges (see below: 0-30 m, 30-100 m,
753	>100 m) based on evident biotic shifts noted at these approximate depths from the literature
754	reviewed herein (see Burd, 2003a). An example of such a depth factor can be seen in Palsson et
755	al. (2003), who state that in the fully surveyed Washington State side of the BC/Washington
756	transboundary bottom trawl survey of 2001, 60% of the invertebrate biomass was found in the 5-
757	20 fathom (approximately 10-37m) depth range. Although this depth range was not surveyed on
758	the BC side of the SoG, invertebrate biomass declined dramatically with depth in the deeper
759	sampling strata.

760	
761	The depth ranges are defined as follows:
762	A. 0-30 m corresponds, approximately, to the euphotic zone (depths within which light
763	penetrates), although the depth of this zone varies considerably along the BC coast in
764	relation to exposure and water clarity. 0 m depth is considered to be mean low tide, so
765	that habitats within this depth range are subtidal;
766	B. 30-100 m encompasses the zone which, generally, has adequate water oxygenation due to
767	influence of wind and tidal currents and which includes subtidal organisms and no
768	primary producers. In any one location, the consistency of benthic communities in this
769	depth range will depend on depth-related shifts in habitat type, physical features and
770	hydrographic processes. Many of the major taxa, however, have habitat depth ranges
771	which span 30-100 m;
772	C. >100 m encompasses habitats which experience a progressive decline in organic input
773	and bottom currents, leading to considerable change in the benthic communities. In near-
774	shore areas, these depths often occur at the bottom of basins (e.g. fjords) or the foot of
775	coastal slope areas (SoG).
776	
777	Because the complete particle size distribution (including an assessment of flocculent material)
778	provides the most thorough information about depositional history, it is recognized that the
779	following five substrate types are simplistic (Burd 2003a). In addition, many habitats,
780	particularly near shore, are a heterogeneous mix of different substrate types over relatively small

areas. The 5 substrate types, and general features of these substrates regardless of depth, are

781

782

summarized below.

1.	Mud bottoms (>95% silt/clay) typically occur in low energy areas and are sticky
	and tightly packed; mean sediment grain size is <0.06 mm.
2.	Silt/Sand substrates are a mixture of these two sediment types. The mean
	sediment grain size for this substrate type ranges from 0.04 to 0.5 mm.
3.	Sand (>90% sand) substrates are typical of areas with moderate to high bottom
	currents and/or wave action and exposure, which prevent deposition of finer,
	marine deposits. Sediment grain size ranges from 0.5 mm to 2 mm.
4.	Coarse sand, gravel or fine cobble sediments have a grain size from 2 mm to 26
	cm. These substrates are less mobile than the previous substrate type, due to the
	size and weight of the particles, and are mobile only in high energy habitats.
5.	Rocky substrates are composed of large cobble, boulders or bedrock and include
	reefs and outcroppings, rocky shorelines and fjord walls.
The above 5 s	ubstrate types are discussed in more detail below, citing research from both the
SoG and simi	lar environments elsewhere. These more detailed descriptions are relevant to
understanding	the diversity of subtidal habitats in the SoG. These depth- and substrate-specific
	 2. 3. 4. 5. The above 5 s SoG and simil

The above 5 substrate types are discussed in more detail below, citing research from both the SoG and similar environments elsewhere. These more detailed descriptions are relevant to understanding the diversity of subtidal habitats in the SoG. These depth- and substrate-specific habitats are described, including biotic structure, for the SoG using information gathered from a variety of data sources including unpublished remote sampling, submersible and ROV work, collections of data in unpublished data reports. Hence, these generic descriptions of the SoG subtidal habitats are synthesized and, in some cases, extrapolated from a variety of sources and do not lend themselves to specific citations. However, specific type examples from the SoG are provided for each depth- and substrate-specific habitat, including benthic invertebrate community data, when available.

806

807

2.2.1 Mud (silt/clay) Habitats

808

809

810

811

812

813

814

815

816

817

818

819

820

821

The finest substrate habitats in the SoG are found typically in low energy areas. Although bottom turbidity is unlikely due to storm, wave or current exposure in these low energy environments, it can be caused by physical disturbance such as bioturbation and anthropogenic mechanisms. The fine, often flocculent bottom material may take some time to settle once it is suspended via bioturbation (c.f. Orvain et al., 2003). This is likely the case at fish farms, for example, where organic ooze under the nets is sometimes resuspended by falling debris (e.g. sloughed material) from the overlying nets (Stucchi et al., 2005). However, a distinction should be made between turbidity resulting from static resuspension, due to physical disturbance in mud substrates, and turbidity due to mobile suspended solids resulting from up-stream slope failures in estuaries (c.f. Prior et al., 1987). In the first case, and for most mud sediments, typical bottom disturbances result in low net sediment transport. However, for up-slope failures or slumps, there likely will be considerable transport and bottom turbidity can persist for some time (Prior et al., 1987; Bornhold et al., 1994). Sediment organic content can be highly variable in silt/clay sediments, depending not only on organic deposition but also on inorganic deposition (see Burd et al., in press). For example, high

822

823

824

825

826

827

828

organic deposition but also on inorganic deposition (see Burd et al., in press). For example, high glacial silt deposition in more northerly mainland fjords tends to be low in organic content (c.f. Farrow et al., 1983). The ratio of organic to inorganic deposition can be related to water depth since, with increasing depth, inorganic (land-based) deposition tends to decrease while the deposited material becomes increasingly dominated by marine detritus (c.f. Rhoads and Young,

1970). In the southern SoG (i.e. south of Texada Island), deposition to mud substrates is
dominated by particulates from the Fraser River (Thomson, 1981; Harrison et al., 1983;
LeBlonde, 1983; Johannessen et al., 2003). This deposition produces organic carbon levels in
surface sediments averaging around 1% near shore in the most southerly portion of the main
basin and around 2% in the deeper basin sediments, closer to Texada Island (Burd et al., in
press). This observed trend is due to declining riverine deposits and increasing marine
deposition (Johannessen et al., 2005b). In the northern SoG, the basin sediments show unsually
high %TOC (3-6%) but the overall flux of organic material, and total sediment, to the benthos is
low (Johannessen et al., 2003; Burd et al., in press). Stable isotope data and biological samples
also suggest that organic material in sediments in the northern SoG is not particularly labile
(Burd et al., in press; Macdonald et al., in press).
Not surprisingly, mud substrates are usually suboxic or anoxic, although %TOC varies (~1-7%)
depending on the levels of inorganic input, and hydrogen sulphides or other metabolic
byproducts may build up depending on redox levels and labile organic input. In shallow mud
(silt/clay) substrates, sulfate reduction tends to be linked to a significant proportion (>50%) of
carbon oxidation, whereas in deeper mud sediments (continental shelf) the breakdown of organic
material is relatively evenly distributed between aerobic and anaerobic (sulfate reduction)
processes (Kristensen and Kostka, 2005). The density of infaunal burrows, however, can have a
profound dampening effect on anaerobic metabolism as a result of the increased oxygen supply
to subsurface sediment layers. The predominant type of burrowing is related to trophic mode
(Nickel and Atkinson, 1995), as well as sediment texture and geochemistry. Fine sediments tend

to be dominated by surface deposit feeders or above-surface filter feeders (Kristensen and
Kostka, 2005), rather than sub-surface deposit feeders.
Extensive surface bioturbation without the binding influence of intact burrows can destabilize
fine surface sediments by producing a surface ("fluff") layer which is readily re-suspended (c.f.
Rhoads and Young, 1970; Orvain et al., 2003). Rhoads and Young (1970) even suggest that
surface fluff layers tend to prevent suspension feeding due to the clogging of feeding apparatus
and the inhibition of larval settlement. The authors use this suggestion to explain the distinct
dichotomy in dominant feeding types: deposit-feeders in soft, fine sediments versus suspension
feeders in sandier, or firmer, mud sediments. Following this line of reasoning, an assessment of
the feeding guilds in sediments could provide some insight into the sediment texture and
porosity, as well as near-bottom turbidity.
The fine-grained particles of mud substrates tend to contain considerable organic particulate
material in various forms, thereby providing a good substrate for bacterial and/or algal
production (Kristensen, 1988). Key general biotic features of mud bottoms include extensive
bacterial or algal mats or shallower near-surface invertebrate burrows that provide sediment
surface cohesion in shallow depths, or from invertebrate burrows. Microbial activity, which
breaks down organic material in marine sediments (Kristensen and Kostka, 2005), can be
stimulated by the presence of surface mucous layers from meiofauna (see Probert, 1984). The
stimulation of both microbial and meiofaunal activity creates a rich organic food layer for
macrofaunal deposit feeders (Hoskins et al., 2003, Hannides et al., 2005; for review see
Kristensen and Kostka, 2005). In addition, mucous layers from intertidal mudflat diatoms,

bacteria and mucous-lined burrows can also help to bind the sediment surface (c.f. Decho, 2000;
de Brouwer et al., 2005). Mucous burrows are often impermeable to dissolved organic material
and redox chemicals in order to protect the animal from harsh chemical environments (c.f.
Hannides et al., 2005; Kristensen and Kostka, 2005). However, depending on their structure,
these burrows do provide a pathway for exchange of overlying water with deeper sediments, thus
preventing the buildup of potentially inhibitory metabolic byproducts (see Zorn et al., 2006).
However, the importance of both bacterial and diatomaceous mucous layers in sediments
declines in importance with increasing depth from the intertidal zone to the bottom of the
euphotic zone (Ziervogel and Forster, 2006).
Where oxic sediments are present in these habitats, macrofauna are primarily deposit feeding
shallow burrowers, such as polychaetes and bivalves, and predators such as various flatfish and
crabs from surrounding rocky areas. Megafauna typically include a variety of echinoderms such
as mud stars and burrowing holothurians.
2.2.1.1 Shallow (0-30 m) mud
Mud substrates in the shallow subtidal tend to be protected from wave exposure and typically
have low tidal currents. Bottom turbidity in these habitats is likely due to physical disruption
from erosional events, delta slope failures or other unusual events. These habitats typically
occur in low flow estuaries and at the base of low current rocky outcrops. Shallow mud habitats
can be found in quiescent bays surrounded by rocky headlands, and in wave and current
protected estuaries with either low freshwater flow or where there is heavy glacial silt in runoff

(i.e. estuaries of mainland fjords; see Farrow et al., 1983).

897	
898	These are typically highly productive areas because they are within the euphotic zone, which
899	allows primary production as well as bacterial production on and within the sediments. They are
900	also common in coastal areas with physical developments that block or break up wave erosion
901	(e.g. marinas, breakwaters, etc.). Surface shell debris can be common, attesting to the
902	importance of bivalves in this food chain. Organic carbon flux to the sediments may be high
903	and, hence, sediment %TOC may also be high depending on the level of inorganic input. (Boyd
904	et al., 1998). If the input is primarily salt-marsh plant debris, however, the organic material may
905	have low lability. Primary production in these habitats is primarily from benthic micro-algae and
906	blue-green algae (refs). These sediments typically have a high level of bacteria, which can
907	include sulphur-fixing species (refs).
908	
909	Usually, these areas have oxygenated bottom water, with sufficient oxygen for shallow
910	burrowers that are mostly deposit feeders (bivalves and polychaetes), epifauna (scavenging
911	amphipods and bottom shrimp), surface grazers (gastropods) and predators (mud stars, brittle
912	stars, heart urchins, echiurans, drills, fish) (Burd, 1992). In some habitats, mud-dwelling sea
913	cucumbers such as Molpadia or Chirodota may be found if there is sufficient oxygen in surface
914	sediments (Burd, 1992). Meiofauna, particularly nematodes, are important in these shallow
915	subtidal mud habitats (see section 1.1).
916	
917	Examples can be seen in areas such as Patricia Bay, Saanich Inlet, and around numerous
918	estuarine bays in the Strait. Unfortunately, there are few published examples of shallow subtidal
919	mud studies in the SoG. Burd (1992) and Boyd et al. (1998) described mud assemblages from

shallow areas of the innermost part of Burrard Inlet (Port Moody Arm). These substrates had
low invertebrate abundance and biomass compared with deeper, coarser substrate areas further
out in the inlet, and were dominated by polychaetes, followed by bivalves and crustaceans.
Faunal composition was distinct between Port Moody Arm and areas further out in the inlet
(Burd, 1992) and in some areas with reducing sediments, dominated by the tolerant opportunistic
polychaete Capitella capitata complex (Boyd et al., 1998), Considerable sediment chemical
contamination and organic enrichment are evident in the Port Moody Arm area (see Burd, 1992;
Boyd et al., 1998).
2.2.1.2 Mid-depth (30-100 m) mud
Mud substrates at 30-100 m depth are a common marginal habitat around the SoG, particularly
on the eastern side, including Burrard Inlet, north along the coast, and in isolated bays with low
bottom currents (Fig. 1). These fine-grained substrates are not found in areas exposed to sandy
deposition from the southern Gulf Islands, the Fraser River discharge and other relatively large
freshwater estuaries such as the Cowichan River (north of Saanich Inlet), and the Squamish
River (Howe Sound). This type of habitat is commonly found inside the sill, or near the mouth of
fjords, in areas with either limited, or absent, bottom currents and very low freshwater runoff.
These habitats may also occur surrounded by, or at the base of, rocky outcrops or cliffs. Bernard

Because of the depth range, these habitats tend to have limited tidal influence and no wave influence. In addition, as the mud substrates are below the euphotic zone, the development of

habitats from 20-100 m depth at multiple locations within the SoG.

surface biofilms may be less extensive than in shallow subtidal mud habitats (c.f. Ziervogel and Forster, 2006). If the redox boundary occurs at the sediment surface, however, sulfide-fixing bacteria such as *Beggiatoa* spp. may produce mucous mats. For example, *Beggiatoa* spp. mats can be found between 65-100m depth in areas of Saanich Inlet (Burd, unpublished data; see >100 m anoxic basins, below).

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

943

944

945

946

947

An example of this type of habitat is bottom areas shallower than sill depth in Saanich Inlet, such as Patricia Bay (http://www.env.gov.bc.ca/wat/wq/saanich/siscr.html). Although there have been no studies focused on the benthic soft-bottom fauna in the mid-depth range of Saanich Inlet sediments, another example of this habitat type in the SoG, for which data are available, is outer Burrard Inlet. Sedimentation rates are low in this region (Johannessen et al., in press), although the complex hydrographic mixing results in high suspended particulates in the water column (as noted during reconnaissance ROV surveys – CORI, 2002) and sediment TOC levels between 1.5 and 2% (McPherson et al., 2006b). Although there are a variety of anthropogenic discharges and physical disturbances in the inlet (see Section 3), long-term monitoring for the outer inlet suggests that benthic infauna are not impoverished and are not dominated by opportunistic polychaetes (c.f. PICES, 2001; McPherson et al., 2006b). Fauna within the inlet are dominated by small burrowing bivalves, which constitute ~55-85% of the total abundance over a range of sediment enrichment conditions and which contribute the largest percentage of biomass of any major taxonomic group (McPherson et al., 2006b). Polychaetes constitute 10-40% of the total abundance and species numbers are within the ranges expected for this depth range in the SoG (Burd et al, in press). Ophiuroids are patchily abundant and both crustaceans and holothurians are rare in this inlet.

Data are also available for shoreline areas just outside the north side of Burrard Inlet which fit
this habitat type (McPherson et al., 2004a). Biotic samples taken from a similar depth to the
outermost Burrard Inlet show similar species richness to the Burrard Inlet samples but somewhat
lower abundance levels (McPherson et al., 2004 a, c). Fauna increase in abundance from outside
the inlet to the innermost part of the outer basin (west of 1st Narrows) (Fig. 1), with bivalves
showing the clearest abundance gradient (McPherson et al. 2004 a,c). Like Burrard Inlet, the area
just outside the north side of the inlet experiences relatively low sedimentation rates compared to
the rest of the southern SoG, as well as moderate %TOC in the sediments (~1.5%) Burd et al., in
press; (Johannessen et al., in press).
Biotic and synoptic sediment geochemical and contaminant sampling data have been collected
for parts of inner Burrard Inlet (past 1 st Narrows), including the two inner arms (see Fig. 1) (Burd
and Brinkhurst, 1990; Cross and Brinkhurst, 1991; Boyd et al. 1998; PICES, 2001; Je et al.,
2003). In addition, samples from the outer inlet were collected by Ellis (1971). These studies
suggest that faunal abundance and species richness decline along a gradient from 1st Narrows
inward towards Port Moody Arm (Fig.1), where the heaviest organic enrichment and
contamination is found. In Port Moody Arm, which has fine mud sediments with poor flushing,
faunal abundance tended to be temporally variable relative to the rest of Burrard Inlet (Burd
1992; Boyd et al., 1998) but faunal biomass was consistently lower.
The spectrum of studies utilizing the same locations in Burrard Inlet but using different mesh
sizes (0.3, 0.5 mm and 1 mm) for screening biotic samples, provides a unique opportunity to

examine the difference in interpretation which is potentially possible for community structure based on methodology. Ignoring potential differences in quality control of sampling, increasing screen mesh size led to a decreasing proportion of juvenile (non-adult) forms at one outer harbour station (~ 50% to 10%) but no notable shift in species number. However, the proportion of abundance made up of bivalves shifted from ~35% to 55%, with a commensurate decrease in proportion of polychaetes. In addition, although usually ignored in benthic macro-infaunal studies, the proportion of nematodes collected decreases with increasing mesh size. Hence, the 1mm screen appears to eliminate most of the juvenile fauna, as well as a modest proportion of the smaller adult polychaetes and most of the "meiofauna" (primarily nematodes and harpacticoid copepods). The most dramatic change in metazoan size spectra, biota types and life history strategies appears to be found at about the 0.5 mm screen size, and the evolutionary drivers for the meiofaunal/macrofaunal dichotomy are discussed by Warwick et al. (2006). The various studies agree that polychaete dominance increased from the outer inlet towards the more eutrophic Port Moody Arm (Boyd et al., 1998; Burd and Brinkhurst, 1990; Je et al., 2003), with some examples of opportunistic enrichment of Capitella capitata complex (Burd and Brinkhurst, 1990; Je et al., 2003).

1005

1006

1007

1008

1009

1010

1011

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

2.2.1.3 Deep (>100 m) mud

Deep water mud habitats are not subject to tidal or wave influences, usually have very low bottom currents and limited flushing of bottom water. The origin of organic material in these environments is primarily marine detritus or terrestrial erosion from cliffs in fjords. Bottom turbidity can occur as a result of turbidity flows from delta slope failures in fjords (Prior et al., 1987; Bornhold et al., 1994). In general, substrates get finer with increasing depth in coastal

areas (Striplin, 1996; Llansó et al., 1998) because the input of coarser land-based erosional,
riverine and current-transported material tends to decline with increasing depth. Organic carbon
flux to these deep sediments is typically, although not always (Burd et al., in press), lower than
in similar sediments in shallower areas, unless there is a specific source of organic input nearby
(e.g. fish farms).
Areas with oxygenated, mud sediments are extensive throughout both the deep basin of the SoG
and many of the fjords, and probably make up most of the subtidal bottom area of the SoG
(Levings et al., 1983). Bottom water oxygen levels vary, depending on basin topography, but low
bottom currents and shallow, isolating sills in fjords can result in significantly reduced bottom
oxygen levels. Hence, there is limited oxygen replenishment to the sediments. These habitats
are typical of the main basins of fjords and the deep basin of SoG. These sediments are
dominated by near-surface, or epifaunal, deposit feeders and predators. Bivalves and ophiuroids
are less abundant in these deep habitats than in shallower areas, while polychaetes, holothurians
and echinoids increase in dominance (see Burd et al., in press). Bernard (1978) provides a list of
the dominant (largely epibenthic) megafauna collected in trawl samples at locations throughout
the SoG at depth ranges of 100-200 m, 200-300 m, and 300-400 m. Bernard's (1978) species list
is the most diverse in all depth ranges for this substrate type, and includes bivalves, polychaetes,
echinoderms and crustaceans.
Because organic carbon flux is low, faunal abundance and species richness is generally lower
than in the mid-depth marginal SoG mud habitats discussed earlier. Llansó et al. (1998) describe
biotic conditions in deep clay habitats >80 m in Puget Sound. They suggest that, on average,

species richness and abundance was lowest in deep (>80 m) clay sediments of any soft substrate
types in the sound or on the Washington shelf. Llansó et al. (1998), Burd and Brinkhurst (1992)
and Burd (2003b) agree that several of the large, important bioturbators (the echinoderms
Molpadia intermedia and Brisaster latifrons) seem to be primarily found in deep-water
sediments, which in the fjords and main basin of the SoG are typically mud (silt/clay).
Some data on the benthic infaunal biota, collected using visual and remote sampling methods,
are available for the fjords (Burd and Brinkhurst, 1992; Ellis, 1971; Levings, 1980a, b). Burd and
Brinkhurst (1992) report infaunal abundances in silt sediments at depths of >100 m in of three of
the SoG fjords: Bute, Toba and Jervis. Faunal abundance was low at all sampling stations in that
study and was dominated by polychaetes; occasional high abundances of sipunculids were
recorded but few echinoderms and virtually no crustaceans or bivalves were observed (Burd and
Brinkhurst, 1992). Burd (1992) did a multivariate comparative assessment of biotic assemblages
from a series of deep fjord samples along BCs mainland coast compared with other assemblages
found throughout BC. One notable feature of BC's deep fjords is the relative uniformity of
benthic assemblages in the deep mud benthos, compared to other coastal areas, in the absence of
overwhelming physical drivers such as anoxia or hypoxia, heavy glacial deposition or freshwater
runoff (c.f. Burd 1992).
Ellis (1971) described fauna from some grab samples taken in the deepest basin of Jervis Inlet on
the mainland BC coast. They note that about 80% of biomass from that area was contributed by
the echinoderm Brisaster latifrons and a surface tube-mat forming polychaete; approximately
10% of the total biomass was contributed by bivalves.

1	058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

A deep mud-bottom habitat in Knight Inlet (located immediately north of the SoG), described in Farrow et al. (1983), is a good example of a fjord with high loads of river-borne glacial silt. These loads of glacial silt add to the inorganic loading near the head of the inlet, while also introducing sufficient energy and flocculent material into the system to produce high turbidity and bottom resuspension or turbidity flows. This turbulent type of habitat is unsuitable for many soft-bottom species which may suffer from smothering (e.g. Holte and Gulliksen, 1998; Wlodarska-Kowalczuk et al., 2005). In Knight Inlet, BC, Farrow et al. (1983) found a down-inlet gradient of increasing diversity of large suspension-feeding organisms, and a change in epifauna from mobile shrimp and crabs at the turbid, high inorganic input head of the inlet, to burrowing shrimp in the middle inlet, to ophiuroids in the least turbid and least inorganic input areas of the lower inlet. Similar trends have been observed elsewhere; for example Wlodarska-Kowalczuk et al. (2005) describe the spatial gradient in sediment biota away from heavy glacial silt sedimentation towards the head of a European fjord as showing similar trends in faunal abundance and species richness as those found in organic enrichment gradients. Changes in species diversity and types of sponges related to water turbulence and sedimentation in an Irish sea lough were also noted by Bell and Barnes (2000a, b). During the SoG Ambient Monitoring Program (Wright et al., in press), deep-water mud habitats were sampled at two stations. One station was within the deepest part of the SoG basin (388 m),

1075

1076

1077

1078

1079

1080

were sampled at two stations. One station was within the deepest part of the SoG basin (388 m), just south of Texada Island (Fig. 1), and had moderate organic flux to sediments while the second station was north of the mid-basin sill near Texada Island (187 m) and was within the low organic flux regime in the northern SoG (see Burd et al., in press). In addition, the organic

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

carbon at the shallower, more northern station was relatively refractory compared with the deeper, southerly station, and had a high clay component, with virtually no terrigenous or shell debris. The difference in these substrate conditions produced a striking difference in biota, which was much more abundant and diverse at the deeper, southerly station. However, similarities between the two stations include polychaete dominance, the lack of bivalves and crustaceans, and the presence of large burrowing holothurians. In fact, this latter group was responsible for the relatively high faunal biomass at the deeper, southerly station (Burd et al., in press). Saanich Inlet, below sill depth (70 m) (Fig. 1), is an example of a deep anoxic basin. It experiences progressive hypoxia and anoxia from winter through summer. In the fall, upwelling within the SoG spills dense, oxygenated water over the sill and, sinking to the bottom, this water pushes the anoxic layer up to mid-water depths before the anoxic waters disperse (http://www.pac.dfo-mpo.gc.ca/sci/OSAP/projects/bcinlets/saanich inlet e.htm). Saanich Inlet has high organic carbon content in deep sediments (Bornhold, 1978) but a moderate C/N ratio (~6.8), suggesting that, historically, the origin of organic input has been largely marine. The high carbon content in Saanich Inlet deep sediments has been supported by more recent studies (Boatman and Murray, 1982; Tunnicliffe, 2000), however Tunnicliffe (2000) indicates that increasing terrestrial input over the past century has resulted in shifts in organic carbon content, and therefore, the C/N ratio. Organic carbon may build up in sediments because overlying water hypoxia and anoxia greatly slow the decomposition and consumption of this material by bacteria and invertebrates, respectively (Emerson and Hedges, 2003). Although the cliff fauna of Saanich Inlet have been studied, (Tunnicliffe, 1981; Burd and Brinkhurst, 1984), information on the infaunal benthos of the deep mud basin is lacking. However, because of the occasionally

1104	vertically mobile anoxic water layer in this inlet, along with observed mass mortalities of cliff
1105	fauna (Tunnicliffe, 1981; Burd and Brinkhurst, 1984), it has been assumed that soft-bottom areas
1106	influenced by long-term anoxia will be largely azoic.
1107	
1108	At the sediment interface, where dissolved oxygen is minimal and sediments are anoxic, white
1109	mucous mats of Beggiatoa spp. and similar sulphur-fixing bacteria may form (Burd and
1110	Brinkhurst, 1984). In this oxycline, the sediments are devoid of any sign of bioturbation or
1111	evidence of infaunal or epifaunal life (Gucluer and Gross, 1964; Burd, unpublished data; PICES
1112	IV observations 1980-1983), with the following exceptions. A bentho-pelagic amphipod species
1113	(Orchomene obtusus) can tolerate anoxic conditions for extended periods of detrital scavenging,
1114	after which they migrate back up to oxygenated water periodically (De Robertis et al., 2001).
1115	The galatheid crab, Munida quadrispina, has been observed to frequent silty bottom areas where
1116	the mucous mats are present and near-bottom water oxygen levels are very low (Burd and
1117	Brinkhurst, 1984) and has been observed, in situ and in the laboratory, to feed opportunistically
1118	on sediment detritus and the aforementioned amphipods. The crabs have exceptional metabolic
1119	regulation under low oxygen conditions in the laboratory (Burd, 1985), along with significantly
1120	hypertrophied gill tissue in the deep areas of Saanich Inlet (Burd, 1988), compared with
1121	surrounding areas outside the inlet. In the deep, severely hypoxic to anoxic sediment areas, these
1122	are the only visually evident fauna although facultative anaerobic meiofauna (typically
1123	nematodes) may be present in sediments.
1124	
1125	Like Saanich Inlet, Howe Sound on the mainland coast of BC has a shallow sill at the entrance
1126	and experiences hypoxic conditions in the deep basin for part of the year. Historical bottom

trawl surveys in Howe Sound related to bottom hypoxia are described in Levings (1980a, b) and Levings et al. (1983). Survey data show that the relatively immobile invertebrates and a few slow-moving fish experienced mass mortalities during severe hypoxic periods; bottom fish catches declined, presumably due to migration to shallower, more oxic waters. The mobile epifauna appeared to return fairly rapidly following hypoxic periods, including the galatheid crabs also found in Saanich Inlet, and various shrimp species (Levings 1980a, b).

2.2.2 Silt/Sand Habitats

The presence of sand implies transport of inorganic material, from nearby glacial deposits or moderate to high input from freshwater sources nearby. Although variable spatially and temporally, these sediments are net depositional. In coastal areas with a source of relatively coarse, inorganic material from large riverine inputs, the sediments tend to be mixed. This type of habitat is common in marginal coastal areas in the southern SoG, particularly along the eastern margin of the southern Strait where the Fraser River discharges. For a description of sedimentary dynamics along the Fraser River delta, see Hill et al. (in press). Most notable about these sediments is the input of coarse material that increases mobility beyond that found in mud substrates. The delta sediments along the bank and slope where the Fraser River discharges into the SoG provide a good example of this mobility, as the sediments appear to be continuously transported to the north and downslope (McLaren and Ren, 1995; Hodgins and Hodgins, 2000). The importance of sediment mobility in determining the distribution and stability of coastal benthic infauna has been documented in Australia (Post et al., 2006), New Zealand (Hewitt et al., 1997; for a general review see Newell et al., 1998), and in laboratory experiments (Roegner et

1150	al., 1995; Dunn et al., 1999; Hunt and Mullineaux, 2002). Research in the northeast Pacific has
1151	focused on transport of sediment particle sized organisms such as foraminifera (Snyder et al.,
1152	1990).
1153	
1154	In the sediments influenced by Fraser River deposits, the relatively high deposition of inorganic
1155	riverine material seems to limit the TOC levels to values <1.5% (McPherson et al., 2006a; Burd
1156	et al., in press). However, these TOC values are not indicative of the productivity of these
1157	sediments, which is more closely related to the input of organic material (see Burd et al., in
1158	press). Because of the inorganic input to these sediments, however, and their tendency to be less
1159	sticky and cohesive than mud, they are usually better oxygenated that marine muds. Surface
1160	mixing layer depths related to bioturbation in substrates affected by Fraser River discharge are
1161	estimated at between 7-10 cm deep (Johannessen et al., in press). These substrates tend to be
1162	located in moderate or variable current regimes and, because the sediments are easily re-
1163	mobilized, bottom turbidity may occur. These substrates are typically oxic but, if organic carbon
1164	loading is high, can be suboxic.
1165	
1166	A wide range of habitat types, based on fine-scale structural features, can be found in these
1167	substrates, along with a mixture of biotic features of both mud and sand communities. Analyses
1168	of biotic data with an extensive geographic distribution within the SoG (Burd et al., in press),
1169	indicates that this silt/sand habitat along the Fraser River delta appears to have a high abundance
1170	of invertebrate fauna compared with the rest of the SoG. Biota are diverse in terms of species
1171	richness, type (polychaetes, bivalves, echinoderms, crustaceans and more) and size spectrum of
1172	organisms, as well as feeding types (mixed deposit and/or suspension feeders, scavengers and

1173	predators) (McPherson et al., 2006a). Using functional group categories for benthic fauna,
1174	Pearson and Rosenberg (1978) suggest that off-shore silt/sand habitats in temperate coastal areas
1175	tend to have the greatest diversity of functional groups in soft sediments.
1176	
1177	2.2.2.1 Shallow (0-30 m) silt/sand
1178	Shallow silt/sand habitats in the SoG are usually semi- protected in regard to wave exposure and
1179	tidal currents. Sediment is either fluvial in origin or from an along-shore source. Oxygen levels
1180	in bottom water are reasonable and natural sediments tend to have some oxygenation. In the
1181	SoG, eelgrass occurs in oxic sediments in areas with "clean" water and at depths usually <10 m.
1182	Both red and green macroalgae are associated with eelgrass beds, as a result of the low sediment
1183	mobility (eelgrass roots/rhizomes stabilize the sediments). In the shallow silt/sand habitats in the
1184	SoG, mobile macrofauna (e.g. sea stars and crabs) are abundant and, usually outside of the
1185	eelgrass beds, deep-burrowing large bivalves as well as burrowing anemones, agglutinated tube-
1186	building worms and tubicolous amphipods occur.
1187	
1188	Bazan Bay on Vancouver Island, serves as an example of some of the more interesting features
1189	that may occur in these shallow silt/sand habitats. A mixed eelgrass, red and green filamentous
1190	algal community is evident to the 10 m depth (J. Harper, CORI, Sidney, BC, pers. comm.), along
1191	with patches of eelgrass that vary in density (see Bornhold and Harper, 2002). Eelgrass beds are
1192	typically considered to be important habitat and nursery areas for various species of fish and
1193	mobile, or epiphytic, macro-invertebrates (Goldstein et al., 1996; Heck et al., 2003;
1194	http://www.ecy.wa.gov/programs/sea/pugetsound/species/eelgrass.html)

In deeper waters, but still within this habitat type, foliose red algae and other macroalgae are
seasonally abundant, suggesting attachment in the relatively stable silt/sand substrates. Benthic
invertebrate data from close proximity to an abandoned outfall pipe in Bazan Bay was collected
(Glaholt et al., 2002) as part of the reconnaissance information related to the proposed SoG
Crossing pipeline project. The study was designed to show the expected changes in biota related
to the introduction of an artifical reef (a pipeline), into a shallow, silty sand habitat in the SoG.
The faunal assemblage in these substrates is dominated, to an indeterminate water depth, by a
dense sediment-surface mat of tube-dwelling amphipods, sponges and hydroids, with lesser
dominance by polychaetes, followed by bivalves (Glaholt et al., 2002). The presence of these
mats suggests a lack of bottom disturbance from excessive sedimentation, organic input or
physical disruption. The presence of sponges and hydroids in the mats suggests a strong
suspension feeding component within the community. The amphipod tubes produce a micro-
heterogeneity of structure which benefits other species, such as the hydrozoans and a multitude
of other amphipods and crustaceans. Faunal distributions were highly variable spatially, with
isolated patches of anoxic sediments and higher silt content where drift algae had piled up on the
quiescent down-current side of the Bazan Bay pipeline (Glaholt et al., 2002). Other infaunal
organisms which may be common in shallow silt/fine sand habitats include relatively deep
burrowing, large bivalves, burrowing anemones, and larger mobile predators and scavengers
(e.g. mud stars, crabs, shrimp and nudibranchs).
Another example of a shallow mixed silt/sand habitat study is Boatswain Bank along the eastern

coast of Vancouver Island just north of Saanich Inlet. A shallow subtidal study was done along an onshore/offshore transect at the proposed landfall for the SoG pipeline. The relevant habitat,

macroalgae and surface megafauna are described based on diver surveys in Seacology et al. (2001). Megafauna included sea-pens, tubeworms, gastropods, hermit crabs, sand stars, and various fish. Beach seining in the same study showed a number of rock, kelp and helmet crabs. Concurrently, a study of the infauna (Burd and Glaholt, 2000) showed a diversity of polychaete, bivalve, crustacean and echinoderm fauna with numerous bryozoan and cnidarian colonies attached to fauna and macroalgae. The diversity of this assemblage appeared to be comparable to the deeper, siltier samples in Satellite Channel (Burd et al. 2000a), except for a much lower abundance of shallow burrowing bivalves in the Boatswain Bank area. The area was also surveyed by video to map the habitat, extent of eel-grass beds and other macro-algae (Archipelago Marine Research Ltd., 2000).

2.2.2.2 Mid-depth (30-100 m) silt/sand

Mid-depth silt/sand habitats in the SoG tend to have a broad range of organic carbon fluxes and bottom water oxygen levels. An example of the mid-depth silt/ sand habitat is found on the western side of the SoG, straddling the Fraser River discharges. Extensive biological and geochemical monitoring of these sediments has been conducted as part of the Iona outfall monitoring program for GVRD (Burd, 2000; Burd, 2003b; Bailey et al., 2003, McPherson et al., 2003, 2004b, 2005a, 2006a, 2007a), providing extensive data on both background and impacted areas (see Section 3). This area spans the Fraser River delta and hence receives the maximum influence from plume particles and bottom transported material, particularly from the south arm of the Fraser River (Hill et al., in press). Bioturbation in the area is considerable, with a surface mixed layer of up to 5-10 cm (Johannessen et al., in press). The area has a rich and diverse macrofaunal community dominated by a broad size range of bivalves, although 40-60% of the

total faunal abundance is contributed by one small, burrowing species, Axinopsida serricata. A
second bivalve, <i>Macoma carlottensis</i> , comprises ~10% of the abundance. All bivalves comprise
~50% of the organismal biomass in these sediments (McPherson et al. 2006a). The remaining
biomass is mostly comprised of echinoderms, primarily the brittlestar Amphiodia
urtica/periercta complex, and a few large holothurians (Molpadia intermedia). Although there is
a diversity of polychaete taxa present, these organisms are clearly of minor importance in the
productivity of these sediments. Infaunal crustaceans are rare, comprising less than 1% of faunal
abundance and far less than 1% of biomass (McPherson et al., 2007a).
The bivalve dominance evident in the 30-100m silt/sand sediments spanning the Fraser River
delta, discussed above, appears to be unusual within the SoG (Burd et al., in press). Burd et al.
(op. cit.) suggest that the bivalve dominance is related to the high sedimentation rates along the
delta (see Johannessen et al., in press), which are less easily tolerated by infaunal polychaetes
(Reid and Baumann, 1985; Burd, 2002). Brittle stars may also have an advantage in this habitat
type in regard to the speed and extent of their burrowing capability. Close to the south arm
discharge of the Fraser River, the sedimentation rates are too high to be measured in the standard
box cores used in other locations (Johannessen et al., in press). In this location, the dominant
bivalve (Axinopsida serricata) and the ophiuroids periodically decline, with a concurrent
increase in abundance of small polychaetes typically considered to be primary colonizers
(McPherson et al., 2006a). Presumably, there is therefore a limit in the ability of the infaunal
bivalves and brittle stars to cope with heavy sedimentation conditions (or events).

Although mid-depth (30-100 m) sampling stations in outer Burrard Inlet are described as having mud substrate (see earlier), several stations in this area have silt/sand substrates (i.e. stations close to the 1st Narrows bridge and near the mouth on the south side of the inlet (Fig. 1)

Conversely, some areas along the bank and slope between the south arm of the Fraser River and the opening to Burrard Inlet can be classified as primarily mud. Species richness values and faunal types are similar throughout the Fraser River delta and Burrard Inlet (McPherson et al., 2006 a, b), illustrating the overlap in faunal types between mud and sandy silt habitats. However, regardless of substrate type, species abundance and biomass values have been consistently lower in outer Burrard Inlet than along the Fraser River delta (McPherson et al., 2006 a, b), and total sediment flux and organic flux are higher along the river delta than in Burrard Inlet (Burd et al., in press; Johannessen et al., in press). These patterns suggest that faunal productivity in the main basin of the SoG is more dependent on the Fraser River discharge than on substrate type or depth (Burd et al., in press).

2.2.2.3 Deep (>100 m) silt/sand

Silt/sand habitats are rare below 100 m depth in the SoG, since most of the sand (coarser, land-based material) deposits closer to shore. In most of the deeper parts of the main basin of the SoG, and at the bottom of fjords, substrates are mud (see earlier text). In the southernmost part of the main basin of the SoG, however, intense mixing throughout the water column in Haro Strait (Masson and Cummings, 2004) (see Fig. 1) may carry sandy material eroded from the southern gulf islands to the deep basin of the SoG (see also Johannessen et al., 2006), explaining why these sediments have some sand content. In addition, some of the coarse, sandy sedimenting material from the Fraser River is transported northward and downslope off the delta, ultimately

1287	ending up in the deep basin of the eastern margin of the southern SoG and resulting in mixed
1288	sand and silt substrates at depths greater than 100 m (McPherson et al., 2004a).
1289	
1290	The example used to provide a description of the biota in these habitats is the area at the foot of
1291	the slope (120 m) on the south-eastern margin of the SoG, along the Fraser River discharge area.
1292	The biotic community of this area overlaps with that for the mid-depth range to some extent, but
1293	there are marked differences in faunal dominance (McPherson et al., 2004a). For example, the
1294	mid-depth bivalves, such as Axinopsida serricata, which are dominant from 30-100 m in the
1295	Fraser River delta and outer Burrard Inlet, decline in abundance at depths >100 m in these same
1296	areas (McPherson et al., 2004a, b, c). Brittle stars are also rare below 100 m, whereas large
1297	holothuroids such as Molpadia increase in abundance and the crustacean fauna changes.
1298	Number of taxa and total abundance tend to decline somewhat with increasing depth but are still
1299	relatively high at 120 m. At a location close to the south arm of the Fraser River discharge (Fig.
1300	1) the main features of the fauna tend to be similar at depths from 60-120 m, because this entire
1301	habitat is overwhelmed by continuous high deposition of river-derived material. At 500 m north
1302	of the Iona outfall (McPherson et al., 2004b) (Fig. 1), and another location just outside the mouth
1303	of Burrard Inlet (McPherson et al., 2004a), faunal abundance and diversity decline dramatically
1304	with depth. Near the outfall, the faunal decline may be related to slumping of elevated (outfall-
1305	related) deposits along the steep slope areas. However, in both the aforementioned more
1306	northerly locations, faunal declines may be related to a combination of decreased sediment
1307	organic flux with depth and natural declines in bivalve abundance below 100 m (Burd et al., in
1308	press).
1309	

Several stations sampled in the deep, southern basin of the SoG as part of a collaborative
ambient monitoring program between the Canadian Department of Fisheries and Oceans,,
Natural Resources Canada and the Greater Vancouver Regional District (Wright et al., in press)
showed infaunal biomass as high, or higher, than that observed in the mid-depth zone along the
Fraser River delta (see earlier text this section; Burd et al., in press). Faunal abundance and
species richness were also considerably higher than those found in either of the deep, mud
habitats in fjords or other deep areas of the BC coast (Burd, 1992; Burd, 2006; Burd et al., in
press). At one southern SoG station, sediments had unusually high organic and inorganic flux,
biomass and species richness (see Burd et al., in press) and were dominated (e.g. ~40% of total
abundance) by crustaceans, particularly a cumacean (Eudorellopsis integra) and an ostracod
(Eudorella pacifica); both these crustacean species were rare in the proximate mid-depth zones
for this substrate type (McPherson et al., 2007a). Approximately 25% of the total faunal
abundance at the same station consisted of bivalves, which is unusually high for the deep
habitats, and 25% consisted of polychaetes. The remaining fauna consisted of gastropods,
aplacophorans, and a few echinoderms. The second station was dominated by polychaetes with
few bivalves but had a high biomass due largely to echiurans (Burd, et al., in press). A third
station in the southern main basin of the Strait appeared to have a faunal composition that was
intermediate between the other two stations, albeit with a lower overall biomass and abundance
than the other two stations along with a lower organic flux to bottom sediments (Johannessen et
al., in press). These differences illustrate the wide variety of faunal types which may occur at
depth within the deep basin of the SoG, presumably related to differences in sedimentation
conditions (Burd et al., in press).

2.2.3	Sand	Habitat	ts
-------	------	---------	----

Unlike the previous two substrate types, sand substrates are non-cohesive and, potentially, are highly mobile. Sand habitats are abundant in areas with high energy currents and a proximate source of either land-based or glacial deposit sands. These habitats may be depositional or erosional, depending on the currents and the source and persistence of the sedimenting material. In some cases where there is on-going input of sand from erosion or freshwater runoff, the area may be net depositional with variable bottom currents. In addition, seasonal deposition of finer substrates may occur based on water column productivity, but these deposits may be resuspended and transported away during winter storms.

Sand substrates are porous and well oxygenated, often to sediment depths >10 cm; they are subject to both diffusion and lateral seepage of oxygen and dissolved organic material. Low porewater oxygen would be expected only in very unusual circumstances, such as may be found in a stagnant basin with high inorganic input. Organic flux may vary greatly but the deposition of typically fine, organic material is limited such that sediment TOC content is generally low (<1%). Sand habitats are the most extensively bioturbated of all the habitat types, as the sediments tend to be loosely packed, and, thus, are relatively easy to move through. Sand habitats may be subject to considerable transport in high energy areas, so that biotic community types and stability are directly related to the frequency and type of high energy, remobilizing events.

Biotic factors in sand substrates include a high potential for bioturbation; tube-building polychaetes and amphipods are frequently found in these substrates. Sand substrates tend to

have a higher proportion of suspension feeders than deposit feeders, and epifaunal predators and scavengers are common. While some species that are found in the mixed silt/sand habitats may also be present in sand habitats, the strictly deposit-feeding species are typically absent or rare (Rhoads and Young, 1970).

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1356

1357

1358

1359

2.2.3.1 Shallow (0-30 m) sand

In the SoG, sand substrates in depths <30 m range from being semi-protected to semi-exposed to wave and storm disrupted, and some bottom turbidity is possible. Sediment sources may be fluvial, along-shore or onshore/offshore. Predominantly sand substrates in low to moderate energy areas in the SoG typically include high numbers of deep burrowing bivalves, such as horse clams (Lauzier et al., 1998) butter clams, littleneck clams (Gillespie and Bourne, 1998). These species are common throughout BC and Alaska. Where clam populations are high, the surface sediments are commonly littered with shell debris resulting from predation. The surface of the sediments in shallow sand habitats may be dominated by sand dollars, sea pens or surface bivalves such as *Tellina* spp. (Burd, 1992). Mobile predators such as small to mid-size crabs, sea stars and drills, are common. Grazers such as small and large gastropods (such as Gastropteron sp.) may be present. Epibenthic amphipods can be highly concentrated, scavenging in areas of detrit. Polychaetes are common in sandy substrates, but tend to be dominated by mobile forms, which may be predators or suspension feeders. Palsson et al. (2003) note that Dungeness crab were most abundant in this depth range in the Washington State SoG (southernmost part) during the 2001 transboundary trawl survey, although they were not surveyed in this depth range in the SoG. However, there is an active crab fishery in the sandy sediments east of Vancouver Island within the southern Gulf Islands. Filamentous red and green macroalgae occur in undisturbed

sediments and foliose red algae may be found, drifting, in the deeper areas in this habitat. In more exposed areas (or where herviborous predators such as sea urchins are abundant), encrusting coralline algae may predominate. Eelgrass beds occur in clean water, relatively low energy (i.e. sheltered) areas in these sand habitats. While the epiphytic fauna in eelgrass beds in this habitat may be similar to that found in the shallow silt/sand habitat, the infaunal communities will be composed primarily of suspension feeders rather than deposit feeders. In the deeper areas of this habitat, in specific and spatially limited patches, deep burrowing geoduck populations may be present.

An example of the shallow sandy habitat is found in Boundary Bay, which is a typical sand beach in the southern SoG (Fig. 1). Burd et al. (1987) identified 200 taxa as part of a study on the distribution and abundance of macrofauna in Boundary Bay. Most of the shallow, sand substrate stations were dominated numerically by nematodes plus several species of bivalves, amphipods and echinoderms. Polychaetes were less prominent than the aforementioned taxa. The authors note that their study illustrates the spatial heterogeneity of shallow subtidal benthic communities. Cluster analysis of the abundance data showed considerable dissimilarity between and within sand stations, particularly when compared with similar analyses for deep water benthic communities in BC (Brinkhurst, 1987). Using visual counts of specific large macrofauna along transects in Boundary Bay, Swinbanks and Murray (1981) concluded that in predominately sand substrates, tidal exposure was an important factor delineating communities. Burd et al. (1987) suggest that the spatially and seasonally patchy distribution of eelgrass in Boundary Bay (Swinbanks and Murray, 1981) is a potential factor related to the distribution patterns of species.

Another example of a relatively unimpacted shallow sandy habitat was studied on the western margin of the Strait, just north of Saanich Inlet (Boatswain Bank). This location was discussed earlier (under shallow silt/sand habitats; section 2.2.2.1), and included both habitat types along an on-shore/offshore gradient, with sandy substrates in the shallower subtidal region.. Epifaunal biota and macroalgae (Seacology et al., 2001) and infauna (Burd and Glaholt, 2000) were surveyed along several transects perpendicular to shore at the proposed SoG crossing pipeline landfall site. Eelgrass beds and other macroalgae were mapped more extensively in the area by video survey (Archipelago Marine Research Ltd., 2000). The sandy stations were all found at less than 10 m depth, below a typical cobble intertidal beach, and were dominated by infaunal bivalves and crustaceans, along with polychaetes and a few echinoderms within patchy eelgrass beds. The authors noted that juvenile fauna were numerous, which would be consistent with the concept that eel-grass beds are important nursery grounds for many types of fauna (Archipelago Marine Research Ltd., 2000).

2.2.3.1 Mid-depth (30-100 m) sand

Mid-depth sand habitats in the SoG are subject to a variety of wave exposures, are often affected by currents or swells and may be influenced by large storm events. Bottom turbidity is usually low in these sand substrates, however, because these sediments are heavy and settle quickly. The biota found include burrowing bivalves that may be smaller, on average, than those found in the shallower sand habitats. Burrowing polychaetes and mat-forming tubicolous polychaetes occur in mid-depth sand habitats, as do ophiuroids, although these are found in lower abundance than in finer grained habitats (Burd et al., 2000a; McPherson et al., 2007a). Crustacean fauna are an important component in these habitats and depths, including Dungeness crabs (Palsson et al.,

2003). Sea pens and sea whips are found in higher current areas (Burd, unpublished data) and
some attached forms of invertebrates (e.g. hydroids) occur on larger fauna and debris (V.
Macdonald, pers. comm. Biologica Environmental Services Ltd, Victoria, BC).
The mid-depth sandy habitat type example from the SoG is the Ecological Reserve 67, located in
Satellite Channel. Although an Ecological Reserve, this area was neither regulated nor subject to
enforcement until several years ago. However, the only major impact on the area has been
bottom trawling and, despite the known biotic changes that can occur in areas of concentrated
bottom trawling (Engel and Kvitek, 1998; and see Conservation Biology issue 12: Vol. 6, 1998),
a reconnaissance survey in 2000 for the proposed GSX pipeline suggested that the benthic biota
are typically diverse and abundant compared with other areas of the SoG (Burd et al., 2000a;
Burd et al., in press). Fauna in the reserve are dominated by bivalves and a mixture of mobile
and non-mobile polychaetes (epibenthic and burrowing, free-living and tube-dwelling); the latter
group may have comparable or lower abundances than the bivalves. The fauna also includes
abundant crustaceans but relatively few gastropods. Echinoderms are rare which may be because
large, mobile organisms with patchy distribution are not readily sampled using the methodology
(grabs) of the studies cited here or, alternatively, the low abundance may reflect the adverse
effects of bottom trawling. Older studies of the same area suggest that echinoderms were more
common in the late 1960s (Ellis, 1970; 1971), before bottom trawling was frequent in this area.
Ophiuroids also are relatively rare, which may be related either to the non-selective deposit-
feeding habits of these animals and the lower organic content of sediments or, again, to the
damage caused to these near-surface fauna by bottom trawling. Mats of tube-dwelling
polychaetes Galathowenia oculata and Owenia fusiformis were abundant in the Satellite Channel

area in the late 1960s (Ellis, 1970, 1971), but were not abundant in 2000 (Burd et al., 2000a).
Bottom trawling is likely to cause disruption of tube mat structures on the sediment surface.
Largely because mid-depth sand habitats typically have moderate sediment oxygen levels and
low turbidity, hydroids are found attached to shelled organisms on or just below the surface
(Burd et al. 2000a), and may be an important component of the filter feeding biota of these
habitats.
During the 2001 PICES Burrard Inlet workshop, fauna were sampled from a mid-depth sand
habitat reference station outside the sill of Howe Sound (PICES, 2001; Je et al., 2003). Results
using similar sampling methods showed species richness at this station was similar to that of
samples from the ER67 Satellite Channel stations (Burd et al., 2000a; Je et al., 2003). Faunal
abundance, however, was much higher in the Satellite Channel samples, as there were fewer
bivalves present in the Howe Sound location. Polychaetes, rather than bivalves, were dominant at
the Howe Sound location. A range of epifaunal types (8 taxa) are listed in Bernard (1978) to
occur at depths of 20-100 m in sandy areas sampled in the SoG.
2.2.3.1 Deep (>100 m) sand
Deep sand habitats only occur, typically, in moderate to high current (erosional) areas. In low
current areas, the deposition of fine marine detritus would cover the sands eventually. The epi-
benthic list of Bernard (1978) includes 4 taxa for the 100-200 m depth range but only one
polychaete (Pectinaria californiensis) is listed for the 200-300 m depth range and one
scaphopod (Dentalium rectius) for the 300-400 m depth range Although no other data or studies

are available from such habitat types in the SoG, these sand habitats may occur in deep water in

isolated areas near the southern Gulf Islands or in the northern half of the SoG (Fig. 3).
Information on the biotic communities in these habitats outside the SoG, specifically in Hecate
Strait and la Perouse Bank, is available in Burd and Brinkhurst (1987) and Brinkhurst (1987),
respectively.
2.2.4 Cobble, Gravel and Coarse Sand Habitats
Cobble, gravel and coarse sand habitats are usually found in moderate to high energy locations.
This substrate can also occur, however, where there are coarse glacial deposits in lower energy
locations with no source of finer glacial or freshwater-derived inorganic particulates (finer
sands). These substrates can be both mobile and immobile. For example, constant deposition of
substrate material from a major land-based source would probably lead to unstable deposits
subtidally, particularly on slopes. In stable habitats, however, these substrate materials tend to be
heavy and can only be moved by high energy waves or storm events, particularly in shallow
subtidal areas. Similarly, the coarse materials are a difficult substrate for the burrowing activities
of bivalves and other fauna and, as a result, bioturbation may be limited. Because the substrate
materials in these habitats are so coarse, sediments tend to be well-flushed and oxygenated. The
benthic fauna are dominated by suspension feeders and mobile predators, particularly in high
current areas. Cobble substrates in particular are likely to have fauna similar to rocky substrates
(Section 2.2.5).
Bernard (1978) includes a few dominant epifauna from these habitats at various depths, but the
epifauna list is short relative to that for soft substrates due perhaps to the difficulties in sampling

this habitat type. These habitats can be viewed as "intermediate", as they are neither soft enough for effective grab samples to be taken nor flat and smooth enough for visual transect surveys. Much of the fauna is interstitial (ie. living between sediment particles) and there is no efficient way to sample them. Similarly, while trawls may collect some epibenthic forms, both the nets and the captured biota are prone to damage by cobble and gravel substrates. Bottom sampling is further hampered by the fact that these habitats are usually very high current areas. Hence, there is very little information about these habitats in the SoG, and none of the information available is quantitative.

2.2.4.1 Shallow (0-30 m) cobble, gravel and coarse sand

In shallow depths in the SoG, these coarse substrates are found most often on high energy or exposed to semi-protected areas, extending from the intertidal to the shallow subtidal. An example of such a habitat is given in Seacology et al. (2001) and Burd and Glaholt (2000), but it is noted in both studies that the cobble or gravel does not extend very far below the intertidal, and tends to occur in patches along with coarse sand. These habitats are usually non-depositional but may be influenced by seasonal onshore/offshore movement of material due to storm events and strong currents. In addition, periodic storms may lead to patches of storm or tidal debris (organic and inorganic) which are usually transitory. If these shallow habitats are not too high energy, seasonal macroalgae such as the brown algae *Laminaria*, *Costaria* and *Desmarestia* may be dense along with patches of bull kelp (Seacology et al., 2001) along with epifaunal grazers. A variety of mobile epifauna are found in these habitats, including amphipods, sea stars, nudibranchs, gastropods, echinoids and large mobile polychaetes, shrimp and crabs, and is also noted to be a nursery habitat for juvenile Pacific cod. Sessile invertebrates attached to the larger

anemones) on the larger sediment particles (see Farrow et al., 1983).

An example of mid-depth coarse habitats is the sill of Knight Inlet, which is located immediately north of the SoG. The Knight Inlet sill is also a tidal channel, with coarse sand, gravel and large boulders which can be moved by the strong tidal currents (see Farrow et al., 1983). Tunnicliffe and Syvitski (1983) describe how large gorgonian corals attached to boulders provide "windage" which contributes to the transport of boulders in this area. The authors found that these rare habitats may contain typical rock cliff epifauna occurring in patches but, unlike cliff fauna, the forms are usually encrusting which may be related to the potential physical damage caused by the moving boulders and high currents. The distribution of the large planktivorous corals was patchy but the organisms were most concentrated on the sill crest, where the zooplankton were visually dense (Tunnicliffe and Syvitski, 1983). The level of heterogeneity within this type of habitat will determine the abundance of small mobile fauna that like to hide, such as shrimp and small crabs.

Although the extensive outfall monitoring program in outer Burrard Inlet focused on soft substrate, video assessment of the nearfield substrate revealed the presence of cobble, gravel and coarse sand substrate (CORI, 2002). Flocculant levels were high in the water column, reducing visibility. However, large concentrations of the anemone *Metridium senile* suggested opportunistic utilization of the suspended organic material (CORI, 2002). Visual surveys by the Victoria Capital Regional District describe the 40-60 m depth range off southern Victoria near Clover Point (just outside the SoG, in Juan de Fuca Strait) as cobble-gravel, with extensive horse mussel and scallop growth (Capital Regional District, 2000). Bernard (1978) listed 2 bivalve species, (*Glycymeris subobsoleta* and *Mysella tumida*) sampled by trawl from gravel substrates and 6 different species found in rock/cobble substrates.

2.2.4.3 Deep (>100 m) cobble, gravel and coarse sand

These coarse grained habitats seem to be rare in the deeper parts of the SoG (Fig. 3). It is likely that these habitats are limited to the few deep, strong tidal channels in the SoG at the north and south end (Section 1.2) and to areas where debris resulting from cliff erosion has settled at the foot of steep slopes. These areas have been observed, occasionally, using a submersible (Burd, unpublished data) and, although most fish farms in BC are located outside the SoG, information on these habitats under fish farms in the fjords of the SoG may also be archived in ROV video footage maintained by the provincial Ministry of Environment.

There is very limited information about these coarse habitats and associated biota in depths >100 m within the SoG. However, it is expected that the faunal communities would be of similar composition to those described earlier for the mid-depth coarse habitat. The only caveat is that at these depths, it is likely that organic flux to the bottom is reduced, so that there may not be as much labile organic suspended material available for bottom organisms. Bernard (1978) describes invertebrate epifauna from trawls conducted at 100-200 m depths in gravel habitat type and lists the same two species found in the 20-100 gravel substrates, the bivalve *Glycymeris subosoleta* and the crustacean *Munida quadrispina*. The author lists no species for sampling conducted in gravel substrates >200 m. Invertebrate species were more abundant in the rock/cobbles substrate than in the gravel substrate, but only the cloud sponge *Aphrocallistes vastus*, was reported from the rock/cobbles substrate type at >200 m depths. As noted earlier,

2.2.5.1 Shallow (0-30 m) rock (consolidated)

archived information on videos from deep ROV work related to fish farms may be one of the	
best sources of epifaunal data available.	
2.2.5 Rock (consolidated) Habitat	
In exposed coastal areas, these substrates are subject to very high wind and wave exposure	
and/or tidal currents, preventing any deposition. However, in isolated basins such as fjords, the	
steep sides prevent accumulation from sedimentation regardless of current conditions. Some	
island archipelagos, with no freshwater or nearby glacial deposits, can retain rocky substrates in	
lower energy habitats. Although high levels of suspended organic particles occur, depending of	
the current regime and organic input, organic flux to the sediments if virtually nil.	
Rocky habitats are abundant in the SoG and Levings et al. (1983) note that rocky and sandy	
shores combined make up 88% of the total length of the shoreline (shoreline consists of the	
intertidal and subtidal habitats ≤20 m), while the area of rocky substrate accounts for ~25% of	
the total area (see Section 1.3.1). Many of the SoG's mainland fjords have extensive, near-	
vertical rocky cliffs, limiting the fauna to those that can attach to vertical rock and that can	
tolerate sediment deposition. These rock wall communities are dominated by sessile filter	
feeding invertebrates or mobile scavengers and predators. Tidal currents in these habitats are	
usually low due to the near-vertical walls which don't "channel" or intensify tidal surges.	

1607	
1608	The diversity and coverage of rocky shoreline communities is dependant on exposure to waves,
1609	freshwater, salinity, light and currents and is, therefore, seasonally variable. The presence of
1610	crevices or heterogeneous structure for hiding and attachment also affects both the plants and
1611	invertebrates found in these shallow rock habitats. The bottom water in these habitats is usually
1612	highly oxygenated. If there is a rich supply of suspended particulate material, these areas can be
1613	~100% covered by sessile invertebrates and plant growth. Seasonal macroalgal cover of
1614	filamentous and bladed red, green and brown algae is extensive in the upper photic zone, with
1615	foliose reds commoner in slightly deeper areas (i.e. >10 m).
1616	
1617	The fauna found in these habitats, both sessile and mobile forms, tends to be relatively consistent
1618	throughout the BC coast. The diverse fauna in these habitats includes bivalves, calcareous tube
1619	worms, ascidians, bryozoans, hydrozoans, small sponges, as well as echinoderms and
1620	crustaceans. Because these rocky habitats have been so well described by scuba surveys at these
1621	shallow depths, the flora and fauna are not described in detail herein (e.g.
1622	http://ilmbwww.gov.bc.ca/lup/coastal/north_island/cortes/docs/2-description.pdf; Levings et al.,
1623	1983 and references therein). An example of a shallow rock habitat just outside the SoG is Race
1624	Rocks, near Sooke, BC. Race Rocks, a tidally-exposed rocky outcrop in a "clean" environment
1625	which has been well studied using SCUBA. The area has a remarkably rich and diverse flora and
1626	fauna (see Wright and Pringle, 2001 for references) and is a federal marine protected area. The
1627	invertebrate fauna tolerates strong currents and high wave exposure and includes abundant
1628	barnacles, goose-neck barnacles, and mussels, as well as a variety of anemone species, surface-
1629	grazing gastropods, mobile predators such as sea-stars, nudibranchs, crabs and gastropods.

1630	
1631	Shallow rock habitats may be structurally heterogeneous as a result of algal growth and also
1632	from faunal communities such as mussel beds. Up to 300 species have been identified inhabiting
1633	the interstices of established mussel beds (Seed and Suchanek, 1972; Suchanek, 1979) and
1634	species richness has been shown to increase with increasing age and thickness of the mussel bed
1635	(Asmus, 1987; Jamieson et al., 1999; Ragnarsson and Raffaelli, 1999; Smith et al., 2006).
1636	
1637	In the deeper, high current areas of shallow rock habitats, bull kelp can form dense forests which
1638	modify currents and light penetration and provide important refugia for fish, as well as food for
1639	sea urchins and other grazers. Sea urchins are known to be a key species which controls and
1640	modifies algal community associations in near-shore rocky habitats on the west coast of North
1641	America (Paine and Vadas, 1969; Duggins, 1981). Abalone may play a similar role but tend to
1642	be less widely distributed in BC coastal waters than are sea urchins due to excessive fishing
1643	pressure over the years (http://www.dfo-mpo.gc.ca/species-especies/species
1644	northernAbalone_e.asp).
1645	
1646	2.2.5.2 Mid-depth (30-100 m) rock (consolidated)
1647	
1648	Mid-depth rock habitats in the SoG typically have moderate to steep slopes; accumulation of
1649	deposited material is unlikely to occur on steep slopes but pockets of deposition may occur on
1650	lesser slopes. These habitats are exposed to limited, or no, wave exposure, while levels of tidal
1651	currents vary. Bottom water renewal, and therefore bottom water oxygenation, in these habitats

1652	in the SoG is variable and depends on the physical topography and, in fjords, also depends on the
1653	depth of the sill.
1654	
1655	Because these habitats can only be studied using ROVs or submersibles, they are, therefore, less
1656	well studied than soft substrate habitats at comparable depths. The majority of this research in
1657	the SoG was conducted in the early 1980s, when the research submersible PICES IV was
1658	available through the Canadian Department of Fisheries and Oceans. Much of this research is
1659	published (e.g. Tunnicliffe, 1981; Levings et al., 1983; Tunnicliffe and Wilson, 1988) and
1660	additional, unpublished information is archived in video or still photographic form (Tunnicliffe,
1661	unpublished; Burd, unpublished). The following general descriptions of the faunal communities
1662	in the mid-depth rock habitats of the SoG are based on both sources of data.
1663	
1664	The spatial cover by invertebrates in the mid-depth rock habitats does not vary as much
1665	seasonally as it does in shallow subtidal areas. However, there may still be some encrusting
1666	coralline algae present at the shallow end of this depth range, depending on light penetration (e.g.
1667	Farrow et al., 1983; Spalding et al., 2003). Rather, the spatial cover by invertebrates declines
1668	with increasing depth and decreasing oxygen levels in the water. Examples of the mid-depth
1669	rock habitat are the rock cliff walls of fjords in the SoG. These mid-depth habitats contain a
1670	number of species, such as eel-pouts, that are more common in the deep sea. Similarly, sea fans
1671	(gorgonians, soft corals) are common on the walls of some of the SoG inlets (Tunnicliffe, 1981;
1672	Tunnicliffe and Wilson, 1988) but are also found when sampling in the deep water off the
1673	continental shelf. Huge glass sponges, normally associated with polar or deep seas, are also
1674	common in mid-depth rock habitat in the SoG fjords (Tunnicliffe, 1981; Burd, PICES IV-

1675	unpublished data). Tunnicliffe (1981) describes tube worms, sponges, brachiopods, cup corals,
1676	extensive gorgonian sea fans, anemones and colonial tunicates as some of the dominant sessile
1677	organisms on the vertical rock walls. Some of the larger sponge and erect coral growths are
1678	expected to be very old, as these habitats are typically less susceptible to physical damage than
1679	are level bottom habitats.
1680	Tunnicliffe and Wilson (1988) describe the distributions of 3 species of brachiopods from
1681	Knight, Jervis and Saanich inlets; brachiopods are a ubiquitous group reaching extremely high
1682	densities (average density of 190/m ² , maximum density of 945/m ²) at depths >30 m on the cliff
1683	walls of the fjords. Depth ranges were noted for each species of brachiopod. All brachiopod
1684	species seem to be relatively tolerant of low oxygen and a species in Saanich Inlet was found to
1685	be highly tolerant of periodic low oxygen levels down to 0.1 ml/L. Another brachiopod species
1686	from Saanich Inlet was found in abundance in high energy and/or high suspended sediment
1687	conditions. Thus, brachiopods are an important structural component of mid-depth cliff faunas
1688	and may be good indicators of sedimentary conditions. In contrast to brachiopods, bivalves are
1689	almost absent on the vertical cliff walls, suggesting that they do not settle on vertical surfaces. In
1690	addition, as a group they do not seem to be particularly tolerant of low oxygen (see also Burd,
1691	2006).
1692	
1693	Several mobile crustaceans are common on, or near, the rocky cliff walls of the fjords at mid-
1694	depth. These areas encompass the prevailing prawn fishery habitats, as the larger pandalid
1695	species tend to be abundant in the rocky crevices and on larger, upright epibenthos. Predatory
1696	crabs are less common in this depth range than in the shallow rocky cliff areas, (Burd,
1697	unpublished), however, a small anomuran crab (<i>Munida quadrispina</i>), with feeding and habitat

requirements similar to prawns co-exists with the prawns on the cliffs (Burd and Brinkhurst
1984). Examination of prawn catches and habits of prawn fishermen in a series of coastal fjords
in the SoG in 1983/84 (Burd, unpublished) made it clear that when M. quadrispina were
dominant, this necessitated a change in the location for setting traps.
Saanich Inlet and Howe Sound, as noted earlier, can experience severe annual stagnation and this
can lead to mass mortalities of sedentary cliff fauna (Tunnicliffe, 1981) as well as mobile forms
such as prawns and Munida quadrispina (Burd and Brinkhurst, 1984; Jamieson, 1988).
Tunnicliffe (1981) described a high biodiversity in the mid-water cliff assemblage of Saanich
Inlet, however, despite annual low oxygen, M. quadrispina is usually far more abundant in
extreme habitats, such as the very low oxygen areas (~0.1ml/L) in Saanich Inlet (Burd and
Brinkhurst, 1984) than in areas with higher oxygen levels. The higher abundance (and lack of
normal territorial and hiding behaviour) of the crabs has been speculated to be related to a lack of
predators in these extreme habitats (Burd and Brinkhurst 1984), whereas the tolerance of very
low oxygen areas is due to unusual respiratory and gill adaptations (Burd, 1985, 1988). In
addition, the pelagic amphipod Orchomene obtusens is found in extremely high numbers on, or
near, the rocky cliffs in hypoxic to anoxic conditions in Saanich Inlet (De Robertis et al., 2001),
where it is extremely efficient at consuming any detrital animal tissue used as bait in traps (Burd,
unpublished data).
Farrow et al. (1983) describe the fauna of the cliff walls in Knight Inlet along vertical cliff
transects which include the mid-depth zone. The along-inlet differences in faunal structure were
compared with a suspended particulate gradient which typifies the faunal changes that are likely

to occur in areas of high, moderate, and low bottom turbidity from glacial runoff. In the high
turbidity areas, the authors describe the dominant suspension feeders as sabellid worms and
brachiopods (see also Tunnicliffe and Wilson, 1988) which take small particles (<8 μ m).
Crinoids and gorgonian corals are more prevalent in the moderate tubidity areas and take larger
particles, while barnacles and glass sponges predominant where turbidity is low. In general, the
turbidity, oxygen and organic carbon content of suspended particulates within these habitats play
a significant role in determining which species will dominate. For example, brachiopods are
tolerant of relatively low oxygen conditions and can also tolerate relatively high turbidity.
Passive feeders, such as sponges, require some current movement for adequate feeding, but may
be tolerant of low oxygen (e.g. Tunnicliffe, 1981), and are usually found in deeper regions in
more quiescent waters (Tunnicliffe, 1981; Farrow et al., 1983) with limited sediment deposition
(Farrow et al., 1983 and see below).
A bottom hexactinellid sponge reef has been recently discovered at an unprecedented shallow
depth of about 60 m near the sill of Howe Sound (see Cook et al., in press). Most of these reefs
in the Strait are deeper than 120 m, making this location unusual. This reef has not been visually
surveyed yet. A description of other, deeper reefs in the Strait is given in the next section.
2.2.5.3 Deep (>100 m) rock (consolidated)
While deep subtidal rock habitats in the main basin of the Strait of the Georgia are mostly
confined to elevated rocky outcrops on the bottom of the basin (evident in detailed multibeam
and side-scan sonar transects e.g. Conway et al. 2007), these habitats are often dominant in

1744	many of the steep-sided fjords. Many of the SoG fjords are much deeper (up to 800 m) than the
1745	adjoining continental shelf (<400 m deep), with extensive rock cliffs. The same limitations for
1746	studying the mid-depth rock habitats, discussed earlier, apply to these much deeper habitats.
1747	
1748	In deep rock habitats that are "flushed", bottom currents are generally low to moderate. Bottom
1749	water oxygen is likely to be moderate. Spatial cover of sessile invertebrates on these "flushed"
1750	rock substrates is moderate to low, declining with increasing depth and decreasing oxygen levels
1751	and is also related to current levels. The faunal composition does not necessarily change
1752	significantly from that described for mid-depth rock habitats except that, as suspended organic
1753	material and oxygen levels decline with increasing depth, spatial coverage may decrease and
1754	some organisms or trophic forms may decline while other, more tolerant forms increase. For
1755	example, as noted earlier, prawns decline with increasing depth and anemones such as Metridium
1756	senile are not found below 80-100 m (Tunnicliffe, 1981; Burd, unpublished data). The faunal
1757	community may include calcareous tube worms, brachiopods, ascideans, hydrozoans, small
1758	sponges, boot and cloud sponges, gorgonian and small corals, large plumose anemones and
1759	tunicates.
1760	
1761	It should be noted that deep rock habitats in the SoG are also found on the walls of isolated
1762	fjords in stagnant basins. The water column in the deep rock habitats in the fjords may flush
1763	seasonally or only occasionally. Generally, the rock may be too steep for sediment accumulation
1764	but small pockets of organic material may accumulate in crevices and became suboxic or anoxic
1765	with filamentous bacterial mats. In these low current areas, the rock is usually minimally
1766	colonized with numerous areas of bare rock. As mentioned for mid-depth rocky areas, the fauna

1767	in these deep stagnant areas may include small anemones, encrusting sponges and brachiopods,
1768	as well as specialized mobile predators (e.g. amphipods, M. quadrispina) (Burd and Brinkhurst,
1769	1984).
1770	An interesting example of the deep, rocky habitat is the relatively recently discovered deep rocky
1771	outcrops or reefs in the SoG that are covered in hexactinellid sponges (predominantly
1772	Heterochone calyx and Aphrocallistes vastus) or in a few cases, scleractinian coral reefs
1773	(Lophelia pertusa) (Conway et al., 2007). There are nine confirmed glass sponge reef complexes
1774	in what Thomson (1998) describes as the central Georgia Basin (Fig. 1). Each of these sites has
1775	been surveyed using multibeam acoustics and ground truthed using remote video techniques by
1776	the Geological Survey of Canada. There are a further 3 sponge reefs which have been located by
1777	multibeam and seismic surveys but which have not yet been visually examined using video
1778	(Conway et al., 2007). Of the nine reefs which have been visually surveyed, only three are in
1779	good health, with consistent areas of live reef-building sponges (Cook et al., in press). The three
1780	healthy reefs are located on rock pinnacles well above the surrounding seafloor, where bottom
1781	trawling is not feasible. The other six appear to have suffered extensive mechanical damage
1782	resulting in large areas of fragmented sponge skeleton, with 3 reefs showing some evidence of
1783	re-growth. (Cook et al., in press).). Conway et al. (2007) concluded that there has been
1784	considerable damage to the reefs in the SoG from trawling and possibly from ocean dumping and
1785	increased siltation in the southern areas. There is a marked difference in terms of abundance and
1786	diversity of rockfish on the healthy and damaged reefs, illustrating that these are likely important
1787	refugia for deep reef fish. An ecological description of these reefs is in Cook et al. (in press),
1788	including the current state of their health and faunal associations.

It is well documented that hexactinellid sponge communities, such as those found in deep rock
habitats in the SoG, modify the environment around them. Bathyal environments in particular are
enriched by enhanced supplies of organic matter associated with sponges and their spicule mats
(Bett and Rice, 1992). In the Antarctic, Barthel, (1992) documented species-rich associations of
sponges in areas of sponge spicule mats. These reefs trap fine sediments and provide habitat for
annelid worms, bryozoans, bivalves, gastropods, rockfish, crabs, shrimp, prawns, sea stars, sea
urchins and ophiuroids. In other areas of the world, hexactinellid sponges provide habitats for
new and rare species, including numerous species of shrimps in the Bahamas (Berggren, 1993),
Hawaii (Baba, 1983), New Zealand and South Africa (Bruce and Baba, 1973), and in the East
China Sea (Hayashi and Ogawa, 1987). Their locally limited distribution and potential biological
importance as refugia in the SoG warrant protection (Conway, 1999; Conway et al., 2001;
Krautter et al., 2001).
Underwater cables provide hard substrate in deep water, albeit of anthropogenic origin. Levings
and McDaniel (1974) describe encrusting macro-invertebrates collected off a deep-water
telephone cable across the main basin of the SoG. This habitat appears to be a "refugia"
containing fauna that are found on the steep rocky cliffs of the surrounding basin shoreline. The
authors note that most of the deeper, hard-substrate species such as sponges, brachiopods and
gorgonian corals were not present on the cables on the eastern side of the SoG (Point Grey),
probably due to heavy sedimentation from the Fraser River. Even in these high sedimentation

areas, however, several anemones, such as the ubiquitous and relatively tolerant Metridium

senile, were found on the cables.

3. Anthropogenic Influences

Section 2 reviewed invertebrate communities likely to occur in a variety of undisturbed habitats (different depths and substrates) within the SoG. In this section, changes to habitats and invertebrate fauna found in areas of anthropogenic influence are examined and placed within the context of background biotic conditions in the SoG. Following a brief summary of anthropogenic sources and recognized influences of the type of major sources in the SoG, additional detail is provided on each source including case studies where appropriate. It should be noted that while input from some anthropogenic sources may affect intertidal or shallow subtidal areas, most of the major discharges into the SoG are deeper than the shallow subtidal (i.e. >30 m) and, consequently, habitats monitored for anthropogenic change also tend to be >30 m depth (mid- to deep subtidal).

The primary sources of anthropogenic influence in the SoG are municipal waste water outfalls (marine and along the Fraser River), ocean dumping sites (dredged material primarily from Burrard Inlet and terminal areas along the eastern margin of the southern Strait), pulp and paper mills, as well as runoff and discharges from agriculture and other industries along the Fraser River and Burrard Inlet. Localized sources of anthropogenic influence to marine habitats within the SoG include a small number of fish farms in several mainland fjords, log-booms, marinas, loading docks for industry, and stream runoff. While a large number of beach and near-shore shellfish aquaculture sites are located in the SoG, research into the potential impacts of these farms on benthic habitats and invertebrate community structure started only recently (e.g. Carswell et al., 2006) and, hence, the potential impact of these farms is largely unknown.

1836 Although the biotic effects of these localized small inputs can be varied and difficult to 1837 encapsulate, available studies on these inputs are summarized briefly in this review (and see 1838 Levings et al., 1983). 1839 Although the majority of the anthropogenic influences in the SoG include an organic enrichment 1840 component, virtually all of these influences also include some level of sediment contaminants 1841 which can make it difficult to determine causality. A huge literature on sediment and pore-water 1842 toxicity, much of it laboratory-based, illustrates the on-going struggle with these issues in the scientific community (Wang and Chapman, 1999; Burgess, 2000; Long et al., 2001). Burrard 1843 1844 Inlet, the major harbour for Vancouver, provides an example of a body of water in the SoG that 1845 is subject to numerous sources of anthropogenic input. The proceedings of an international, 1846 cooperative research workshop in Burrard Inlet (Stehr and Horiguchi, 2001) include a summary 1847 of the discharges and contaminant sources in the inlet (Levings and Samis, 2001). This inlet 1848 receives the discharge from a major primary-treatment municipal wastewater outfall, about 32 1849 combined sewer overflows (CSOs) (GVRD, 2004), and 36 permitted industrial or municipal 1850 discharges (Levings et al., 2004). Several of the more isolated sections (or arms) of Burrard Inlet 1851 are considered to be severely chemically polluted by hydrocarbons (Yunker et al., 1999) and 1852 organically enriched (Burd and Brinkhurst, 1990). The multitude of discharges, along with 1853 complex hydrographic conditions, has made the design of monitoring programs for specific 1854 discharges in the Inlet challenging (c.f. McPherson et al., 2007b). Similarly, Howe Sound has 1855 been subject, historically, to notable industrial inputs including a chlor-alkali plant (mercury 1856 discharge) and a copper mine with contaminated tailings and acid drainage issues which are still 1857 evident many years after cessation of operations (Hagan et al., 2004). Contaminant inputs and

1858	transport from these sources were reviewed by Macdonald and Crecelius (1994), West et al.
1859	(1994) and see Johannessen et al. (in press).
1860	Despite the confounding influences described above, however, certain patterns of benthic faunal
1861	response seem to be common to all organic enrichment inputs in British Columbia regardless of
1862	contaminant input (Cross, 1990; Burd, 1997; Brooks, 2001; Burd 2003a,b,c; Cross et al. 2005;
1863	Golder Associates Ltd., 2005; Burd, 2006; McPherson et al., 2007a, b; EEM monitoring data
1864	www.ec.gc.ca/eem/english/PulpPaper/default.cfm;).
1865	Biotic responses in marine sediments to conditions resulting from extreme organic loading have
1866	been described by Pearson and Rosenberg (1978). Based on this model, when sulphides are high
1867	and/or sediments are anoxic to depth, most fauna disappear. When these sediment conditions
1868	occur, white fibrous mats of sulphur-fixing bacteria (e.g. Beggiatoa spp.) may become extensive
1869	on the seafloor. In addition to high sulphides, however, the bacteria need oxygen from the
1870	overlying water for metabolism and, therefore, these mats occur only at the oxidation-reduction
1871	(redox) boundary (Møller et al., 1985), making them a good indicator of underlying anoxic
1872	sediments or, in rocky areas, of an anoxic near-bottom boundary layer. In fact, the presence and
1873	extent of Beggiatoa mats is used as a monitoring indicator of benthic condition for fish farms in
1874	BC (MWLAP, 2002). The few organisms that can survive, or sometimes even thrive, in these
1875	conditions include certain mobile epibenthic forms such as demersal amphipods and squat
1876	lobsters (Burd and Brinkhurst, 1984), as well as burrowing organisms that can maintain access to
1877	the oxygenated overlying water, some of which may have a high tolerance to sulphide (Brooks,
1878	2001). Despite these organisms, however, infaunal production is typically low in extreme
1879	environments due to loss of most of the macrofauna and energetic constraints on microfauna

utilizing energy resources without available oxygen (Emerson and Hedges, 2003). In rocky
habitats, most fauna will disappear, with the possible exception of some tolerant cup corals
(Tunnicliffe, 1981). Examples of benthic environments in the SoG where anthropogenic inputs
causing these conditions may arise or have been recorded include municipal wastewater outfall
receiving environments (Capital Regional District 2003; 2004; 2005 and
www.crd.bc.ca/wastewater/marine/reports.htm; McPherson et al., 2007a, b); log boom areas
(Conlan and Ellis, 1979; Sibert et al., 1979; Sibert and Harpham, 1979; McGreer et al., 1984),
the close vicinity of some fish farms (Brooks, 2001; Burd, 2006; Wright et al., 2007a-e), and
areas subject to pulp and paper mill effluent (www.ec.gc.ca/eem/english/PulpPaper/default.cfm)
These extreme conditions can also occur naturally in stagnant fjord basins (e.g. Saanich Inlet,
Section 1.2).

3.1 Marine Outfalls

Benthic sediment and biological monitoring for the marine receiving environments of the Metro Vancouver (formerly the Greater Vancouver Regional District GVRD) outfalls that discharge into the SoG (Iona and Lions Gate) also encompasses the marine discharge zones of the other three outfalls along the Fraser River (Annacis, Lulu Island and Langley - GVRD 2004). These monitoring programs have essentially provided the bulk of present-day information about benthic infauna and habitats along the southeastern margin of the SoG (see McPherson et al. 2007a, b). The Iona outfall monitoring grid is along the 80 m depth contour (Figure 1) straddling the mouths of the Fraser River. The Lion's Gate monitoring grid encompasses all of the outer Burrard Inlet to 1st Narrows (Figure 1).

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

Harrison et al. (1999), reviewing the heavy metal and organic contamination along the foreshore of the Fraser River, found that most of the contamination in this area came from heavy deposition of Fraser River sediments which had run the gauntlet of contamination sources. However, at the north end of the delta, there was a fairly large historical (1962-1988) wastewater discharge in the near shore. Harrison et al. (1999) showed that in the area of historical wasterwater discharge (which also receives about 15% of the industrial and municipal wastes from the Fraser River), there is evidence of long term recovery in terms of organic loading, as well as primary and secondary production of the benthos. Two moderately abundant invertebrate indicators, the amphipod Corophium salmonis and the bivalve Macoma balthica, were selected for measurements of biomass/production and growth, and were used to demonstrate the recovery from basically azoic conditions (i.e. no life) to background conditions typical for the area. The historical wastewater discharge noted above was replaced in 1988 with the Iona deep-sea outfall, with diffusers which discharge along the slope fronting the Fraser River discharges. The deposition model of Hodgins and Hodgins (2000) for the Iona outfall effluent solids suggests that maximum deposition of outfall particulates occurs between 60-90 m depth along a primarily north and secondarily south gradient away from the outfall. This model provided the basis for a revised monitoring program for the outfall from 2000 onward (2WE Consulting, 1999). The maximum deposition zone corresponds to clear patterns in sediment chemistry and geochemistry, including moderate organic enrichment (Burd, 2003b). The long-term monitoring data for Iona (see McPherson et al., 2007a) clearly show subtle changes in biotic conditions within a 3 km zone north of the outfall, which corresponds to the maximum deposition zone for

outfall particulates (Hodgins and Hodgins, 2000). Within this same area, clearly related to the

outfall, there is low to moderate biotic impoverishment (GVRD, 2004) and a modest
enhancement of polychaete species know to be opportunistic in areas of organic enrichment.
These changes can be explained by increased organic loading alone, with no evidence of biotic
effects related to contaminants (Burd, 2003b). Certain contaminant inputs from the outfall are
discussed in more detail in Johannessen et al. (in press) and Macdonald et al. (in press).
Surrounding the impoverished zone is a region with less deposition of particulates that has no
notable biotic impoverishment and shows enrichment of some taxa. Echinoderms and
crustaceans, the taxa which are most impoverished in the maximum deposition zone, tend to
have enhanced abundance in this enrichment zone (Burd, 2003b; McPherson et al., 2007a).
To the south of the outfall, where no outfall particulates deposition can be detected, a range of
background biotic conditions provides context for the changes found within the two "effect"
zones. Interestingly, however, biotic impoverishment within this background area can be similar
to, or greater than, that found in the maximum deposition zone. This impoverishment does not
co-occur with organic enrichment, or any contaminant loading, but seems, rather, to be
characteristic of on-going and patchy physical disturbance of the sediment surface (Burd, 2003b,
McPherson et al., 2004b).
McPherson et al. (2007a) includes a time-scale comparison of biotic and geochemical conditions
which clearly show that both have remained relatively stable throughout the Iona outfall
monitoring region since 2000, including consistently low total organic carbon levels in sediments
throughout the monitoring grid, along with modest geochemical buildup of sulphides in the
maximum deposition zone. The reason for the uniformly low organic carbon levels is mostly the

high loading of inorganic material from the south arm of the Fraser River, which tends to
continually bury the organic input, keeping the entire system in a relatively steady state.
However, rapid oxidation of carbon at this location (Wright et al., in press) from benthic
organisms may also contribute to the stable sediment conditions. In the maximum deposition
zone, infaunal biomass does not show any clear or consistent depression, but the community is
conspicuously devoid of echinoderms and infaunal amphipods (Burd, 2003b; McPherson et al.,
2007a).
In support of the monitoring program for the receiving environment of the Lions Gate
Wastewater Treatment Plant Outfall located at 1st Narrows (Fig. 1), the Greater Vancouver
Regional District has conducted annual biological monitoring in outer Burrard Inlet since 2002.
Prior to that, historical data from the Inlet had been collected by Environment Canada (c.f. Boyd
et al., 1998, and references therein) and the Department of Fisheries and Oceans (Burd and
Brinkhurst, 1990; Cross and Brinkhurst, 1991; Burd, 1992; Je et al., 2003). Although the earlier
work is not directly comparable to the GVRD monitoring due to differences in sampling
protocols, a comparative assessment of the historical biotic conditions and geochemical sediment
conditions of the outer Inlet was conducted by Burd (2004).
Both the deposition model of Hodgins et al. (2000) for the Lions Gate effluent solids and
analysis of cores taken in 2004 (Burd, 2004) suggest that some material from the outfall is
carried along the north shore of outer Burrard Inlet before settling offshore near the mouth of the
inlet (Fig. 1). The model predicts that the remaining material will go into the inlet, past 1 st

1971	Narrows (Inner Burrard Inlet), under specific tidal conditions, although sediment sampling has
1972	not confirmed this.
1973	
1974	Unlike the receiving environment of the Iona Deep-Sea Outfall, where sediment chemistry and
1975	biota clearly show identifiable changes which can be directly related to the deposition of
1976	particulates from the outfall, no biotic changes which can be related to the discharge from the
1977	Lions Gate Outfall have been detected (McPherson et al., 2007b). This is partially because the
1978	outer Burrard Inlet is very well mixed and flushed (Thomson, 1981), and partially because there
1979	are numerous sources of anthropogenic discharge into the water body which can cause
1980	conflicting signals in sediment chemistry. Beyond First Narrows, the inner Inlet is particularly
1981	prone to the conflicting signals due to the greater intensity and frequency of various urban and
1982	industrial discharges than are found in the outer Inlet (GVRD, 2004). Sediment organic
1983	enrichment accompanied by sporadic elevated levels of typical sewage indicators or tracers (i.e.
1984	acid volatile sulphide, total organic carbon, sediment fecal coliforms, silver, 4-nonylphenol,
1985	coprostanol) do occur along the north shore of the outer inlet (McPherson et al., 2007b), with
1986	these effects decreasing with increasing distance offshore. Biotic changes in these areas have
1987	been noted, but are minor (McPherson et al., 2007b).
1988	
1989	One location in the Burrard Inlet monitoring program, beyond First Narrows (in the inner inlet),
1990	has consistently shown more extreme organic enrichment and biotic impoverishment than any
1991	location in the outer inlet. Despite this, sewage indicators (e.g., silver, 4-nonylphenol and
1992	coprostanol) are not elevated, suggesting that sediment conditions are unlikely caused by the
1993	Lions Gate Outfall. Instead, combined sewer overflows are a potential source of the organic

1994	enrichment which could be related to the biotic changes in the inner harbour (GVRD, 2004),
1995	although multiple discharges in the area make it difficult to determine the source or sources.
1996	
1997	A detailed analysis of sediment and outfall effluent metals data for 2002 and 2003 by Paine
1998	(2003 q.v. GVRD, 2004) suggested that elevated levels of some metals in outer Burrard Inlet are
1999	not likely related to the Lions Gate outfall, and are present at levels and in a form which should
2000	be biologically unavailable. Other metals are present below levels expected to cause any
2001	biological toxicity, based on Canadian Environmental Quality Guidelines (CCME, 1999).
2002	
2003	Although technically not in the SoG, Victoria's Macaulay Point and Clover Point outfalls have
2004	been extensively studied and the long-term data on the benthos provide important context for
2005	similar habitats in the SoG. Also, despite the fact that the depth and current regime trap the
2006	plumes, suggesting that material from these outfalls is not likely to enter the SoG, there are times
2007	when the plumes have been known to surface so that any dissolved organics or contaminants in
2008	the upper water layer could enter through Haro Strait and eventually find their way to sediments
2009	in the SoG (Thomson, 1981) (also see Section 1.2). For that reason, information about the
2010	benthos near these two outfall areas is covered briefly below.
2011	
2012	Victoria's Macaulay Point is an area of sandy substrate and high current that receives only
2013	screened (i.e. primary treatment) wastewater that is discharged at an approximate mean depth of
2014	60-65 m. The Clover Point outfall in Victoria discharges at a similar depth but into a rocky,
2015	cobble environment that is dominated by a horse mussel (Tressus tapyx) community (Capital
2016	Regional District, 2000). Environmental monitoring of the benthic receiving environment at

2017	both of these major Victoria outfalls has been conducted since the early 1970s (Balch et al.,
2018	1973; 1975), with a revision of methods and quality control initiated in 2000
2019	(http://www.crd.bc.ca/es/environmental_programs/wastewater_marine/macaulay/reports.htm).
2020	Numerous reports have been prepared by consultants on the results of this monitoring, along
2021	with annual monitoring reports (Capital Regional District, 2003, 2004, 2005; Paine, Ledge and
2022	Associates, 2004), along with a recent review of the Liquid Waste Management Plan and
2023	seafloor triggers by Stubblefield et al. (2006). Burd (2003c) reviewed the 1994 to 2001 data on
2024	benthic infauna and sediment geochemistry from the Macaulay Point outfall area and reported
2025	that the monitoring data show some faunal effects, but severe biotic degradation is not occurring
2026	in the vicinity of this outfall. Although, based on the available data, it is impossible to determine
2027	what toxic contamination effects may be important to the fauna of the receiving environment, the
2028	patterns of faunal change relative to the outfall strongly suggest that sediment geochemical
2029	changes and particle size are the predominant factors affecting faunal composition (Burd,
2030	2003c). The sampling stations are situated radially around the outfall along a spatial gradient to
2031	800m distant, with diminishing biotic and geochemical impacts to this distance in the E and SE
2032	(Burd, 2003c).
2033	
2034	The biotic monitoring at the Clover Point outfall consists entirely of growth and condition factors
2035	for the dominant species, horse mussels. The hard substrates in this environment do not lend
2036	themselves to sediment sampling. Historically, the mussels within 800 m of the outfall tend to
2037	show a declining gradient of enhanced growth compared with reference locations
2038	(www.crd.bc.ca/wastewater/marine/ reports.htm).

3.2 Ocean Disposal Sites

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

2052

2053

2054

2055

2056

2057

2058

2059

2060

2061

outside the ocean disposal boundaries.

There are 11 designated ocean disposal sites regulated by Environment Canada in the SoG. Locations and annual dumping volumes for these sites are available at the Environment Canada website (http://www.pyr.ec.gc.ca/disposal_at_sea/sitemap_ e.htm). The site also contains links to monitoring reports for all the sites over time. A brief overview of ocean dumping in BC is given in Ellis (1982), but there is almost no biological monitoring data from dumpsites in the SoG, except for the Point Grey dumpsite. Side-scan mosaicing has been proposed as an efficient method of monitoring new debris accumulation and dispersal at ocean disposal sites (Mosher et al., 1997). The Point Grey disposal site, outside Burrard Inlet on the southeast side of the Strait, is the largest multi-user site in BC. This site has been in continuous use since the 1930s, and has been regulated by Environment Canada since 1975. Wilson and McKinnon (2003) reviewed the history, sediment and benthos monitoring data gathered for the Point Grey site from 1975 through 2001. The site is between 230 and 250 m deep, with 80% of the sedimenting material from dumping and most of the remainder from the Fraser River discharge. In the late 1970s there was clear evidence of material from Burrard Inlet dumped outside of, en route to, the disposal site and evidence of this trail was still present in the early 1990s (see Mosher et al., 1997 and www.gsc.nrcan.gc.ca/marine /gbgi/proj_ptgrey_e.php). In addition, detailed investigation of polycyclic aromatic hydrocarbon (PAH) signatures based on area-wide data suggested that recently dumped contaminants from Burrard Inlet were evident at the north end of the Iona outfall monitoring transect (80 m depth) in 2000 (Yunker, 2000; Yunker et al., 2000), well

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

Benthic infaunal surveys were conducted periodically at the Point Grey disposal site (most recently in 1994) but sampling effort and taxonomic work varied considerably (Wilson and McKinnon, 2003). The accumulated material is presently significantly coarser than the surrounding area, probably due to winnowing and transport on the way to the bottom. Despite the limitations to interpretation imposed by taxonomic effort and quality control, and modification of substrates within the dumpsite, Wilson and McKinnon (2003) concluded that the Environment Canada monitoring data on benthic invertebrate biota did not show notable differences from biota found outside the dumpsite; for a guideline, the authors used the range in values expected within reference conditions for the Benthic Response Index (BRI) from the Southern California Coastal Water Research Project (SCCWRP). Unfortunately the BRI is based on local species-specific data, whereas the Point Grey biotic data were for different species identified only to the family level or higher, thus making extrapolation to the BRI problematic. Probably more convincing is the fact that on-going visual surveys (see below) show that the disposal site has historically been dominated by a range of polychaete taxa and had numerous burrowing and near-surface, echinoderms and amphipods, both of which groups are known to be sensitive to contamination and organic enrichment, as well as unusually high sedimentation (Burd, 2003b). At the Point Grey disposal site, ROVs equipped with video and still cameras are used periodically to record images of the disposal site and the surrounding ocean floor (Wilson and McKinnon, 2003). Predetermined track lines plotted across the disposal site are followed by the ROV and continuous images of the ocean bottom are recorded. These visual images aid in the qualitative evaluation of the disposal site environment. ROV surveys show that the dumping of debris (e.g. logs, wire and construction materials) has created a more heterogeneous habitat than

would normally be present at this depth, resulting in an artificially increased biodiversity of hard and soft substrate fauna.

2087

2088

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2085

2086

3. 3 Pulp and Paper Mills

Macdonald et al. (1991) concluded that the pulp and paper mills in the SoG and surrounding fjords were contributing significantly to organic carbon input into the sediments of the Strait. Since then, the draft Pulp and Paper Effluent Regulations (PPER) were promulgated by Environment Canada in 1992, put into effect in 1996 and revised in 2004 (Regulations Amending the Pulp and Paper Effluent Regulations, (RAPPER), in order to reduce and control emissions (http://www.ec.gc.ca/nopp/pandp/en/p2004Letter. cfm). There are 6 operating pulp and paper mills which discharge effluent into marine subtidal habitats in the SoG and which are regulated by Environment Canada under the PPER. The mills in the Strait are shown in Fig. 1 (Crofton, Harmac, Elk Falls, Powell River and two in Howe Sound). Monitoring takes place from 30 m to 135 m depth and all but one of the mills discharge primarily into soft substrates ranging from 98% sand to 98% silt/clay (http://www.ec.gc.ca/EEM/English/PulpPaper /general.cfm). The Elk Falls mill discharges onto hard substrates and the Environmental Effects Monitoring (EEM) program for that mill focuses on invertebrate communities found in intertidal Fucus beds (www.ec.gc.ca/eem/English/PulpPaper/ data/showinfo.cfm?Mill_id=PP1122). The current Environmental Effects Monitoring (EEM) program for the pulp and paper mills has now completed 3 cycles: 1996, 2000 and 2004. Data collection for cycle 4 is complete and

2103

2104

2105

2106

2107

now completed 3 cycles: 1996, 2000 and 2004. Data collection for cycle 4 is complete and reports have been submitted to Environment Canada but are not yet publicly available. The EEM program and technical guidance for monitoring are available at http://www.ec.gc.ca/EEM/

2108 English/PulpPaper/general.cfm, including the national database of benthic infauna and habitat 2109 conditions. 2110 2111 Results from Environment Canada's national synthesis reports available on the website show that 2112 although effluent quality from pulp and paper mills has vastly improved since initiation of the 2113 PPER (following the EEM cycle 1), effects on benthic invertebrates and fish are still observed. 2114 Some pulp and paper mill reports suggest that current effects on marine benthos are still related 2115 to historical deposition and that current inputs are much less of a problem. Aside from organic 2116 enrichment, the accumulation of wood fibre mats, organochlorines and dioxins/furans have been 2117 historical problems. Although the organic contaminants mentioned are now controlled (or banned) substances, their historical presence in these sediments suggests that they are still 2118 2119 cycling through the food chain in the vicinity of pulp and paper mills. 2120 2121 The aforementioned synthesis reports further suggest that while eutrophication of the water 2122 column is the dominant factor affecting freshwater benthos exposed to pulp and paper mill 2123 effluent input, the typical response of biota in marine/estuarine benthic habitats is a decrease in abundance and richness of taxa that is more indicative of toxic, or smothering, effects 2124 2125 (http://www.ec.gc.ca/EEM/English/PulpPaper/general.cfm). Near mill discharges, elevated C/N 2126 ratios (>15) are common while sediment sulphides are not particularly elevated in comparison, 2127 for example, with fish farm sediments (Burd, 2006). However, a re-examination of the EEM 2128 cycle 3 data from the SoG shows no trends in species richness or abundance related to distance 2129 from the discharge, sediment redox, sulphides, TOC or C/N ratio (Burd, unpublished data).

2130	However, there is some indication that taxa number and abundance decline with increasing
2131	depth, as found overall in the SOG data (Burd et al. in press; see Section 2).
2132	
2133	Although the pulp and paper mills in the SoG appear to have no gross impact on subtidal
2134	infaunal benthos, this should not be interpreted to mean that the mills are not affecting the
2135	benthos; for example, quality control has never been standardized for the taxonomy of the pulp
2136	and paper mills marine EEM (technical guidance document
2137	http://www.ec.gc.ca/EEM/English/PulpPaper/general.cfm).
2138	
2139	Environment Canada's EEM program for pulp and paper mills includes one mill site in the SOG
2140	which is predominantly hard substrate and is thus not amenable to the regular infaunal sampling
2141	methods recommended in the technical guidance. Data from the Elk Falls mill includes mixed
2142	studies of Fucus recolonization baskets in some cycles and standard beach quadrat surveys in
2143	others. The recolonization studies show a limited (rapid colonizing) species list of amphipods,
2144	isopods, and nemerteans that is missing the typical hard substrate species such as the molluscs
2145	and polychaetes, and larger predators (http://www.ec.gc.ca/eem/English/PulpPaper/data/
2146	showinfo.cfm?Mill_id=PP1122). The quadrat studies provide a species list much more typical
2147	of Fucus habitats as described in the Shorekeepers lists (http://www.shim.bc.ca/atlases/sk/
2148	main.htm). At present, these studies have not shown any gradient responses in biota to distance
2149	from the discharge. Based on research in the SoG, Bard (1998) describes biotic sensitivities and
2150	a proposed biotic index related to intertidal rocky beach fauna in areas affected by pulp mill
2151	effluent in BC.

High organic loading from pulp mills and log boom areas is relatively refractory due to the slow rate of bacterial and invertebrate breakdown of organics. Therefore, the packing of dense debris typically causes severe sediment deoxygenation without dramatically elevated sulphides in sediments (http://www.ec.gc.ca/eem/english/PulpPaper/default.cfm; Samis et al., 1999). These areas may show a generalized depression of fauna (see Burd et al, in press), but be patchy, depending on deposition characteristics. The benthos may take a long time to recover in sediments with heavy wood-fibre mats due to the reduced and slow biotic activity, and sometimes low penetrability by burrowers.

3. 4 Log Booms

Areas of near-shore log booms are common along the SoG coastline. Log storage activities primarily impact low intertidal and shallow subtidal habitats within estuaries. Impacts include the physical shading of habitat by booms, leading to decreased primary productivity by algae and eelgrass (NEMP, 2002). At low tide, the physical grounding and abrasion by log booms result in compaction of sediments, scouring and physical disruption of habitats, particularly eelgrass beds (NEMP, 2002). Adjacent intertidal areas can be similarly impacted by escaped logs and propeller wash from tow boats can scour and increase the levels of suspended sediment in the water column (NEMP, 2002).

The working of logs against each other within the bundle results in deposition and accumulation of bark and wood debris on bottom sediments. These deposits are relatively refractory and the slow rate of bacterial and invertebrate breakdown can cause long-term stress to the benthic environment as a result of sediment deoxygenation, although sulphide levels are not dramatically

elevated (http://www.ec.gc.ca/eem/english/PulpPaper/default.cfm). General biotic effects may
be similar to those described for pulp and paper receiving environments (Section 3.3), although
the deposition of wood debris tends to be coarser and may be much heavier under log booms.
McGreer et al. (1984) examined the recovery of an intertidal community in an area of the
Nanaimo River estuary from which log booms had been removed. At 13 months after removal,
common macro-invertebrate species were those typical of organic enrichment but the overall
abundance was lower than that of the control area. The reduction in abundance was attributed to
a shallow, but persistent, redox boundary at the log removal site. The effects of wood waste on
near-shore sand beds (4-11 m) and associated fauna were studied by Conlan (1977) and Conlan
and Ellis (1979), who found that deposition of >1 cm of wood debris caused notable faunal
impoverishments, particularly in the suspension feeding fauna. Additional studies have suggested
that wood debris may also inhibit the abundance of some infaunal bivalves (Burd et al., in press;
Kathman et al., 1984; http://www.mareco.org/report/intro.htm). Kathman et al. (1984) examined
the recolonization of settling trays in 15-20 m depth in outer Burrard Inlet, using different
concentrations or wood waste from the Port Mellon pulp mill location in Howe Sound. After 11
weeks, they found that the 20% wood waste trays had a higher species diversity and lower
dominance than found in the 0%, 50% and 100% wood waste trays, whereas abundance was
equally high in the 20% and 100% trays. However, the 100% trays were dominated by
nematodes, typical organic enrichment polychaetes and the wood-burrowing bivalve Bankia
setacea. Other bivalves and polychaetes were abundant in the 0% and 20% trays, but rare in the
50% and 100% trays.

A larger-scale examination of benthic responses to log-boom operations for the north coast of
British Columbia, as well as Esquimalt Harbour (Victoria) is underway as part of a Ph.D. project
(http://www.erf.org/cgi-bin/conference_abstract.pl?conference=erf2003% id+755).

2199

2200

2201

2202

2203

2204

2205

2206

2207

2208

2209

2210

2211

2212

2213

2214

2215

2216

2217

2218

2196

2197

2198

3.5. Mine Tailings and Acid Mine Drainage

Between 1902 and 1974, the Britannia copper/zinc mine discharged 40 million tonnes of tailings into Howe Sound. Tailings were concentrated on the slope within 3 km of Britannia Beach but also covered most of the floor of the Sound's inner basin. During mine operations, subtidal sediments in areas deeper than 30 m had levels of copper and zinc that were considerably elevated above background (Levings and McDaniel, 1973, 1976; McDaniel, 1973), as well as above the current Probable Effects Levels for marine sediments (CCME, 1999). They also found that burial by the Squamish River sediment load and inputs from local creeks had diluted, or covered, the deposited tailings and reduced the metal concentration in surface sediments. Below sill depth (73 m), waters in Howe Sound tend to be seasonally anoxic, limiting not only the mobility of metals from the sediments but also the biodiversity and abundance of benthic fauna, regardless of tailings (Levings et al., 1983). Several studies in the 1970s focused on the effects of deposition of metals and tailings from the active Britannia Mine operation on the macrobenthos (Levings and McDaniel, 1973; McDaniel, 1973; Levings and McDaniel, 1976), but based on more recent studies near Brittania (Ellis and Hoover, 1990) and on long-term recovery of sediments affected by tailings from mines located outside the SoG in British Columbia (Burd et al., 2000b; Burd, 2002), it is assumed that the deep benthos has recovered some 30 years after cessation of tailings deposition. However, it is also clear that considerable acid mine drainage is still leaching out into the near shore area around the historical Britannia

mine. Recent studies confirm impacts on near shore fish and fish habitat (for an overview, see Hagan et al., 2004). In addition, Grout and Levings (2001) examined the effects of acid mine drainage on intertidal mussels in the area and showed that caged and ambient mussels were adversely affected by elevated tissue copper levels to a distance of about 2 km N and S of the discharge creek. In December 2001, the acid mine drainage was diverted to an outfall at 30 m depth into Howe Sound. Zis et al. (2004) looked at the intertidal community recovery at Britannia Beach after diversion, and found that some, but not total recovery was evident in invertebrate species number and abundance, as well as transplanted mussels. The authors concluded that some continued seepage from the old mine was still inhibiting normal growth and survival in the intertidal area. G3 Consulting (2003) provided a report on the shallow subtidal (<30 m depth) biota, sediment metals and organics from the foreshore around the Brittania mine. Levings et al. (2004) describe the toxicity of the acid mine drainage to estuarine organisms from the discharge creek, noting that invertebrate food resources for juvenile salmonids in the intertidal near the drainage creek were adversely affected by the acid mine drainage.

3.6 Aquaculture

In BC, the majority of the finfish aquaculture industry in the inside waters is located north of the SoG; there are only a few salmonid farms at the south end of Johnson Strait (the north end of the SoG) and in some of the contiguous mainland fjords. Where organic deposition is excessive, and fauna have declined, reactive organic detritus may be present in a labile state as a flocculent layer on the sediment surface (Kristensen, 1988). Fish farms provide an example of an organic source with minor copper (antifoulants) and zinc (feed) contaminants (c.f. Brooks 2001). Studies of benthic faunal patterns and recovery at the few marine mine tailings deposition sites,

nowever, suggest that particulate levels of these metals typically found under fish farms do not
seem to have a notable effect on infaunal benthos in the deeper subtidal, despite the fact that
bivalves, in particular, can accumulate metals (Burd et al., 2000b; Burd, 2002). Rather, zinc and
copper levels are typically used as deposition tracers around fish farms (Yeats, 2002).
The organic deposition in the vicinity of fish farms tends to be highly labile, as compared to
wood fibre waste or other organic materials. Hence, the organic material tends to be broken
down relatively quickly (e.g. in comparison to wood fibre debris) and recovery proceeds at a
measurable pace. The effects of this highly labile deposition include sediment de-oxygenation
and hydrogen sulphide accumulation which lead to the enrichment of some taxa such as the
opportunistic polychaete Capitella capitata complex that are tolerant of these conditions and the
impoverishment of sensitive taxa. At fish farms where organic enrichment loads are high and
sediment geochemistry includes low oxygen levels and high sulfide accumulation (i.e. ~6000
μm), tolerant and opportunistic polychaete species tend to dominate on soft substrates and on
hard substrates where sedimentation occurs, whereas most other fauna disappear under these
extreme conditions (Brooks, 2001; Burd, 2006; Hargrave et al., 2008). However, some epifaunal
crustaceans typically found in detritus mats nearshore may thrive in the debris mats under the net
cages (Burd, 2006).
Under more moderate sulphide buildup conditions (1700-3000 μM), a variety of organism types
may be present, but Burd (2006) show that some biotic impoverishments are highly likely, along
with a potential proliferation of opportunistic polychaetes. In particular, echinoderms and
infaunal crustaceans appear to be highly sensitive to organic enrichment conditions in sediments
(Burd, 2006; McPherson et al., 2007a). On hard substrates, some cnidarians (such as <i>Metridium</i>

2263

2264

2265

2266

2267

2268

2269

2270

2271

2272

2273

2274

2275

2276

2277

2278

2279

2280

2281

2282

2283

2284

2285

senile) may be opportunistic under moderate organic enrichment conditions, but echinoderms will still be absent, as will larger sponges (Emmett et al., 2005; 2006; 2007), due primarily to excessive deposition, and/or near-bottom low oxygen conditions. Where organic loading is elevated, but within the assimilative capacity of the sediments, a biotically-enriched community may be present (Burd, 2006; Brooks, 2001). Recent reviews of biotic effects related to fish farms in BC are given in Brooks (2001), Burd (2003a; 2006) and Hargrave et al. (2008). Some important information on general sediment sulphide tolerance of common BC species is available in Brooks (2001). A large number of beach and near-shore shellfish aquaculture sites are located in Baynes Sound on the east coast of Vancouver Island. Carswell et al. (2006) describe an aerial survey method that has been used to show that >20% of the intertidal zone of the sound is occupied by shellfish tenures. A review of the available literature and monitoring data related to potential impacts from shellfish culture for the intertidal areas of Baynes Sound is given in Jamieson et al. (2001). To date, studies show that the benthic impact of deep-water suspended culture of Pacific oysters appears to vary depending on the specifics of the site, including hydrography, bathymetry and natural deposition rates and sediment characteristics (Barnes, 2006). Regardless, data revealed that the benthic invertebrate communities in close proximity to the shellfish farms showed no reduction in either faunal abundance or diversity (Barnes, 2006). In Baynes Sound, an area of the SoG heavily tenured by shellfish leases, Bendell-Young (2006) studied three geographically similar clam farm beach sites, along a farming intensity gradient (fallow, 3 years active, 5 years active). In contrast to the fallow site, the 3 and 5 year active sites had intertidal regions with heavier silt and organic matter, lower species richness and increased domination by bivalves. However, a geographically more diverse study, including a site on the west coast of Vancouver

Island, found that clam density on netted farm sites was significantly greater than on reference sites only in the low intertidal and that this significant increase in total clam density mirrored the increase in 1 species of bivalve, *Venerupis philippinarum*, in this stratum at farm sites (Whiteley and Bendell-Young, 2007). The study also demonstrated that bivalve species composition was not significantly different between farms and reference sites, suggesting that predator nets did not effectively change the structure of the infaunal communities at these sites. Farm sites were more similar to each other as a group than reference sites, however, and the authors suggest that this may lead to a loss of the regional distinctness that was evident among the reference sites (Whiteley and Bendell-Young, 2007).

3.7 Bottom Trawling

In near-shore coastal areas such as the SoG, bottom trawling is likely to result in physical disturbance. Bottom trawling can have devastating effects on bottom infaunal and epifaunal communities in other coastal areas (Watling and Norse, 1998). For example, otter trawling on soft bottoms has been found to significantly reduce the abundance of most invertebrate taxa (Engel and Kvitek, 1998; and other papers in Conservation Biology issue 12: Vol. 6). Effects on the benthos range from crushing, burying and dislocation of fauna, to habitat destruction and resuspension of fine particulates into a turbid boundary layer. Such practices can also damage nursery grounds or bottom fish stock. Various studies report a reduction in organism abundance and species richness ≥50%, and substantial reductions in biomass (for review, see Watling and Norse, 1998). The effects of bottom trawling do not resemble any of the contaminant impacts described in the literature (Burd 2003b; Cook et al., in press), and arguments have been made that certain refugia such as the sponge reefs in the Strait should be protected from bottom

2308

2309

2310

2311

2312

2313

2314

2315

2316

2317

2318

2319

2320

2321

2322

2323

2324

2325

2326

2327

2328

trawling (Conway et al., 2007). Unfortunately, there is virtually no concurrent spatial or temporal information on the combined, or synergistic, biotic effects of contaminant discharges and bottom trawling in the SoG. 3.8 General Contaminants Loadings (non-point source) There are numerous sources of contaminants entering the SoG, particularly originating from, or as a result of, the highly urbanized centers near the BC/Washington border. Aside from localized surveys of sediment contaminant loadings related to specific discharges (see references in above sections 3.1 to 3.7 related to monitoring programs for site-specific discharges), there have been a few broader-scale studies of certain contaminants of concern or tracers of discharge types, focusing on their distributions and budgets (c.f. Macdonald et al., 1991,1992 – Pulp mills; Gordon, 1997 – silver; Shang et al., 1999 – nonylphenols; Yunker et al., 1999 – PAHs; Johannessen et al. 2005a – Mercury; Johannessen et al. in press – PCBs/PBDEs). In addition, the potential for development of bottom water and sediment hypoxia from organic loading have been discussed using organic carbon budgets (Johannessen et al., 2003), and evaluation of sediment organic/oxygen conditions based on redox chemicals in cores (Macdonald et al., in press). Sediment guidelines and all the studies that have contributed to their development (CCME, 1999; BCWQO;http://www.env.gov.bc.ca/wat/wq/BCguidelines/approv wq guide/approved.html) provide some guidance related to possible responses of benthic invertebrate fauna to contaminants of concern. However, field validation of these hypothetical tolerances and responses is lacking for SoG fauna.

4. Conclusions

Although there is considerable descriptive information pertaining to invertebrate benthos (largely
unpublished) of the SoG, quantitative evaluations are much less abundant and patchy spatially
and temporally. Burd et al. (in press) provide a comparative assessment of infaunal biomass,
species richness, and abundance measures which can be reasonably predicted by measurements
of organic quality and flux to sediments in the SoG. Results are also dependent on the source and
relative quantity of inorganic flux, with areas influenced by the Fraser River discharge providing
apparently more productive substrate for macro-invertebrates than marine depositions. With a
broader scale understanding of sediment organic and inorganic sources and fluxes in the SoG, it
may be possible to begin to model and ground-truth subtidal benthic productivity of the SoG.
This would also require a clearer understanding of how the smaller invertebrate groups
(meiofauna) and microfauna respond to sediment organic and inorganic fluxes. The next logical
step would be to interpret sediment productivity in the context of budgets/models of sediment
contaminants, organic inputs and redox conditions for the SoG. In addition to understanding how
benthic organisms may be affected by contaminant and organic loading on a regional scale, the
potential for bio-accumulation and trophic transfer of contaminants of concern needs to be
studied for the bottom-dwelling portion of the subtidal food chain. Predicting the effects of on-
going climate changes will also require an understanding of how the sessile components of the
henthic ecosystem are likely to change in response to major sedimentation shifts or events

5.0 Acknowledgements

As in all reviews, acknowledgements must go primarily to all those researchers that have "gone
before". However, this review would not have been possible without the motivation and
financial support of Metro Vancouver (formerly Greater Vancouver Regional District), through
Dr. Albert van Roodselaar. This work was completed as part of a collaborative research program
between Metro Vancouver, Canadian Department of Fisheries and Oceans and Natural
Resources Canada.

2361 2362	6.0 References
2363	2WE Consulting, 1999. Iona Deep-sea Outfall 1998 Environmental Monitoring Program, Post-
2364	discharge Review, Report for Greater Vancouver Regional District by 2WE Associates
2365	Consulting Ltd., Victoria, B.C., 97 pp.
2366	Albright, L.J., 1983. Influence of river-ocean plumes upon bacterioplankton production of the
2367	Strait of Georgia, British Columbia. Marine Ecology Progress Series 12, 107-113.
2368	Anderson, J.J., Devol, A.H., 1973. Deep water renewal in Saanich Inlet, an intermittently anoxic
2369	basin. Estuarine, Coastal and Shelf Science 1, 1-10.
2370	Archipelago Marine Research Ltd., 2000. Subtidal video (SIMS) survey of the Manley Creek
2371	landfall site at Boatswain Bank, British Columbia. Report to the Georgia Strait Pipeline
2372	Crossing Ltd.
2373	Asmus, H. 1987. Secondary production of an intertidal mussel bed community related to its
2374	storage and turnover compartments. Mar. Ecol. Prog. Ser. 39, 251-256.
2375	BC Ministry of Environment Lands and Parks, 1996. Saanich Inlet Study. Synthesis Report
2376	Summary, 35 pp.
2377	Baba, K., 1983. Spongicoloides hawaiiensis, a new genes of shrimp (Decapoda:Stenopodidea)
2378	from the Hawaiian Islands. Journal of Crustacean Biology 3, 477-481.
2379	Bailey, H.C., McPherson, C.A., Hodgins, D.O., Fanning, L., Paine, M.D., Burd, B.J.,
2380	Macdonald, V., Brooks, G.C., Chen, F., Brand, D., Raverty, S., 2003. Iona Deep-Sea
2381	Outfall, 2001 Environmental Monitoring Program. Final Report, Prepared for the Greater
2382	Vancouver Regional District by EVS Environmental Consultants Ltd., North Vancouver
2383	BC, 344 pp. + appendices.

2384	Balch, N., Brown, D., Pym, R., Marles, E., Ellis, D.V., Littlepage, J., 1975. Monitoring marine
2385	outfalls by using ultraviolet absorbance. Journal of the Pollution Control Federation, 47,
2386	195-202.
2387	Balch, N., Ellis, D.V., Littlepage, J., 1973. Macaulay Point outfall monitoring programme, May
2388	1970 - October 1972, Volume 1 and 2 final report to Capital Regional District, Victoria,
2389	BC by Department of Biology, University of Victoria.
2390	Bard, S.M., 1998. A biological index to predict pulp mill pollution levels. Water Environment
2391	Research 70, 108-122.
2392	Barnes, P.A.G., 1987. Aspects of the Ecology of the Gutless Protobranch Bivalve, <i>Solemya reidi</i> .
2393	University of Victoria, M.Sc. thesis, 435 pp.
2394	Barnes, P.A.G., 2006. Shellfish Culture and Particulate Matter Production and Cycling: A
2395	Literature Review, B.C. Aquaculture Research and Development Committee. Project
2396	AE02.03-02.01, 101 pp.
2397	Barthel, D., 1992. Do hexactinellids structure Antarctic sponge associations? Ophelia 36, 111-
2398	118.
2399	Bell, J.J., Barnes, D.K., 2000a. The distribution and prevalence of sponges in relation to
2400	environmental gradients within a temperate sea lough: vertical cliff surfaces. Diversity
2401	and Distributions 6, 283-303.
2402	Bell, J.J., Barnes, D.K., 2000b. The distribution and prevalence of sponges in relation to
2403	environmental gradients within a temperate sea lough: inclined cliff surfaces. Diversity
2404	and Distributions 6, 305-323.

2405	Bendell-Young, L.I., 2006. Contrasting the community structure and select geochemical
2406	characteristics of three intertidal regions to shellfish farming. Environmental
2407	Conservation 33, 21-27.
2408	Berggren, M., 1993. Spongiocaris hexactinellicola, a new species of stenopodidean shrimp
2409	(Decapoda: Stenopodidae) associated with hexactinellid sponges from Tartar Bank,
2410	Bahamas. Journal of Crustacean Biology 13, 784-792.
2411	Bernard, F.R., 1978. British Columbia Faunistic Survey: Subtidal and Deep-water Megafauna of
2412	the Strait of Georgia. Canadian Fisheries and Marine Services Manuscript Report 1488,
2413	41 pp.
2414	Bett, B.J., Rice, A.L., 1992. The influence of hexactinellid sponge (<i>Pheronema carpenteri</i>)
2415	spicules on the patchy distribution of macrobenthos in the Porcupine Seabight (bathyal
2416	NE Atlantic). Ophelia 36, 217-226.
2417	Boatman, D.C., Murray, J.W., 1982. Modeling exchangeable NH ₄ ⁺ adsorption in marine
2418	sediments: Process and controls of adsorption. Limnology and Oceanography 27, 99-110.
2419	Bornhold, B.D., 1978. Carbon/nitrogen (C/N) ratios in surficial marine sediments of British
2420	Columbia, in: Current Research, Part C, Geological Survey of Canada, Scientific and
2421	Technical Notes, Paper 78-1C, 108-112.
2422	Bornhold, B.D., Harper, J.R., 2002. Pilot Nearshore Habitat Mapping Using Acoustic and Visual
2423	Techniques, Report Prepared for the North Pacific Research Board Anchorage, Alaska,
2424	(Project R0201), 128 pp.
2425	Bornhold, B.D., Ren, P., Prior, D.B., 1994. High-frequency turbitidy currents in British
2426	Columbia fjords. Geo-Marine Letters 14, 238-243.

2427	Bousfield, E.L., 1957. Ecological investigations of shore invertebrates of the Pacific coast of
2428	Canada. National Museum of Canada Bulletin 147, 105-155.
2429	Boyd, J., Baumann, J., Hutton, K., Bertold, S., Moore, B., 1998. Sediment Quality in Burrard
2430	Inlet Using Various Chemical and Biological Benchmarks, Burrard Inlet Environmental
2431	Action Program, Burnaby, British Columbia, 87 pp. + appendices.
2432	Brenchley, G.A., 1982. Mechanisms of spatial competition in marine soft-bottom communities.
2433	Jounal of Experimental Marine Biology and Ecology 60, 17-33.
2434	Brinkhurst, R.O., 1987. Distribution and Abundance of Macrobenthic Fauna from the
2435	Continental Shelf off Southwestern Vancouver Island, British Columbia. Canadian
2436	Technical Report on Hydrography and Ocean Sciences 89, 45 pp.
2437	Brinkhurst, R.O., Casillas, E., Word, J.Q., 1994. Marine benthos of British
2438	Columbia/Washington State boundary waters, in: Wilson, R.C.H., Beamish, R.J.,
2439	Aitkens, F., Bell, J., (Eds.), Review of the Marine Environment and Biota of Strait of
2440	Georgia, Puget Sound and Juan de Fuca Strait. Canadian Technical Report of Fisheries
2441	and Aquatic Sciences 1948, 187-202.
2442	Brooks, K.M., 2001. An evaluation of the relationship between salmon farm biomass, organic
2443	inputs to sediments, physiochemical changes associated with those inputs and the
2444	infaunal response-with emphasis on total sediment sulfides, total volatile solids, and
2445	oxidation reduction potential as surrogate endpoints for biological monitoring, Technical
2446	Advisory Group, Ministry of Environment, Lands, and Parks, Port Townsend,
2447	Washington, 172 pp. + appendices.

2448	Bruce, A.J., Baba, K., 1973. Spongiocaris, a new genus of stenopodidean shrimp from New
2449	Zealand and South Africa waters, with a description of two new species (Decapoda:
2450	Nutantia, Stenopodidea). Crustaceana (Leiden) 25, 153-170.
2451	Burd, B.J., 1985. Respiration of a low oxygen tolerant galatheid crab, Munida quadrispina
2452	(Benedict, 1902). Canadian Journal of Zoology 63, 2538-2542.
2453	Burd, B.J., 1988. Comparative gill characteristics of Munida quadrispina (Decapods,
2454	Galatheidae) from different habitat oxygen conditions. Canadian Journal of Zoology 66,
2455	2320-2323.
2456	Burd, B.J., 1992. Qualitative and quantitative studies of benthic marine infaunal communities in
2457	British Columbia coastal waters, University of Victoria, Ph.D thesis., 375 pp.
2458	Burd, B.J., 1997. Part D: Waste Discharges Discussion Paper. Salmon Aquaculture Review,
2459	Technical Advisory Team Discussion Papers, B.C. Environmental Assessment Office,
2460	Victoria, B.C., 3:D1-D118.
2461	Burd, B.J., 2000. Ecological Effects and Indicators Analysis for the IONA Receiving
2462	Environment, in: Greater Vancouver Regional District, (Ed.), Development of a
2463	Receiving Environment Monitoring Approach to Liquid Waste Management: Progress
2464	Workshop 2, Burnaby, B.C., 48 pp.
2465	Burd, B.J., 2002. Evaluation of mine tailings effects on a benthic marine infaunal community
2466	over 29 years. Marine Environmental Research, 53 481-519.
2467	Burd, B.J., 2003a. Review and Prioritization of Benthic Invertebrate Indicator Species, Species
2468	Assemblages, and Chemical Characteristics that Could be Used in Assessing Efffects of
2469	Marine Finfish Farms on Fish Habitat, Report to the Department of Fisheries and Oceans,
2470	Pacific Region, 59 pp.

2471	Burd, B.J., 2003b. Ecological Significance of IONA 2000-2002 Monitoring Results for Benthic
2472	Infaunal Communities, in: Greater Vancouver Regional District, 2004. Greater
2473	Vancouver Regional District.Cautions, Warnings & Triggers: A Process for Protection of
2474	the Receiving Environment, Appendices: Technical Reports and Monitoring Programs.
2475	Burd, B.J., 2003c. Ecological Effects Related to the Outfall Particulates Discharge Determined
2476	from the Macaulay Point Monitoring Program 1994-2001, Report to Capital Regional
2477	District, Victoria, British Columbia.
2478	Burd, B.J., 2004. Comparative Assessment of Biological and Related Sediment Factors for Outer
2479	Burrard Inlet: Historical and Current Monitoring Data: Ambient Monitoring Data; Iona
2480	Monitoring Data, Prepared for the Greater Vancouver Regional District, 83 pp.
2481	Burd, B. J., 2006. Analysis of Historic Benthic Biological Data to Determine Validity of the
2482	Ecological Threshold Concept for Soft Substrate Impacts Related to Coastal BC Fish
2483	Farm Discharges. Report to BC Ministry of Environment, December 6, 2006, 62 pp.
2484	Burd, B.J., Brinkhurst, R.O., 1984. Distribution of the galatheid crab, Munida quadrispina
2485	(Benedict 1902) in relation to oxygen concentrations in British Columbia fjords. Journal
2486	of Experimental Marine Biology and Ecology 81, 1-20.
2487	Burd, B.J., Brinkhurst, R.O., 1987. Macrobenthic infauna from Hecate Strait, B.C. Canadian
2488	Technical Report of Hydrography and Ocean Sciences 88, 123pp.
2489	Burd, B.J., Brinkhurst, R.O., 1990. Vancouver Harbour and Burrard Inlet Benthic Infaunal
2490	Sampling Program, October 1987. Canadian Technical Report of Hydrography and
2491	Ocean Sciences 122, 49 pp.
2492	Burd, B.J., Brinkhurst, R.O., 1992. Benthic Infaunal Surveys of British Columbia Fjords, 1988 to
2493	1990. Canadian Data Report of Hydrography and Ocean Sciences 114, 37 pp.

2494	Burd, B.J., Glaholt, R., 2000. Survey of benthic infauna at the Manley Creek landfall site at
2495	Boatswain Bank, British Columbia. Ecostat Research Ltd. and Tera Environmental
2496	Consultatns (Alta) Ltd. Report to the GSX Pipeline Crossing Project.
2497	Burd, B.J., Glaholt, R., Macdonald, V., 2000a. Reconnaissance Level Baseline Survey of
2498	Benthic Infaunal communities at Ecological Reserve 67 and Adjacent Satellite Channel,
2499	June 4, 2000. Georgia Strait Crossing Pipeline Ltd., 14 pp. + appendices.
2500	Burd, B.J., Macdonald, R.W., Boyd, J., 2000b. Punctuated recovery of sediments and benthic
2501	infauna: a 19-year study of tailings deposition in a British Columbia fjord. Marine
2502	Environmental Research 49, 145-175.
2503	Burd, B.J., Macdonald, R.W., Johannessen, S.C., Hill, P.R., van Roodselaar, A., In Press. A.
2504	Responses of subtidal benthos of the Strait of Georgia to ambient sediment conditions
2505	and natural and anthropogenic depositions. Marine Environmental Research,
2506	Burd, B.J., Moore, D., Brinkhurst, R.O., 1987. Distribution and Abundance of Macrobenthic
2507	Fauna from Boundary and Mud Bays near the British Columbia/U.S. Border. Canadian
2508	Technical Report of Hydrography and Ocean Sciences 84, 1-34.
2509	Burgess, R.M., 2000. Characterising and identifying toxicants in marine water: a review of
2510	marine toxicity identification evaluations (TIEs). International Journal of Environment
2511	and Pollution 13, 2-33.
2512	Canadian Department of Fisheries and Oceans, 1999a. Manila Clam, DFO Science Stock Status
2513	Report, C6-03.
2514	Canadian Department of Fisheries and Oceans, 1999b. Native Littleneck Clam, DFO Science
2515	Stock Status Report, C6-02.

2516	Canadian Department of Fisheries and Oceans, 2000. Geoduck Clam, DFO Science Stock Status
2517	Report, C6-05.
2518	Canadian Department of Fisheries and Oceans, 2007. Pacific Region, Intergrated Fisheries
2519	Management Plans, Intertidal Clams, January 1, 2007 to December 31, 2009, Fisheries
2520	and Oceans Canada, Nanaimo, BC. 71 pp.
2521	Capital Regional District, 2000. Core Area Liquid Waste Management Plan, CRD, Victoria,
2522	British Columbia, 104 pp. + appendices.
2523	Capital Regional District, 2003. Macaulay and Clover Point Wastewater and Marine
2524	Environment Program 2002 Annual Report, Capital Regional District, Environmental
2525	Services Department, Victoria, B.C., 63 pp. + appendices.
2526	Capital Regional District, 2004. Macaulay and Clover Point Wastewater and Marine
2527	Environment Program 2003 Annual Report, Capital Regional District, Environmental
2528	Services Department, Victoria, B.C., 93 pp. + appendices.
2529	Capital Regional District, 2005. Macaulay and Clover Point Wastewater and Marine
2530	Environment Program 2004 Annual Report, Capital Regional District, Environmental
2531	Services Department, Victoria, B.C., 127 pp. + appendices.
2532	Carefoot, T., 1977. Pacific Seashores: A guide to intertidal ecology. University of Washington
2533	Press, Seattle, WA., 208 pp.
2534	Carswell, B., Cheesman, S., Anderson, J., 2006. The use of spatial analysis for environmental
2535	assessment of shellfish aquaculture in Baynes Sound, Vanocuver Island, British
2536	Columbia, Canada. Aquaculture 253, 408-414.

2537	CCME, (Canadian Council of Ministers for the Environment) 1999. Protocol for the Derivation
2538	of Canadian Sediment Quality Guidelines for the Protection of Aquatic Life, Canadian
2539	Council of Ministers of the Environment, Ottawa, Ontario. 35 pp. + summary tables.
2540	Conlan, K.E., 1977. The effects of wood deposition on from a coastal log handling operation on
2541	the benthos of a shallow sand bed in Saanich Inlet, British Columbia, University of
2542	Victoria, M.Sc. thesis, 203 pp.
2543	Conlan, K.E., Ellis, D.V., 1979. Effects of wood waste on sand-bed benthos. Marine Pollution
2544	Bulletin, 10 262-267.
2545	Conway, K.W., 1999. Hexactinellid Sponge Reefs on the British Columbia Shelf: Geological
2546	and Biological Structure with a Perspective on Their Role in the Shelf Ecosystem.
2547	Canadian Stock Assessment Secretariat Research Document 99/192, 21 pp.
2548	Conway, K.W., Barrie, J.V., Hill, P.R., Austin, W.C., Pickard, K., 2007. Mapping sensitive
2549	benthic habitats in the Strait of Georgia, coastal British Columbia: Deep-water Sponge
2550	and Coral Reefs, in: Current Research, Geological Survey of Canada, 2007-A2, 6 pp.
2551	Conway, K.W., Krautter, M., Barrie, J.V., Neuweiler, M., 2001. Hexactinellid sponge reefs on
2552	the Canadian continental shelf: A unique "living Fossil". Geoscience Canada 28, 71-78.
2553	Cook, S., Conway, K.W., Burd, B. In press. Status of the glass sponge reefs in the Georgia
2554	Basin, Marine Environmental Research.
2555	CORI (Coastal Ocean and Resources Inc), 2002. Lions Gate ROV far-field imaging survey.
2556	Report prepared for the Greater Vancouver Regional District, Burnaby, B.C., 30 pp. +
2557	appendices.

2558	Coull, B.C., Bell, S.S., 1979. Perspectives in marine meiofauna ecology, in: Livingston, R.J.,
2559	(Ed.), Ecological Processes in Coastal Marine Systems, New York: Plenum Press, pp.
2560	189-216.
2561	Crean, P.B., Murty, T.S. and Stronach, J.A., 1988. Mathematical modelling of tides and estuarine
2562	circulation: the coastal seas of southern British Columbia and Washington State.
2563	Heidelberg: Springer Verlag, 471 pp.
2564	Cross, S.F., 1990. Benthic impacts of salmon farming in British Columbia, report prepared for
2565	the Ministry of the Environment, Water Management Branch, Government of British
2566	Columbia, 78 pp.
2567	Cross, S.F., Brinkhurst, R.O., 1991. Spatial distribution of macrobenthos infauna in Burrard
2568	Inlet: November, 1989. Canadian Data Report of Hydrography and Ocean Sciences 92,
2569	40 pp.
2570	
2571	Cross, S.F., Mehlenbacher, N., Lipovsky, S., Williams, A., 2005. Biological Monitoring of
2572	Salmon Aquaculture Benthic Impacts - Methods Review and Options Analysis, Report to
2573	the British Columbia Aquaculture Research and Development Committee, 123 pp. +
2574	appendices.
2575	Davenne, E., Masson, D. 2001. Water properties in the Straits of Georgia and Juan de Fuca,
2576	Fisheries and Oceans Canada, www-sci.pac.dfo-
2577	mpo.gc.ca/osap/projects/straitofgeorgia/JdFG_e.pdf.
2578	Dayton, P.K., 1971. Competition, disturbance, and community organization: the provision and
2579	subsequent utilization of space in a rocky intertidal community. Ecological Monographs
2580	41, 351-389.

2381	de Brouwer, J.F.C., Wolfstein, K., Ruddy, G.K., Jones, 1.E.R., Stal, L.J., 2005. Biogenic
2582	stabilization of intertidal sediments: The importance of extracellular polymeric
2583	substances produced by benthic diatoms. Microbial Ecology 49, 501-512.
2584	De Robertis, A., Eiane, K., Rau, G.H., 2001. Eat and run: anoxic feeding and subsequent aerobic
2585	recovery by Orchomene obtusus in Saanich Inlet, British Columbia, Canada. Marine
2586	Ecology Progress Series 219, 221-227.
2587	Decho, A.W., 2000. Microbial biofilms in intertidal systems: An overview. Continental Shelf
2588	Research 20, 1257-1273.
2589	Denny, M.W., Daniel, T.L. and Koehl, M.A.R., 1985. Mechanical limits to size in wave swept
2590	organisms. Ecological Monographs 55, 69-102.
2591	Duggins, D.O., 1981. Sea urchins and kelp: The effects of short term changes in urchin diet.
2592	Limnology and Oceanography 26, 391-394.
2593	Dumbauld, B.R., Armstrong, D.A., McDonald, T.L., 1993. Use of oyster shell to enhance
2594	intertial habitat and mitigate loss of Dungeness crab (Cancer magister) caused by
2595	dredging. Canadian Journal of Fisheries and Aquatic Sciences 50, 381-390.
2596	Dunn, R., Mullineaux, L. S., Mills, S.W., 1999. Resuspension of postlarval soft-shell clams Mya
2597	arenaria through disturbance by the mud snail Ilyanassa obsolete. Marine Ecology
2598	Progress Series 180, 223-232.
2599	Ellis, D.V., 1966. Aerial photography from helicopter as a technique for intertidal surveys.
2600	Limnology and Oceanography 11, 299-301.
2601	Ellis, D.V., 1967a. Quantitative Benthic Investigations. I. Satellite Channel biomass summaries
2602	and major taxon rank orders, February 1965-May 1967. Fisheries Research Board of
2603	Canada Technical Report 25, 49 pp.

2604	Ellis, D.V., 1967b. Quantitative benthic investigations. II. Satellite Channel species data,
2605	February 1965-May 1967. Fisheries Research Board of Canada Technical Report 35, 170
2606	pp.
2607	Ellis, D.V., 1968a. Quantitative Benthic Investigations. III. Locality and environmental data for
2608	selected stations (mainly from Satellite Channel, Straits of Georgia and adjacent inlets),
2609	February 1965-December 1967. Fisheries Research Board of Canada Technical Report
2610	59, 61 pp. + figures and appendices.
2611	Ellis, D.V., 1968b. Quantiative benthic investigations. IV. Biomass summaries and major taxon
2612	rank orders for selected stations (mainly Straits of Georgia and adjacent inlets), May
2613	1965-December 1967. Fisheries Research Board of Canada Technical Report 60, 91 pp.
2614	Ellis, D.V., 1968c. Quantitative Benthic Investigations. V. Species data from selected stations
2615	(Straits of Georgia and adjacent inlets), May 1965-May 1966. Fisheries Research Board
2616	of Canada Technical Report 73, 307 pp.
2617	Ellis, D.V., 1970. Ecologically significant species in coastal marine sediments in southern British
2618	Columbia. Syensis 2, 171-182.
2619	Ellis, D.V., 1971. A review of marine infaunal community studies in the Strait of Georgia and
2620	adjacent inlets. Syesis, 4, 3-9.
2621	Ellis, D.V., 1982. Ocean disposal in British Columbia. Oceans 14, 1101-1106.
2622	Ellis, D.V., 2002. Underwater biodiversity surveys and biological colonization of the waste
2623	dump shoreline, (In) Poling, G.W., Ellis, D.V., Murray, J.W., Parsons, T.R. and Pelletier,
2624	C.A. Underwater Tailing Placement at Island Copper Mine. Society for Mining,
2625	Metallurgy and Exploration, USA, pp 137-146.

2626	Ellis, D.V., 2003. Rocky shore intertidal zonation as a means of monitoring and assessing
2627	shoreline biodiversity recovery. Marine Pollution Bulletin, 46, 305-307.
2628	Ellis, D.V., Hoover, P.M., 1990. Benthos on tailings beds from an abandoned coastal mine.
2629	Marine Pollution Bulletin 21, 477-480.
2630	Emerson, S., Hedges, J.I., 2003. Sediment diagenesis and benthic flux, in: Elderfield, H., (Ed.),
2631	The Oceans and Marine Geochemistry, Oxford: Elsevier-Pergamon, pp. 293-230.
2632	Emmett, B., Bornhold, B.C., Burd, B., 2005. Evaluation of Video and Non-video, Hard Substrate
2633	Seabed Monitoring Techniques, Prepared for the B.C. Aquaculture Research and
2634	Development Committee, B.C. Innovation Council, 78 pp.
2635	Emmett, B., Thuringer, P., Cook, S. 2006. The development of ROV video survey and data
2636	classification protocols for monitoring hard seabed substrates, Canadian Science
2637	Advisory Secretariat Working Paper I2006-04, Fisheries and Oceans Canada.
2638	Emmett, B., Thuringer, P., Cook, S., Burd, B., 2007. Evaluation of hard seabed monitoring
2639	techniques: Development of video survey and data classification protocols: Phase 2,
2640	report prepared for the Aqua E-Fund, Project AE 03.04-02.02 by Archipelago Marine
2641	Research, 70 pp. + appendices.
2642	Engel, J., Kvitek, R., 1998. Effects of otter trawling on a benthic community in Monterey Bay
2643	national marine sanctuary. Conservation Biology 12, 1204-1214.
2644	England, L.A., Thomson, R.E., Foreman, M.G.G., 1996. Estimates of seasonal flushing times for
2645	the Southern Strait of Georgia. Canadian Technical Report of Hydrography and Ocean
2646	Sciences 147, 24 pp.
2647	Farrow, G.E., Syvitski, J.P.M., Tunnicliffe, V.J., 1983. Suspended particulate loading on the
2648	macrobenthos in a high turbid fjord: Knight Inlet, British Columbia. Canadian Journal of
2649	Fisheries and Aquatic Sciences 40(Supplement 1), 273-288.

2650	Fonseca, M.S., Fisher, J.S., 1986. A comparison of canopy friction and sediment movements
2651	between four species of seagrass with reference to their ecology and restoration. Marine
2652	Ecology Progress Series 29, 15-22.
2653	Foreman, M.G.G., Sutherland, G., Cummings, P.F., 2004. M2 tidal dissipation around
2654	Vancouver Island: An inverse approach. Continental Shelf Research 24, 2167-2185.
2655	Foreman, M.G.G., Walters, R.A., Henry, R.F., Keller, C.P., Dolling, A.G., 1995. A tidal model
2656	for eastern Juan de Fuca Strait and the southern Strait of Georgia. Journal of Geophysical
2657	Research C1-100, 721-740.
2658	Freeland, H.J., Farmer, D.M., 1980. Circulation and energetics of a deep, strongly stratified inlet
2659	Canadian Journal of Fisheries and Aquatic Sciences 37, 1398-1410.
2660	Frith, H.R., Searing, G., Wainwright, P., 1994. Methodology for a BC Shoreline biotic mapping
2661	system, Land Use Coordination Office, Government of British Columbia, Victoria, B.C.
2662	G3 Consulting, 2003. Britannia Beach subtidal sampling programs: Final report, prepared for
2663	Environment Canada, 62 pp.
2664	Gargett, A.E., Stucchi, D., Whitney, F., 2003. Physical processes associated with high primary
2665	production in Saanich Inlet, British Columbia. Estuarine, Coastal and Shelf Science 56,
2666	1141-1156.
2667	Gerlach, S.A., Hahn, A.E., Schrage, M., 1985. Size spectra of benthic biomass and metabolism.
2668	Marine Ecology Progress Series 26, 161-173.
2669	Gillespie, G.E., Bourne, N.F., 1998. Exploratory intertidal clam surveys in British Columbia-
2670	1997. Canadian Manuscript Report of Fisheries and Aquatic Sciences 2465, 43 pp.
2671	Glaholt, R., Burd, B., Haight, R., 2002. Preliminary report on the environmental effects of a
2672	marine pipeline on nearby soft bottom benthic infaunal communities, Bazan Bay, British

2673	Columbia, prepared for Georgia Strait Crossing Pipeline Limited by Tera Environmental
2674	Services, Ecostat Research Ltd., and Vacilador Productions Ltd., 21 pp. + appendices.
2675	Gordon, K., 1997. Sedimentary tracers of sewage inputs to the southern Strait of Georgia.
2676	University of British Columbia, M.Sc. thesis, 217 pp.
2677	Golder Associates Ltd., 2005. Potential environmental effects from the Macaulay and Clover
2678	Point Outfalls and review of the Wastewater and Marine Environment Program. Report
2679	prepared for the Capital Regional District, Victoria, BC, Canada. December 2005
2680	Goldstein, B.A., Perkins-Visser, E., Wolcott, T.G., Wolcott, D.L., 1996. Nursery role of
2681	seagrass beds: enhanced growth of juvenile blue crabs (Callinectes sapidus Rathbun). J.
2682	Exp. Mar. Biol. Ecol. 198: 155-173.
2683	Griffin, D.A., LeBlonde, P.H., 1990. Estuary/ocean exchange controlled by spring-neap tidal
2684	mixing. Estuarine Costal and Shelf Science 30, 275-297.
2685	Grout, J.A., Levings, C.D., 2001. Effects of acid mine drainage from an abandoned copper mine,
2686	Britannica Mines, Howe Sound, British Columbia, Canada on transplanted blue mussels
2687	(Mytilus edulis). Marine Environmental Research 51, 265-288.
2688	Gucluer, S.M., Gross, M.G., 1964. Recent marine sediments in Saanich Inlet, a stagnant marine
2689	basin. Limnology and Oceanography 9, 359-375.
2690	GVRD, 2004. Greater Vancouver Regional District cautions, warnings, and triggers: A process
2691	for protection of the receiving environment, Prepared for the Ministry of Environment
2692	Land and Air Protection, Greater Vancouver Regional District, Burnaby, B.C., 170 pp. +
2693	appendices.

2694	Hagan, M., McCandless, R., More, B., Colodey, A., 2004. Nearshore contaminated sediment
2695	investigations at Britannia Beach, British Columbia, Environment Canada Pacific and
2696	Yukon Regional Program Report, 03-06, 62.
2697	Haigh, R., Taylor, F.J.R., 1991. Mosaicism of microplankton communities in the northern Strait
2698	of Georgia, British Columbia. Marine Biology 110, 301-314.
2699	Haigh, R., Taylor, F.J.R., Sutherland, T.F., 1992. Phytoplankton ecology of Sechelt Inlet, a fjord
2700	system on the British Columbia coast. I. General features of the nano- and microplankton.
2701	Marine Ecology Progress Series 89, 117-134.
2702	Hannides, A.K., Dunn, S.M., Aller, R.C., 2005. Diffusion of organic and inorganic solutes
2703	through macrofaunal mucus secretions and tube linings in sediments. Journal of Marine
2704	Research 63, 957-981.
2705	Harbo, R.M., Marcus, K., Boxwell, T., 1997. Intertidal clam resources (Manila, Littleneck and
2706	Butter Clam). Volume II: The southern inside waters of Vancouver Island and the British
2707	Columbia mainland, 16 pp. + maps.
2708	Hargrave, B.T. Holmer, M., Newcombe, C.P., 2008. Towards a classification of organic
2709	enrichment in marine sediments based on biogeochemical indicators. Marine Pollution
2710	Bulletin, 56, 810-824.
2711	Harper, J.R., 1995. Physical processes overview for the west coast of Vancouver Island, report to
2712	the Land Use Coordination Office, Victoria, Government of British Columbia.
2713	Harper, J.R., Christian, J., Cross, W.E., Frith, R., Searing, G., Thompson, D., 1993a. A
2714	classification of the marine regions of Canada, Environment Canada, Vancouver, B.C.
2715	Harper, J.R., Peters, S., Booth, J., Dickins, D.F., Morris, M. 1993b. Coastal information resource
2716	inventory, prepared for the Resources Inventory Committee, Province of British

2717	Columbia., Victoria, B.C., 81 pp. Available electronically at:
2718	http://www.ilmb.gov.bc.ca/risc/o_docs/coastal/cir/assets/coastal.pdf
2719	Harrison, P.J., 1981. The biological determinants of the structure of harpacticoid copepod
2720	communities on an estuarine intertidal flat (Fraser River Delta, B.C.), University of
2721	British Columbia, Ph.D. thesis, 455 pp.
2722	Harrison, P.J., Fulton, J.D., Taylor, F.J.R., Parsons, T.R., 1983. Review of the biological
2723	oceanography of the Strait of Georgia: pelagic environment. Canadian Journal of
2724	Fisheries and Aquatic Sciences 40, 1064-1094.
2725	Harrison, P.J., Yin, K., 1998. Ecosystem delineation in the Georgia Basin based on nutrients,
2726	chlorophyll, phytoplankton species and primary production, in: Levings, C.D., Aitkens,
2727	F., (Eds.), Approaches to Marine Ecosystem Delineation in the Strait of Georgia:
2728	Proceedings of a D.F.O. workshop, Sidney, B.C., 4-5 November, 1997, Canadian
2729	Technical Report of Fisheries and Aquatic Sciences 2247, 124-134.
2730	Harrison, P.J., Yin, K., Ross, L., Arvai, J., Gordon, K., Bendell-Young, L.I., Thomas, C., 1999.
2731	The delta foreshore ecosystem: past present status of geochemistry, benthic community
2732	production and shorebird utilization after sewage diversion, in: Gray, C., Tuominen, T.,
2733	(Eds.), Health of the Fraser River Aquatic Ecosystem, Environment Canada, Vancouver
2734	B.C., pp. 189-210.
2735	Hart, B.S., Hamilton, T.S., Barrie, J.V., 1998. Sedimentation rates and patterns on a deep-water
2736	delta (Fraser Delta, Canada) integration of high-resolution seismic stratigraphy, core
2737	lithofacies, and ¹³⁷ Cs fallout stratigraphy. Journal of Sedimentary Research 68, 556-568

2738	Hayashi, K.I., Ogawa, Y., 1987. Spongicola levigata sp. nov., a new shrimp associated with a
2739	hexactinellid sponge from the East China Sea (Decapoda, Stenopodidae). Zoological
2740	Science (Tokyo) 4, 367-373.
2741	Heck, K.J., Able, K., Fahay, M., Roman, C., 1989. Fishes and decapod crustaceans of Cape Cod
2742	eelgrass meadows: Species composition, seasonal abundance patterns and comparison
2743	with unvegetated substrates. Estuaries 12, 59-65.
2744	Heck, K.L., Hays, G., Orth, R.J., 2003. Critical evaluation of the nursery role hypothesis for
2745	seagrass meadows. Mar. Ecol. Prog. Ser. 253: 123-136.
2746	Hewitt, J.E., Pridmore, D., Thrush, S.F. and Cummings, V.J., 1997. Assessing the Short-Term
2747	Stability of Spatial Patterns of Macrobenthos in a Dynamic Estuarine System. Limnology
2748	and Oceanography 42, 282-288.
2749	Hickin, E.J., 1989. Contemporary Squamish River sediment flux to Howe Sound. Canadian
2750	Journal of Earth Sciences, 26, 1953-1963.
2751	Hickin, E.J., 1992. An inventory of research conducted in Squamish Basin: Proceedings of the
2752	Howe Sound environmental workshop (September 30-October 3, 1991, Bowen Island,
2753	B.C.). Canadian Technical Report of Fisheries and Aquatic Sciences 1879, 43-47.
2754	Hill, P.R., Conway K., Lintern, G.D., Meulé, S., Picard, K., Barrie, J.V. In press. Sedimentary
2755	processes and sediment dispersal in the southern Strait of Georgia, BC, Canada. Marine
2756	Environmental Research.
2757	Hodgins, D.O., Hodgins, S.L.M., 2000. A Re-evaluation of Iona effluent solids deposition based
2758	on sediment grain size characteristics, in: Greater Vancouver Regional District, (Ed.),
2759	Development of a Receiving Environment Monitoring Approach to Liquid Waste
2760	Management. Progress Workshop 2 December 6, 2000, Support Material Part 2 of 3 Iona

2/61	wwith Receiving Environment, Draft Technical Report, GVRD, Burnaby, B.C., pp. 1.1
2762	-1.24.
2763	Hodgins, D.O., Chapman, P.M., Bailey, H.C., 2000. Lions Gate wastewater treatment plant
2764	monitoring program, proposed Cycle 1: Environmental monitoring program, Greater
2765	Vancouver Regional District, Vancouver, BC, Draft Report, 77 pp.
2766	Holte, B., Gulliksen, B., 1998. Common macrofaunal dominant species in the sediments of some
2767	north Norwegian and Svalbard glacial fjords. Polar Biology 19, 375-382.
2768	Hoos, L.M., Vold, C.L., 1975. The Squamish River Estuary: Status of environmental knowledge
2769	to 1974, Environment Canada Special Estuary Series Report 2, 361 pp.
2770	Hoskins, D.L., Stancyk, S.E., Decho, A.W., 2003. Utilization of algal and baterial extracellular
2771	polymeric secretions (EPS) by the deposit-feeding brittlestar Amphiopholis gracillima
2772	(Echinodermata). Marine Ecology Progress Series 247, 93-101.
2773	Howes, D.E., Harper, J.R., Owens, E., 1994. British Columbia physical shore-zone, British
2774	Columbia Resource Inventory Committee, Victoria, B.C., 84 pp.
2775	Howes, D.E., Wainwright, P., Haggarty, J., Harper, J.R., Owens, E., Reimer, D., Summers, K.,
2776	Cooper, J., Berg, L., Baird, R., 1993. Coastal resource and oil spill atlas for the southern
2777	Strait of Georgia, B.C. Ministry of the Environment, Lands and Parks, Environmental
2778	Emergencies Coordination Office, Victoria, B.C., 317 pp.
2779	Howes, D.E., Zacharias, M.A., Harper, J.R., 1996. The Marine ecoregions of British Columbia,
2780	The Land Use Coordination Office, Government of British Columbia, Victoria, B.C.
2781	Huggett, W.S., Thomson, R.E., Woodward, M.J., Douglas, A.N., 1980. Data record of current
2782	observations, Vol. VII Johnstone Strait, 1976, 1977, 1978, Institute of Ocean Sciences,
2783	Sidney, B.C., 288 pp.

2784	Hunt, H.L., Mullineaux, L.S., 2002. The Roles of Predation and Postlarval Transport in
2785	Recruitment of the Soft Shell Clam (Mya arenaria). Limnology and Oceanography 47,
2786	151-164.
2787	Jamieson, G.S., 1988. Vertical distribution and mass mortality of prawns, <i>Pandalus platyceros</i> ,
2788	in Saanich Inlet. Fishery Bulletin 86, 601-608.
2789	Jamieson, G.S., Chew, L., Gillespie, L., Robinson, g., Bendell-Young, L., Heath, W., Bravender,
2790	B., Tompkins, A., Nishimura, D., Doucett, P., 2001. Phase 0 review of the environmental
2791	impacts of intertidal shellfish aquaculture in Baynes Sound. Canadian Science Advisory
2792	Secretariat Research Document 2001/125. URL: http://www.dfo-
2793	mpo.gc.ca/csas/Csas/publications/ResDocs-DocRech/2001/2001_125_e.htm
2794	Jamieson, G.S., Levings, C.D., Mason, B.C. and Smiley, B.D., 1999. Shorekeepers' guide for
2795	monitoring Intertidal habitats in Canada's Pacific waters, Fisheries and Oceans Canada,
2796	Sidney, BC, Modules 1, 2, and 3.
2797	Je, JG., Belan, T., Levings, C., Koo, B.J., 2003. Changes in benthic communities along a
2798	presumed pollution gradient in Vancouver Harbour. Marine Environmental Research 57,
2799	121-135.
2800	Johannessen, S.C., Macdonald, R.W., Eek, K.M., 2005a. Historical trends in mercury
2801	sedimentation and mixing in the Strait of Georgia, Canada. Environmental Science &
2802	Technology 39, 4361-4368.
2803	Johannessen, S.C., Macdonald, R.W., Paton, D.W., 2003. A sediment and organic carbon budget
2804	for the greater Strait of Georgia. Estuarine, Coastal and Shelf Science 56, 845-860.

2805	Johannessen, S.C., Macdonald, R.W., Wright, C.A., Burd, B., Shaw, D.P., van Roodselaar, A., In
2806	Press. Joined by geochemistry, divided by history: PCBs and PBDEs in the Strait of
2807	Georgia sediments. Marine Environmental Research.
2808	Johannessen, S.C., Masson, D., Macdonald, R.W., 2006. Distribution and cycling of suspended
2809	particles inferred from transmissivity in the Strait of Georgia, Haro Strait and Juan de
2810	Fuca Strait. Atmosphere-Oceans 44, 17-27.
2811	Johannessen, S.C., O'Brien, M.C., Denman, K.L., Macdonald, R.W., 2005b. Seasonal and spatial
2812	variations in the source and transport of sinking particles in the Strait of Georgia, British
2813	Columbia, Canada. Marine Geology 216, 59-77.
2814	Kathman, R.D., Cross, S.F., Waldichuk, M., 1984. Effects of wood waste on the recruitment of
2815	marine benthic communities. Canadian Technical Report of Fisheries and Aquatic
2816	Sciences 1284, 50 pp.
2817	Kellerhals, P., Murray, J.W., 1969. Tidal flats at Boundary Bay, Fraser River Delta, British
2818	Columbia. Bulletin of Canadian Petroleum Geology 17, 67-91.
2819	Kennett, K., McPhee, M.W., 1988. The Fraser River Estuary: An overview of changing
2820	conditions, Fraser River Estuary Management Program, New Westminister, B.C., 31 pp.
2821	Kozloff, E. N., 1987. Marine invertebrates of the Pacific northwest. <u>University of Washington</u>
2822	Press, Seattle, WA., 511 pp.
2823	Krautter, M., Conway, K.W., Barrie, J.V., Neuweiler, M., 2001. Discovery of a living dinosaur:
2824	Globally unique modern hexactinellid sponge reefs off British Columbia, Canada. Facies
2825	44, 265-282.

2826	Kristensen, E., 1988. Benthic fauna and biogeochemical processes in marine sediments:
2827	microbial activities and fluxes, in: Blackburn, T.H., Sorensen, J., (Eds.), Nitrogen
2828	Cycling in Coastal Marine Environments, John Wiley & Sons, Chichester, pp. 275-299.
2829	Kristensen, E., Kostka, J.E., 2005. Macrofaunal burrows and irrigation in marine sediment:
2830	microbiological and biogeochemical interactions, in: Kristensen, E., Haese, R., Kostka,
2831	J.E., (Eds.), Interactions between Macro- and Microorganisms in Marine Sediments.
2832	American Geophysical Union, Washington, D.C., pp. 125-158.
2833	Lamb, A., Edgell, P., 1986. Coastal Fishes of the pacific northwest, Madiera Park, B.C., Harbour
2834	Publishing, 224 pp.
2835	Lauzier, R.B., Hand, C.M., Campbell, A., Heizer, S., 1998. A review of the biology and fisheries
2836	of the horse clams (Tresus capax and Tresus nuttalli). Canadian Stock Assessment
2837	Secretariat Research Document 1998/88, 33 pp.
2838	LeBlonde, P.H., 1983. The Strait of Georgia: functional anatomy of a coastal sea. Canadian
2839	Journal of Fisheries and Aquatic Sciences 40, 1033-1063.
2840	Levings, C.D., 1980a. Benthic biology of a dissolved oxygen deficiency event in Howe Sound,
2841	B.C., in: Freeland, H.J., Farmer, D.M., Levings, C.D., (Eds.), Fjord Oceanography, New
2842	York, Plenum Publishing, pp. 515-522.
2843	Levings, C.D., 1980b. Demersal and benthic communities in Howe Sound basin and their
2844	responses to dissolved oxygen deficiency. Canadian Technical Report of Fisheries and
2845	Aquatic Sciences,, 951, 27 pp.
2846	Levings, C.D., Barry, K.L., Grout, J.A., Piercey, G.E., Marsden, A.D., Coombs, A.P., Mossop,
2847	B., 2004. Effects of acid mine drainage on the estuarine food web, Britannica Beach,
2848	Howe Sound, British Columbia, Canada. Hydrobiologia 525, 185-202.

2849	Levings, C.D., Coustalin, J.B., 19/5. Zonation of intertidal biomass and related benthic data
2850	from Sturgeon and Roberts Bank, Fraser River Estuary, British Columbia. Fisheries and
2851	Marine Technical Services 468, 138 pp.
2852	Levings, C.D., Foreman, R.E., Tunnicliffe, V.J., 1983. Review of the benthos of the Strait of
2853	Georgia and contiguous fjords. Canadian Journal of Fisheries and Aquatic Sciences 40,
2854	1120-1141.
2855	Levings, C.D., Jamieson, G.S., 2001. Marine and estuarine riparian habitats and their role in
2856	coastal ecosystems, Pacific Region. Canadian Science Advisory Secretariat Research
2857	Document 2001/109, 42 pp.
2858	Levings, C.D., McDaniel, N., 1973. Biological observations from the submersible PICES IV
2859	near Britannia Beach, Howe Sound, BC, Fisheries Research Board Technical Report,
2860	409, 23 pp.
2861	Levings, C.D., McDaniel, N.G., 1974. A unique collection of baseline biological data: Benthic
2862	invertebrates from an under-water cable across the Strait of Georgia. Fisheries Research
2863	Board of Canada, Technical Report 441, 19 pp.
2864	Levings, C.D., McDaniel, N.G., 1976. Industrial disruption of invertebrate communities on
2865	beaches in Howe Sound, B.C. Fisheries Marine Services Technical Report 663, 100 pp.
2866	Levings, C.D., Samis, S., 2001. Section II site description and oceanography, in: Stehr, C.M.,
2867	Horiguchi, T., (Eds.), Environmental Assessment of Vancouver Harbour Data Report for
2868	the PICES Practical Workshop, PICES Scientific Report No. 16, PICES Secretariat,
2869	Sidney, B.C., pp. 15-21.
2870	Levings, C.D., Thom, R.M., 1994. Habitat changes in Georgia Basin: Implications for resource
2871	management and restoration, in: Wilson, R.C.H., Beamish, R.J., Aikens, F., Bell, J.,

2872	(Eds.), Review of the Marine Environment and Biota of Strait of Georgia, Puget Sound
2873	and Juan de Fuca Strait: Proceedings of the BC/Washington Symposium of the Marine
2874	Environment, January 13 and 14, 1994. Canadian Technical Report of Fisheries and
2875	Aquatic Sciences 1948, 330-351.
2876	Li, M., Gargett, A., Denman, K., 1999. Seasonal and interannual variability of estuarine
2877	circulation in a box model of the Strait of Georgia and Juan de Fuca Strait. Atmosphere-
2878	Ocean 37, 1-19.
2879	Llansó, R.J., Aasen, S., Welch, K., 1998. Marine sediment monitoring program: II. Distribution
2880	and structure of benthic communities in Puget Sound 1989-1993, Washington State
2881	Department of Ecology: Environmental investigations and laboratory services program,
2882	Olympia, Washington, 114 pp. + appendices.
2883	Long, E.R., Hong, C.B., Severn, C.G., 2001. Relationships between acute sediment toxicity in
2884	laboratory tests and abundance and diversity of benthic infauna in marine sediments: a
2885	review. Environmental Toxicology and Chemistry 20, 46-60.
2886	Macdonald, R.W., Crecelius, E.A., 1994. Marine sediments in the Strait of Georgia, Juan de
2887	Fuca Strait and Puget Sound: What can they tell us about contamination? in: Wilson,
2888	R.C.H., Beamish, R.J., Aitkens, F., Bell, J., (Eds.), Review of the Marine Environment
2889	and Biota of Strait of Georgia, Puget Sound and Juan de Fuca Strait. Canadian Technical
2890	Report of Fisheries and Aquatic Sciences 1948, 101-137.
2891	Macdonald, R.W., Cretney, W.J., Crewe, N., Paton, D., 1992. A history of octachlorodibenzo-p-
2892	dioxin, 2,3,7,8-tetrachlorodibenzofuran and 3,3', 4-4'-tetrachlorobiphenyl contamination
2893	in Howe Sound, British Columbia. Environmental Science & Technology 26, 1544-1550.

2894	Macdonald, R.W., Johannessen, S.C., Gobeil, C., Wright, C.A., Burd, B.J., van Roodselaar, A.,
2895	In press. Sediment redox tracers in the Strait of Georgia sediments - can they inform us
2896	of the loadings of organic carbon from municipal wastewater? Marine Environmental
2897	Research.
2898	Macdonald, R.W., Macdonald, D.M., O'Brien, M.C., Gobeil, C., 1991. Accumulation of heavy
2899	metals (Pb, Zn, Cu, Cd), carbon and nitrogen in sediments from the Strait of Georgia,
2900	B.C., Canada. Marine Chemistry 34, 109-135.
2901	Mackas, D.L., Louttit, G.C., 1988. Aggregation of the copepod Neocalanus plumchrus at the
2902	margin of the Fraser River plume in the Strait of Georgia. Bulletin of Marine Science 43
2903	810-824.
2904	Madrone Consulting Ltd., 1993. Bamberton: Biological inventory and evaluation, 1992-1993,
2905	prepared for South Island Development Corporation, Victoria, B.C.
2906	Marinone, S.G., Pond, S., 1996. A three-dimensional model of deep water renewal and its
2907	inluence on residual curretns in the central Strait of Georgia, Canada. Estuarine, Coastal
2908	and Shelf Science 43, 183-204.
2909	Masson, D., 2002. Deep water renewal in the Strait of Georgia. Estuarine, Costal and Shelf
2910	Science 54, 115-126.
2911	Masson, D., Cummings, P.F., 2000. Fortnightly modulation of estuarine circulation in Juan de
2912	Fuca Strait. Journal of Marine Research 58, 439-463.
2913	Masson, D., Cummings, P.F., 2004. Observations and modeling of seasonal variability in the
2914	Straits of Georgia and Juan de Fuca. Journal of Marine Research 62, 491-516.
2915	Maurer, D., Aprill, G., 2007. Intertidal benthic invertebrates and sediment stability at the mouth
2916	of Delaware Bay. International Review of Hydrobiology 64, 379-403.

2917	McDaniel, N.G., 1973. A Survey of Benthic Macroinvertebrate Fauna and Solid Pollutants in
2918	Howe Sound. Fisheries Research Board of Canada Technical Report 385, 64 pp.
2919	McGreer, E.R., Moore, D.M., Sibert, J.R., 1984. Study of the recovery of intertidal benthos after
2920	removal of log booms, Nanaimo River Estuary, British Columbia. Canadian Technical
2921	Report of Fisheries and Aquatic Sciences 1246, vii + 63 pp.
2922	McLaren, P., 1994. Sediment transport in Vancouver Harbour: Implications to the fate of
2923	contaminated sediments and/or dredged material disposal, A Report for the Burrard Inlet
2924	Environmental Action Program, Vancouver, B.C., 25 pp. + appendices.
2925	McLaren, P., Crentey, W.J., Powys, R.I., 1993. Sediment pathways in a British Columbia fjord
2926	and their relationship with particle associated contaminants. Journal of Coastal Research
2927	9, 1026-1043.
2928	McLaren, P., Ren, P., 1995. Sediment transport and its environmental implications in the lower
2929	Fraser River and Fraser Delta, A Report for Environment Canada, DOE FRAP 1993.03,
2930	Vancouver, B.C., 38 pp.
2931	McPherson, C.A., Bailey, H.C., Chapman, M.K., Lee, M.K., Burd, B.J., Fanning, M.L., Paine,
2932	M.D., Hamilton, M.C., Chen, F., 2003. Iona Deep-sea Outfall, 2002 Environmental
2933	monitoring program: Sediment effects survey, prepared for the Greater Vancouver
2934	Regional District by EVS Consultants Ltd., Burnaby, B.C., 223 pp. + appendices.
2935	McPherson, C.A., Chapman, M.K., Fanning, M.L., Olson, J., Chen, F., 2004a. Georgia Strait
2936	ambient monitoring program - Data report, prepared for the Greater Vancouver Regional
2937	District by EVS Consultants Ltd, Burnaby, B.C., 28 pp. + appendices.
2938	McPherson, C.A., Chapman, M.K., Lee, M.K., Burd, B.J., Fanning, M.L., Hamilton, M.C.,
2939	Chen, F., 2004b. Iona Deep-sea Outfall, 2003 Environmental monitoring program:

2940	Sediment effects survey, prepared for the Greater Vancouver Regional District by EVS
2941	Consultants Ltd., Burnaby, BC, 262 pp. + appendices.
2942	McPherson, C.A., Chapman, M.K., Lee, M.K., Fanning, M.L., Olson, J., Chen, F., 2004c. Lions
2943	Gate Outfall, 2003 Environmental monitoring program: Sediment effects survey,
2944	prepared for the Greater Vancouver Regional District by EVS Consultants Ltd., Burnaby,
2945	B.C., 99 pp. + appendices.
2946	McPherson, C.A., Chapman, M.K., McKinnon, S., Burd, B.J., Fanning, M.L., Olson, J.,
2947	Hamilton, M.C., Chen, F., 2005a. Iona Deep-sea Outfall, 2004 Environmental monitoring
2948	program: Sediment effects survey, prepared for the Greater Vancouver Regional District
2949	by EVS Consultants Ltd., Burnaby, B.C., 222 pp. + appendices.
2950	McPherson, C.A., Chapman, M.K., McKinnon, S., Burd, B.J., Fanning, M.L., Olson, J.,
2951	Hamilton, M.C., Chen, F., 2006a. Iona Deep-sea Outfall, 2005 Environmental monitoring
2952	program: Sediment effects survey, prepared for the Greater Vancouver Regional District
2953	by EVS Consultants Ltd., Burnaby, B.C., 262 pp. + appendices.
2954	McPherson, C.A., Chapman, M.K., McKinnon, S., Burd, B.J., Fanning, M.L., Olson, J.,
2955	Hamilton, M.C., Chen, F., 2007a. Iona Deep-sea Outfall, 2006 Environmental monitoring
2956	program: Sediment effects survey, prepared for the Greater Vancouver Regional District
2957	by EVS Consultants Ltd., Burnaby, B.C., 240 pp. + appendices.
2958	McPherson, C.A., Chapman, P.M., McKinnon, S.J., Burd, B.J., Fanning, M.L., Olson, J.,
2959	Markovic-Mirovic, N, 2006b. Lions Gate Outfall, 2005 Sediment Effects Survey. Final
2960	Report prepared for the Greater Vancouver Regional District (GVRD), Burnaby, BC by
2961	Golder Associates Ltd. North Vancouver, BC. 222 pp. + appendices.

2962	McPherson, C.A., Chapman, P.M., McKinnon, S.J., Burd, B.J., Fanning, M.L., Olson, J., Ross
2963	Easton, H., Brooks, G., 2007b. Lions Gate Outfall, 2006 Sediment Effects Survey. Prepared
2964	for the Greater Vancouver Regional District (GVRD), Burnaby, BC by Golder Associates
2965	Ltd. North Vancouver, BC. 238 pp. + appendices.
2966 2967	McPherson, C.A., Chapman, M.K., McKinnon, S.J., Fanning, M.L., Burd, B.J., Olson, J., Chen,
2968	F., Brooks, G., 2005b. Lions Gate Outfall, 2004 Sediment Effects Survey, Prepared for
2969	the Greater Vancouver Regional District by EVS Consultants Ltd, Burnaby, BC, 212
2970	pp.+ appendices.
2971	Møller, M.M., Nielsen, L.P., Jørgensen, B.B., 1985. Oxygen responses and mat formation by
2972	Beggiatoa spp. Applied and Environmental Microbiology 50, 373-382.
2973	Mosher, D.C., Currie, R.G., Sullivan, D., 1997. Monitoring of ocean disposal using side-scan
2974	mosaicing. Leading Edge 16, 1667-1669.
2975	MWLAP, 2002. Protocols for Marine environmental monitoring in support of finfish aquaculture
2976	waste control regulations, Ministry of Water Land and Parks, Environmental Protection
2977	Division, Victoria, B.C., 29 pp.
2978	NEMP, 2002. Final report of the log storage working group, prepared for the Nanaimo Estuary
2979	Management Plan Steering Committee, Ministry of Integrated Land and Management
2980	Bureau, Government of British Columbia, 27 pp.
2981	Newell, R. C., Seiderer, L. J., Hitchcock, D. R., 1998. The impact of dredging works in coastal
2982	waters: a review of the sensitivity to disturbance and subsequent recovery of biological
2983	resources on the sea bed. Oceanography and Marine Biology: An Annual Review 36,
2984	127–178.

2985	Nickel, L.A., Atkinson, R.J.A., 1995. Functional morphology of burrows and trophic modes of
2986	three thalassinidean shrimp species and a new approach to classification of thalassinidean
2987	burrow morphology. Marine Ecology Progress Series 128, 181-197.
2988	Orvain, F., Le Hir, P., Sauriau, PG., 2003. A model of fluff layer erosion and subsequence bed
2989	erosion in the presence of the bioturbator, Hydrobia ulvae. Journal of Marine Research
2990	61, 823-851.
2991	Otte, G., Levings, C.D., 1975. Distribution of macroinvertebrates communities on mudflat
2992	influenced by sewage. Fraser River Estuary, British Columbia. Fisheries Marine Series
2993	Technical Report 476, 78 pp.
2994	Paine, Ledge and Associates, 2004. Analyses of Macaulay Point sediment quality data: 1990-
2995	2003. Prepared for Capital Region District, Environmental Services, 137 pp. Paine,
2996	Ledge and Associates (PLA). North Vancouver, British Columbia.
2997	Paine, M.D., 2003. Environmental significance of sediment quality and tissue residue monitoring
2998	data for the GVRD Iona and Lions Gate outfall study areas. Draft Report, Prepared for
2999	the Greater Vancouver Regional District (GVRD) by Paine, Ledge and Associates (PLA),
3000	North Vancouver, 31 pp. + Tables + Figures.
3001	Paine, R.T., Vadas, R.L., 1969. The effects of grazing by sea urchins. Strongylocentrous spp., on
3002	benthic algal populations. Limnology and Oceanography 14, 710-719.
3003	Palsson, W.A., Hoffmann, S., Clarke, P., Beam, J., 2003. Results from the 2001 transboundary
3004	trawl survey of the southern Strait of Georgia, San Juan Archipelago and adjacent waters,
3005	Report for the Washington Department of Fish and Wildlife, 117 pp.

3006	Parsons, T.R., Stronach, J., Borstad, G.A., Louttit, G., Perry, R.I., 1981. Biological fronts in the
3007	Strait of Georgia, British Columbia, and their relation to recent measurements of primary
3008	productivity. Marine Ecology Progress Series 6, 237-242.
3009	Pawlowicz, R., 2001. A tracer method for determining transport in two-layer systems, applied to
3010	the Strait of Georgia/Haro Strait/Juan de Fuca Strait estuarine system. Estuarine, Coastal
3011	and Shelf Science 52, 491-503.
3012	Pawlowicz, R., 2002. Observations and linear analysis of estuarine flow and sill-generated
3013	internal tides in Haro Strait. Journal of Geophysical Research 107, [np], DOI:
3014	10.1029/2000JC000504.
3015	Pearson, T.H., Rosenberg, R., 1978. Macrobenthic succession in relation to organic enrichment
3016	and pollution of the marine environment. Oceanography and Marine Biology Annual
3017	Review 16, 229-311.
3018	PICES (Ed.), 2001. Environmental assessment of Vancouver Harbour data report for the PICES
3019	practical workshop, North Pacific Marine Sciences Organization (PICES) Secretariat,
3020	PICES, Sidney, B.C., 203 pp.
3021	Pickard, G.L., Giovando, L.F., 1960. Some observations of turbidity in British Columbia inlets.
3022	Limnology and Oceanography 5, 162-170.
3023	Pohle, G., Frost, B., Findlay, R., 2001. Assessment of regional benthic impact of salmon
3024	mariculture within the Letang Inlet, Bay of Fundy. ICES Journal of Marine Science 58,
3025	417-426.
3026	Post, A.L., Wassenberg, T.J., Passlow, V., 2006. Physical surrogates for macrofaunal
3027	distributions and abundance in a tropical gulf. Marine and Freswater Research 57, 469-
3028	483.

3029	Prior, D.B., Bornhold, B.D., Wiseman, W.J.J., Lowe, D.R., 1987. Turbidity current activity in a
3030	British Columbia fjord. Science 237, 1330-1333.
3031	Probert, P.K., 1984. Disturbance, sediment stability, and trophic structure of soft-bottom
3032	communities. Journal of Marine Research 42, 893-921.
3033	Ragnarsson, S.A., Raffaelli, D., 1999. Effects of the mussel Mytilus edulis L. on the
3034	invertebrate fauna of sediments. J. Exp. Mar. Biol. Ecol. 241, 31-43.
3035	Reid, B.J., Baumann, J., 1985. Preliminary laboratory study of the effects of burial by
3036	AMAX/Kitsault mine tailings on marine invertebrates. Canadian Manuscript Report of
3037	Fisheries and Aquatic Sciences 1781, 45 pp.
3038	Rescan Environmental Services Ltd., 1988. Preliminary environmental overview of proposed
3039	ferrochromium production facility Bamberton, B.C., prepared for the Ministry of
3040	Regional Development, Government of British Columbia.
3041	Rhoads, D.C., Young, D.K., 1970. Influence of deposit-feeding organisms on sediment stability
3042	and community tropic structure. Journal of Marine Research 28, 150-178.
3043	Roegner, C., Andre, C., Lindegarth, M., Eckman, J.E., Grant, J., 1995. Transport of recently
3044	settled soft-shell clams (Mya arenaria L.) in laboratory flume flow. Journal of
3045	Experimental Marine Biology and Ecology 187, 13-26.
3046	Rowe, G., Sibuet, M., Deming, J., Khripoundoff, A., Tietjen, J., Macko, S., Theroux, R., 1991.
3047	'Total' sediment biomass and preliminary estimates of organic carbon residence time in
3048	deep-sea benthos. Marine Ecology Progress Series 79, 99-114.
3049	Samis, S.C., Liu, S.D., Wernick, B.G., Nassichuk, M.D., 1999. Mitigation of fisheries impacts
3050	from the use and disposal of wood residue in British Columbia and the Yukon. Canadian
3051	Technical Report of Fisheries and Aquatic Sciences 2296, viii + 91 pp.

3052	Schwinghamer, P., 1981. Characteristic size distributions of integral benthic communities.
3053	Canadian Journal of Fisheries and Aquatic Sciences 38, 1255-1263.
3054	Schwinghamer, P., 1983. Generating ecological hypotheses from biomass spectra using causal
3055	analysis: A benthic example. Marine Ecology Progress Series 13, 151-166.
3056	Seacology, Pacific Marine Life Surveys Inc., Tera Environmental Consutants (Alta.) Ltd., 2001
3057	Biological survey and assessment of benthic habitats for a proposed Manley Creek
3058	pipeline landfall at Boatswain Bank, British Columbia-July 2000, prepared for Georgia
3059	Strait Crossing Pipeline Ltd., 47 pp. + appendices.
3060	Seed, R., Suchanek, T.H., 1972. Population and community ecology of <i>Mytilus</i> , in: Gosling,
3061	E.M., (Ed.), The Mussel Mytilus: Ecology, Physiology, Genetics, Culture, Amsterdam,
3062	Elsevier Scientific, pp. 87-169.
3063	Shang, D.Y., Macdonald, R.W., Ikonomu, M.G., 1999. Persistence of nonylphenol and
3064	ethyoxylate surfactants and their principle primary degradation products in sediments
3065	from near a municipal outfall in the Strait of Georgia, British Columbia, Canada.
3066	Environmental Science & Technology 33, 1366-1372.
3067	Sibert, J.R., 1979. Detritus and juvenile salmon production in the Nanaimo Estuary: 2.
3068	Meiofauna available as food to juvenile chum salmon (Oncorhynchus keta). Journal of
3069	the Fisheries Research Board of Canada 36, 497-503.
3070	Sibert, J.R., 1981. Intertidal hyperbenthic populations in the Nanaimo Estuary. Marine Biology
3071	64, 259-265.
3072	Sibert, J.R., Brown, T.J., Harpham, V.J., Kask, B.J., 1979. Meiofauna counts in relation to
3073	intertidal log storage on the Nanaimo River delta: Spring 1978. Fisheries and Marine
3074	Service Data Report 149, 105 pp.

3075	Sibert, J.R., Harpham, V.J., 1979. Effects of intertidal log storge on the meiofauna and
3076	interstitital environment of the Nanaimo River delta. Technical Report of the Fisheries
3077	Marine Service (Canada) 833, 31 pp.
3078	Smith, A.L., 1981. Comparison of macrofaunal invertebrates in sand dollar (Dendraster
3079	excentricus) beds and in adjacent areas free of sand dollars. Marine Biology 65, 191-198.
3080	Smith, J.R., Fong, P., Ambrose, R. F., 2006. Dramatic declines in mussel bed community
3081	diversity: Response to climate change? Ecology 87, 1153-1161.
3082	Snyder, S.W., Hale, W.R., Kontrovitz, M., 1990. Assessment of Postmortem Transportation of
3083	Modern Benthic Foraminifera of the Washington Continental Shelf. Micropaleontology,
3084	36, 259-282.
3085	Spaulding, H., Foster, M.S., Heine, J.N., 2003. Composition, distribution, and abundance of
3086	deep-water (>30 m) macroalgae in central California. Journal of Phycology 39, 273-284.
3087	Stacey, M.W., Pond, S., 2003. The dependence of the currents and the density on the spring-near
3088	cycle and the diurnal-inequality in Burrard Inlet, British Columbia: simulations and
3089	observations. Journal of Physical Oceanography 33, 2366-2374.
3090	Stacey, M.W., Pond, S., LeBlonde, P.H., 1991. Flow dynamics in the Strait of Georgia, British
3091	Columbia. Atmosphere-Ocean 29, 1-13.
3092	Stehr, C.M., Horiguchi, T., (Eds.), 2001. Environmental assessment of Vancouver Harbour, data
3093	report for the PICES practical workshop 16, North Pacific Marine Sciences Organization
3094	(PICES) Secretariat, 205 pp.
3095	Stephenson, T.A., Stephenson, A., 1961a. Life between tidemarks in North America. IVA.
3096	Vancouver Island II. Journal of Ecology, 49, 1-29.

3097	Stephenson, T.A., Stephenson, A., 1961a. Life between tidemarks in North America. IVB.
3098	Vancouver Island II. Journal of Ecology, 49, 227-243.
3099	Stephenson, T.A., Stephenson, A., 1972. Life between tidemarks on rocky shores. Freeman,
3100	USA, 425 pp.
3101	Stockner, J.G., Cliff, D.D., Shortreed, K.R.S., 1979. Phytoplankton ecology of the Strait of
3102	Georgia, British Columbia. Journal of the Fisheries Research Board of Canada 36, 657-
3103	666.
3104	Striplin, P., 1996. Development of reference value ranges for benthic infauna assessment
3105	endpoints in Puget Sound, Washington, State Department of Ecology Sediment
3106	Management Unit, 44 pp. + appendices.
3107	Stubblefield, W.A., Servos, M., Gersberg, R.M., Riley, C., Simpson, D., Smith, D., Wells, P.,
3108	2006. Scientific and technical review. Capital Regional District core area Liquid Waste
3109	Management Plan, Submitted to the Capital Regional District, Victoria B.C. by the
3110	Scientific and Technical Review Panel, 131 pp.
3111	Stucchi, D.J., Sutherland, T., Levings, C., Higgs, D., 2005. Near-field depositional model for
3112	salmon aquaculture waste, in: Hargrave, B.T., (Ed.), Handbook of Environmental
3113	Chemistry: The Environmental Effects of Marine Finfish Aquaculture, Volume 5, Part M
3114	Springer-Verlag, Berlin, pp. 157-179.
3115	Suchanek, T.H., 1979. The Mytilus californianus community: studies on the composition,
3116	structure, organization and dynamics of a mussel bed, University of Washington, Ph.D.
3117	thesis, 286 pp.
3118	Swinbanks, D.D., Murray, J.W., 1981. Biosedimentiological zonation of Boundary Bay tidal
3119	flats, Fraser River Delta, British Columbia. Sedimentology 28, 201-237.

3120	Taylor, F.J.R., Haigh, R., Sutherland, T.H., 1994. Phytoplankton ecology of Sechelt Inlet, a fjord
3121	system on Britisyh Columbia coast. II. Potentially harmful species. Marine Ecology
3122	Progress Series 103, 151-164.
3123	Thompson, D., Cooke, W., 1991. Enhancement of hardshell clam habitat by beach gravelling, in:
3124	Puget Sound Water Quality Action Team (Eds.), Puget Sound Research '91. Seattle,
3125	Washington, Proceedings, pp 521-527.
3126	Thomson, R.E., 1976. Tidal currents and estuarine-type circulation in Johnstone Strait, British
3127	Columbia. Journal of the Fisheries Research Board of Canada 33, 2242-2264.
3128	Thomson, R.E., 1977. Currents in Johnstone Strait, British Columbia: supplementary data on the
3129	Vancouver Island side. Journal of the Fisheries Research Board of Canada, 34 697-703.
3130	Thomson, R.E., 1981. Oceanography of the British Columbia Coast. Canadian Special
3131	Publication of Fisheries and Aquatic Sciences 56, 235-258.
3132	Thomson, R.E., 1994. Physical oceanography of the Strait of Georgia-Puget Sound-Juan de Fuca
3133	Strait system, in: Wilson, R.C.H., Beamish, R.J., Aitkens, F., Bell, J., (Eds.), Review of
3134	the Marine Environment and Biota of Strait of Georgia, Puget Sound and Juan de Fuca
3135	Strait. Canadian Technical Report of Fisheries and Aquatic Sciences 1948, 36-100.
3136	Thomson, R.E., 1998. Ecosystem classification of the Strait of Georgia: Physical oceanographic
3137	delineation, in: Levings, C.D., Pringle, J.D., Aikens, F., (Eds.), Approaches to Marine
3138	Ecosystem Delineation in the Strait of Georgia. Proceedings from a DFO Workshop,
3139	Sidney, B.C. November, 1997. Canadian Technical Report of Fisheries and Aquatic
3140	Sciences 2247, 112-123.

3141	Thomson, R.E., Foreman, M.G.G., 1998. Basin areas and volumes of coastal southwest British
3142	Columbia and northwest Washington. Canadian Technical Report of Fisheries and
3143	Aquatic Sciences 196, 17 pp.
3144	Thomson, R.E., Huggett, W.S., 1980. M2 baroclinic tides in Johnstone Strait, British Columbia.
3145	Journal of Physical Oceanography 10, 1509-1539.
3146	Thomson, R.E., Huggett, W.S., Kuwahara, L.S.C., 1980a. Data record of current observations
3147	Vol. VIII Discovery Passage, Johnstone Strait and Queen Charlotte Strait, Part 1 - water
3148	property observations, 1976, 1977, 1978, 1979. Institute of Ocean Sciences, Sidney, B.C.,
3149	262 pp.
3150	Thomson, R.E., Huggett, W.S., Kuwahara, L.S.C., 1980b. Data record of current observations
3151	Vol. VIII, Discovery Passage, Johnstone Strait and Queen Charlotte Strait, Part 2-
3152	appendices A to E, Institute of Ocean Sciences, Sidney, B.C., 809 pp.
3153	Thomson, R.E., Mihaly, S.F., Kulikov, E.A., 2007. Estuarine versus transient flow regimes in
3154	Juan de Fuca Strait. Jounal of Geophysical Research-Oceans 112, doi:
3155	10.1029/2006JC003925.
3156	Tito de Morais, L., Bodiou, J.Y., 1984. Predation on meiofauna by juvenile fish in a western
3157	Mediterranean flatfish nursery ground. Marine Biology 82, 209-215.
3158	Tunnicliffe, V., 1981. High species diversity and abundance of the epibenthic community in an
3159	oxygen-deficient basin. Nature 294, 354-356.
3160	Tunnicliffe, V., 2000. A fine-scale record of 130 years of organic carbon deposition in an anoxic
3161	fjord, Saanich Inlet, British Columbia. Limnology and Oceanography 45, 1380-1387.
3162	Tunnicliffe, V., Syvitski, J.P.M., 1983. Corals move boulders: An unusual mechanism of
3163	sediment transport. Limnology and Oceanography 28, 564-568.

3164	Tunnicliffe, V., Wilson, K., 1988. Brachipod populations: distribution in fjords of British
3165	Columbia (Canada) and tolerance of low oxygen concentrations. Marine Ecology
3166	Progress Series 47, 117-128.
3167	Wainwright, P., Harper, J.R., Searing, G.F., Howes, D., 1995. Ecological classification within
3168	British Columbia's marine regions: Methodology report, British Columbia Land Use
3169	Coordination Office, Victoria, BC, 17 pp.
3170	Waldichuk, M., 1957. Physical oceanography of the Strait of Georgia, British Columbia. Journal
3171	of the Fisheries Research Board of Canada 14, 321-486.
3172	Walker, D., 1995. Shellfish Contamination, in: Calder, A.M., Mann, G.S., (Eds.), Saanich Inlet
3173	study: Synthesis workshop summary, April 25/26, prepared for the Water Quality
3174	Branch, British Columbia Ministry of Environment, Lands and Parks by EVS
3175	Environmental Consultants Ltd., and Sea Science, Vancouver, B.C., pp. 61-90.
3176	Wang, F., Chapman, P.M., 1999. Biological implications of sulfide in sediment-a review
3177	focusing on sediment toxicology. Environmental Toxicology and Chemistry 18, 2526-
3178	2532.
3179	Warwick, R.M., Clarke, K.R., 1993. Comparing the severity of disturbance: A meta-analysis of
3180	marine macrobenthic community data. Marine Ecology Progress Series 92, 221-231.
3181	Warwick, R.M., Dshfield, S.L., Somerfield, P.J., 2006. The integral structure of a benthic
3182	infaunal assemblage. Journal of Experimental Marine Biology and Ecology 330, 12-18.
3183	Watling, L., Norse, E.A., 1998. Disturbance of the seabed by mobile fishing gear: A comparison
3184	to forest clearcutting. Conservation Biology 12, 1180-1197.
3185	Watson, J., 1998. A review of ecosystem classification: Delineating the Strait of Georgia, in:
3186	Levings, C.D., Pringle, J.D., Aikens, F. (Eds.), Approaches to Marine Ecosystem

3187	Delineation in the Strait of Georgia, Proceedings from a DFO Workshop, Sidney, B.C.
3188	November, 1997. Canadian Technical Report of Fisheries and Aquatic Sciences 2247, 3-
3189	71.
3190	West, P., Fyles, T.M., King, B., Peeler, D.C., 1994. The effects of human activity on the marine
3191	environment of the Georgia basin: Present waste loadings and future trends, in: Wilson,
3192	R.C.H., Beamish, R.J., Aitkens, F., Bell, J. (Eds.), Review of the Marine Environment
3193	and Biota of Strait of Georgia, Puget Sound and Juan de Fuca Strait. Canadian Technical
3194	Report of Fisheries and Aquatic Sciences 1948, 9-35.
3195	Whiteley, J., Bendell-Young, L.I., 2007. Ecological implications of intertidal mariculture:
3196	observed differences in bivalve community structure between farm and reference sites.
3197	Journal of Applied Ecology 44, 495-505.
3198	Williams, G.L. & Associates Ltd., 1991. Coastal habitat inventory, in: The town of Bamberton
3199	Review Process. VII. II. Technical Background South Island, Prepared for the Ministry of
3200	Environment, Lands and Parks, Water Quality Branch, Government of British Columbia,
3201	pp. 113-120.
3202	Wilson, R.C.H., Beamish, R.J., Aikens, F., Bell, J., 1994. Review of the marine environment and
3203	biota of the Strait of Georgia, Puget Sound and Juan de Fuca Strait. Proceedings of the
3204	BC/Washington Symposium on the Marine Environment, January 13 & 14, 1994.
3205	Canadian Technical Report of Fisheries and Aquatic Sciences 1948, 390 pp.
3206	Wilson, R.C.H., McKinnon, S.J., 2003. The Point Grey ocean disposal site, 1975-200: A 25-Year
3207	Review, Prepared for the Disposal At Sea Program, Environment Canada, Victoria, B.C.,
3208	118 pp.

3209	Wlodarska-Kowalczuk, M., Pearson, T.H., Kendall, M.A., 2005. Benthic response to chronic
3210	natural physical disturbance by glacial sedimentation in an Arctic fjord. Marine Ecology
3211	Progress Series 303, 31-41.
3212	Wright, C.A., Johannessen, S.C., Macdonald, R.W., Burd, B.J., Hill, P.R., van Roodselaar, A.,
3213	Bertold, S., In press. The Strait of Georgia ambient monitoring program, phase I 2002-
3214	2007: Sediment and benthos. Canadian Data Report of Fisheries and Aquatic Sciences,
3215	XX, xx.
3216	Wright, C.A., Pringle, J.D., 2001. Race Rocks pilot marine protected area: An ecological
3217	Overview. Canadian Technical Report of Fisheries and Aquatic Sciences 2353, 93 pp.
3218	Wright, C., Taekema, B., Burd, B., McGreer, E., 2007a. Salmon aquaculture environmenal
3219	monitoring data report. Results of sampling program for year 2000, prepared for the
3220	Ministry of the Environment, province of British Columbia, Nanaimo, B.C. abstract only
3221	URL: http://www.elp.gov.bc.ca/epd/industrial/aquaculture/salmon_farming.htm.
3222	Wright, C., Taekema, B., Burd, B., McGreer, E., 2007b. Salmon aquaculture environmenal
3223	monitoring data report. Results of sampling program for year 2001, prepared for the
3224	Ministry of the Environment, province of British Columbia, Nanaimo, B.C. abstract only
3225	URL: http://www.elp.gov.bc.ca/epd/industrial/aquaculture/salmon_farming.htm.
3226	Wright, C., Taekema, B., Burd, B., McGreer, E.R., 2007c. Salmon aquaculture environmenal
3227	monitoring data report. Results of sampling program for year 2002, prepared for the
3228	Ministry of the Environment, province of British Columbia, Nanaimo, B.C. abstract only
3229	URL: http://www.elp.gov.bc.ca/epd/industrial/aquaculture/salmon_farming.htm.
3230	Wright, C., Taekema, B., Burd, B., McGreer, E.R., 2007d. Salmon aquaculture environmenal
3231	monitoring data report. Results of sampling program for year 2003, prepared for the

3232	Ministry of the Environment, province of British Columbia, Nanaimo, B.C. abstract only
3233	URL: http://www.elp.gov.bc.ca/epd/industrial/aquaculture/salmon_farming.htm.
3234	Wright, C., Taekema, B., Burd, B., McGreer, E.R., 2007e. Salmon aquaculture environmenal
3235	monitoring data report. Results of sampling program for year 2004, prepared for the
3236	Ministry of the Environment, province of British Columbia, Nanaimo, B.C. abstract only
3237	URL: http://www.elp.gov.bc.ca/epd/industrial/aquaculture/salmon_farming.htm
3238	Yeats, P.A., 2002. Trace metal tracers of fish farm wastes. 2002. In: Hargrave, B.T., (Ed.).
3239	Environmental Studies for Sustainable Aquaculture (ESSA): 2002 Workshop Report.
3240	Canadian Technical Report of Fisheries and Aquatic Sciences 2411, 82-85.
3241	Yunker, M.B., 2000. Sediment PAH signatures in the IONA receiving environment, in: Greater
3242	Vancouver Regional District, (Ed.), Development of a Receiving Environment
3243	Monitoring Approach to Liquid Waste Management: Progress Workshop 2, Chapter 3-
3244	23 pp.
3245	Yunker, M.B., Macdonald, R.W., Brewer, R., Sylvestre, S., Tuominen, T., Sekela, M., Mitchell,
3246	R.H., Paton, D.W., Fowler, B.R., Gray, C., Goyette, D., Sullivan, D., 2000. Assessment
3247	of natural and anthropogenic hydrocarbon inputs using PAHs as tracers. The Fraser
3248	River Basin and Strait of Georgia (1987-1997), Aquatic and Atmospheric Sciences
3249	Division, Environmental Conservation Branch, Pacific and Yukon Region, Environment
3250	Canada, Vancouver, B. C., 128 pp.
3251	Yunker, M.B., Macdonald, R.W., Goyette, D., Paton, D.W., Fowler, B.R., Sullivan, D., Boyd, J.,
3252	1999. Natural and anthropogenic inputs of hydrocarbons to the Strait of Georgia. Science
3253	of the Total Environment 225, 181-209.

3254	Zacharias, M.A., Howes, D.E., 1998. An analysis of marine protected areas in British Columbia,
3255	Canada, using a marine ecological classification. Natural Areas Journal 18, 4-13.
3256	Zacharias, M.A., Howes, D.E., Harper, J.R., Wainwright, P., 1998a. The British Columbia
3257	marine ecosystem classification: Rationale, development, and verification. Coastal
3258	Management 26, 105-124.
3259	Zacharias, M.A., Howes, D., Ogborne, C., 1998b. A biophysical habitat classification for
3260	intertidal environments in the Strait of Georgia, in: Levings, C.D., Pringle, J.D., Aikens,
3261	F., (Eds.), Approaches to Marine Ecosystem Delineation in the Strait of Georgia.
3262	Proceedings from a DFO Workshop, Sidney, B.C. November, 1997. Canadian Technical
3263	Report of Fisheries and Aquatic Sciences 2247, 105-111.
3264	Zacharias, M.A., Morris, M.C., Howes, D.E., 1999. Large scale characterization of intertidal
3265	communities using a predictive model. Journal of Experimental Marine Biology and
3266	Ecology 239, 223-242.
3267	Zacharias, M.A., Roff, J.C., 2001. Explanations of patterns of intertidal diversity at regional
3268	scales. Journal of Biogeography 28, 471-483.
3269	Ziervogel, K., Forster, S., 2006. Do benthic diatoms influence erosion thresholds on coastal
3270	subtidal sediments? Journal of Sea Research 51, 43-53.
3271	Zis, T., Ronningen, V., Scrosat, R., 2004. Minor improvement for intertidal seaweeds and
3272	invertebrates after acid mine drainage diversion at Britannica Beach, Pacific Canada.
3273	Marine Pollution Bulletin, 48, 1040-4047.
3274	Zorn, M.E., Lalonde, S.W., Gingras, M.K., Pemberton, S.G., Konhauser, K.O., 2006. Microscale
3275	oxygen distribution in variousl invertebrate burrow walls. Geobiology 4, 137-145.
3276	

3277 3278	Figure Captions
3279	Figure 1. The Strait of Georgia, including depth contours from multibeam imagery (see also Fig.
3280	3), locations of important geographic units and discharge sources described herein, and
3281	theoretical boundaries of north, middle and southern oceanographic regimes within the main
3282	basin.
3283	
3284	Figure 2. Physical parameters used to develop ecounits (Modified from the Ministry of
3285	Sustainable Resource Management (http://ilmbwww.gov.bc.ca/risc/). Substrate = mud, sand,
3286	hard (M,S,H); Exposure = high, moderate, low (H,M,L); Current = High >3knots, low<3 knots
3287	(H,L); Slope = Flat 0-5%, sloping 5-20%, Steep >20% (F,S,S); Depth = Shallow 0-20m; photic
3288	20-50m, mid-depth 50-200m, deep 200-1000m; Temperature = warm 9-15°C, cold <9°C; Relief
3289	= low 0-1, medium 2, high 3-4. For example: ecounit = M/L/L/F/M/C/L: Substrate = mud;
3290	Exposure = low; Current = low; Slope = flat; Depth = mid-depth; Bottom Temperature = cold;
3291	Relief = low.
3292	
3293	Figure 3. Multibeam imagery from the southern Strait of Georgia showing bottom relief and
3294	type, courtesy of Natural Resources Canada, Pacific Geoscience Center, Sidney, BC.
3295	
3296	Figure 4. Plot of sediment percent fines (silt/clay <63 μm particle size) to illustrate sediment
3297	types in the Strait of Georgia (data from Burd, 2006; and courtesy of Natural Resources Canada,
3298	Pacific Geoscience Center, Sidney, BC).
3299	

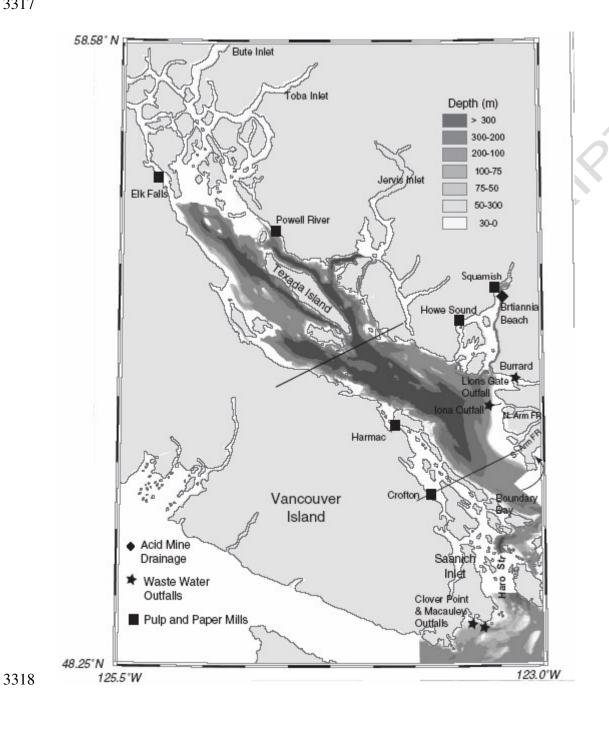

5500	Figure 5. MERIS satellite taken 2007/07/10 (copyright, European Space Agency). True colour
3301	image, Courtesty of Jim Gover and Stephanie King, Institute of Ocean Sciences, Canadian
3302	Department of Fisheries and Oceans, Sidney, BC.
3303	
3304	Figure 6. Shorekeepers' Program sites in the Strait of Georgia, BC.
3305	(http://www.shim.bc.ca/atlases/sk/main.htm).
3306	
3307	Figure 7. Habitat (beach) suitability maps for Pacific oysters and Manila clams and a
3308	corresponding area map for kelp and eelgrass habitat as generated by the Internet. Framework
3309	Mapping tool provided by the Provincial Ministry of the Environment (http://maps.gov.bc.ca/).
3310	

Table 1. Gross features of the Strait of Georgia, B.C. (from England et al. 1996, Thomson 1998, and Thomson and Foreman 1998).

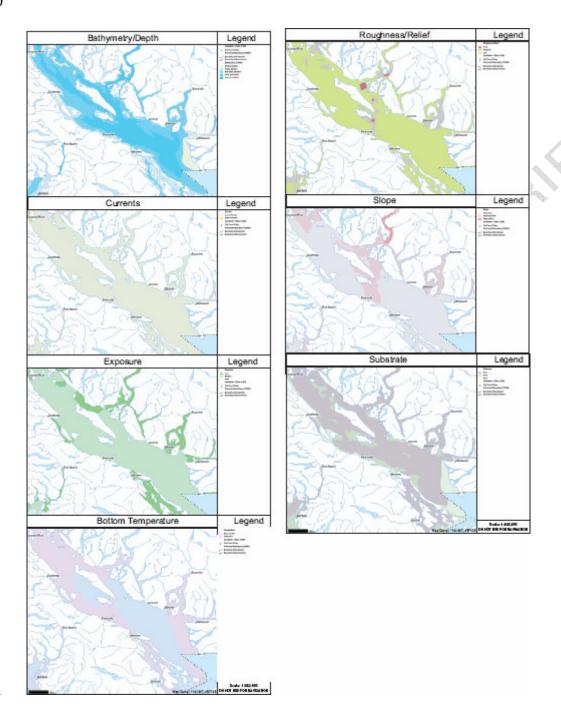
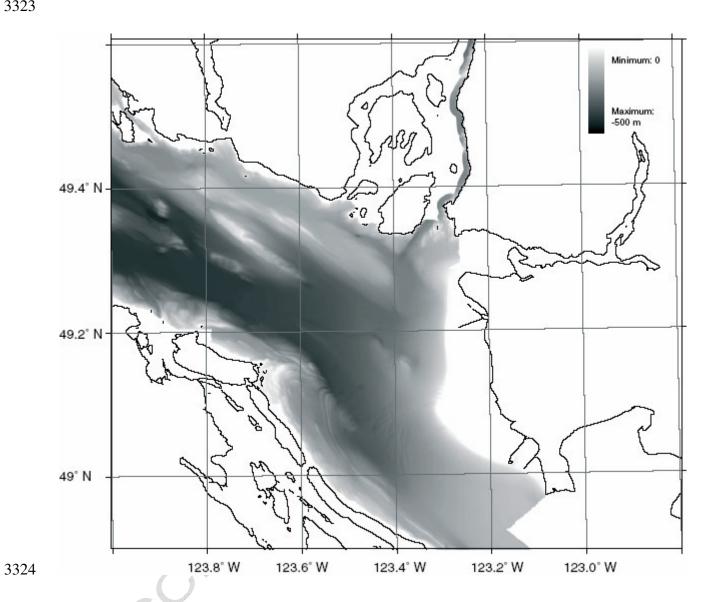
Feature	Measure
Surface Area	6515 km ²
Area at 100m depth	4374 km ²
Volume	1050 km^3
Mean Depth	155m
Maximum Depth	420m (S Texada Island)
Annual Mean Runoff	5650±3500 m ³ /s
Drainage Area	286,890 km ²
Sill Depth – Haro Strait	90m
Sill Depth – Rosario Strait	50m
Summer Basin Flushing	50-75 days
Winter Basin Flushing	100-200 days

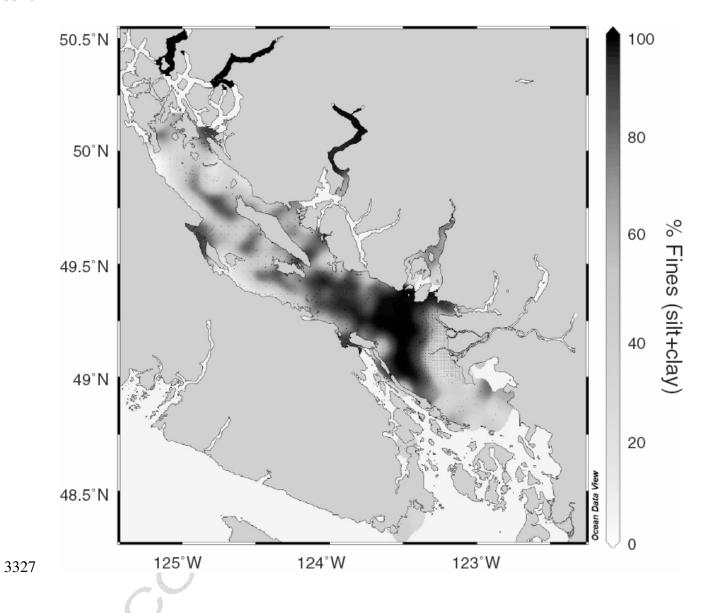
3316 Figure 1

3317

3319 Figure 2

3320

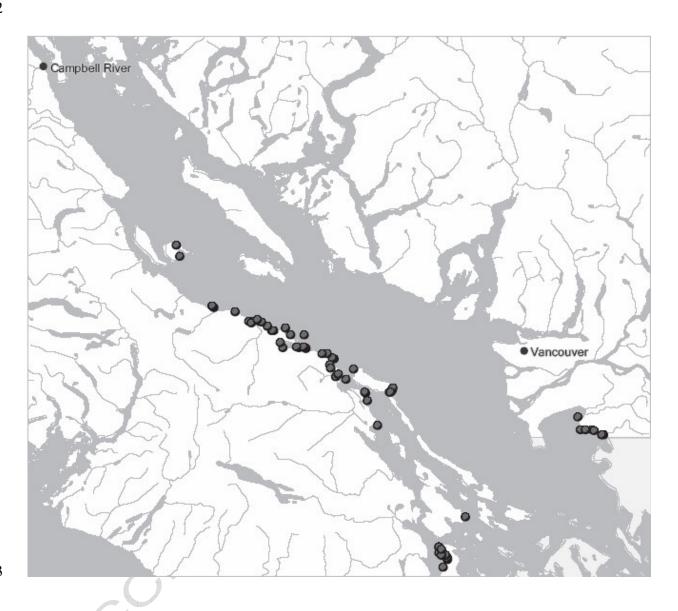




Figure 3 3322

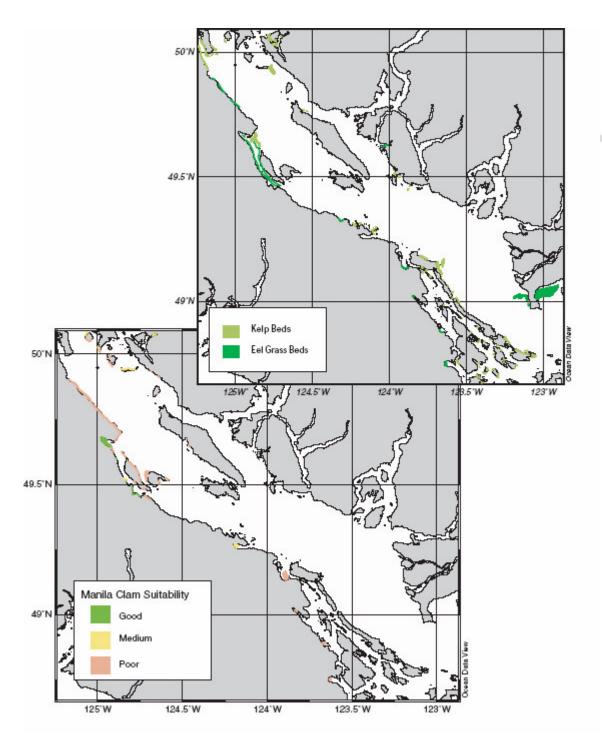
3323

3325 Figure 4

3326


3328 Figure 5

3329


3331 Figure 6

3332

3334 Figure 7

3335

