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ABSTRACT 

Anoxia and hypoxia have been widely observed in estuarine and coastal regions over the 

past few decades; however, few reports have focused on the East China Sea (ECS). In June 

and August 2003, two cruises sampled at stations covering almost the entire shelf of the 

ECS to examine hypoxic events and their potential causes. In August, DO concentrations < 

2 - 3 mg l-1 covered an area estimated at greater than 12,000 km2 (or 432 km3 volume). In 

contrast, water column DO concentrations exceeded 4 mg l-1 throughout most of the shelf 

region. A sharp density gradient was observed under the mixed layer in August, restricting 

vertical re-aeration across this strong pycnocline. Oxygen depletion events, such as that 

described here for the ECS shelf, are fueled by decomposition of newly produced marine 

and river-borne biogenic substances (as well as older residual organic matter) deposited to 

the bottom waters. 

 

Key words: Oxygen depletion, Dissolved oxygen, Hypoxia, Chlorophyll, Coastal zone, 

The East China Sea, The Changjiang (Yangtze) Estuary 
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INTRODUCTION 

Hypoxia and anoxia have been widely observed in many estuarine and coastal regions 

over the last several decades (for review see Diaz, 2001; Rabalais et al., 2002). Even 

though hypoxic and anoxic environments have existed throughout geological time, it has 

been shown that the occurrence of hypoxia and anoxia in shallow, coastal and estuarine 

areas is most likely accelerated by human activities, through over-enrichment of 

anthropogenic nutrients (Diaz and Rosenberg, 1995). Excess nutrient loading often leads to 

eutrophication (e.g., Hecky and Kilham, 1988; Nixon, 1995; Kemp et al., 2005), which can 

result in oxygen depletion through decomposition of elevated organic matter from 

enhanced primary production. In addition to oxygen consumption, the formation of 

hypoxia and anoxia is also controlled, in part, by water column stratification which retards 

vertical oxygen diffusion from the surface to lower layers (Rosenberg et al., 1991; Rabalais 

et al., 2001). Major ecological impacts of hypoxic and anoxic environments include 

reduced biodiversity, alteration of community structure and ecology (e.g., Diaz and 

Rosenberg, 1995; Rabalais and Turner, 2001). 

Interestingly, hypoxia and anoxia have rarely been documented in the East China Sea 

(ECS) which is one of the largest continental shelves in the world (e.g., Li et al., 2002). 

Historically, the ECS has been one of the world’s major fishing grounds, especially within 
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the Changjiang (Yangtze) River plume and its surrounding sea along China’s coast. High 

fishery yield is normally supported by high primary production and abundant food sources 

from lower trophic levels (Caddy, 1993; Xu et al., 2004). Indeed, primary production can 

reach as high as 2079 mg C m-3 d-1 in the Changjiang River plume region, mostly induced 

by high rates of riverine nutrient supply (e.g., Gong et al., 2003; Gong et al., 2006). In the 

past two decades, the anthropogenic nutrient load (e.g. nitrates) exported from the 

Changjiang River into the ECS has increased over ten-fold, and there is continuous growth 

expected in the future (Yan et al., 2003; Li and Dag, 2004; Bouwman et al., 2005). Excess 

nutrients cause eutrophication and stimulate noxious and toxic algal blooms, which have 

been observed with increased frequently on the inner shelf off Changjiang River (Chen et 

al., 2003; Gao and Song, 2005; Zhu, 2005; Zhu et al., 2005). There are, however, few 

studies reporting hypoxic conditions in the estuary and sea adjacent to the Changjiang 

River, much- less associated causes and ecological consequences (Limeburner et al., 1983; 

Li et al., 2002; Li and Dag, 2004). 

Hypoxia, in this study, is defined as a dissolved oxygen level less than 3 mg l-1 

(equivalent to 2.1 ml l-1, 3.0 – 0.2 ml l-1 in Tyson and Pearson, 1991). To explore the 

potential causes of hypoxia in the sea adjacent to the Changjiang River, we compared 

hydrographic data observed prior to (June) and during (August) hypoxic events in 2003. 
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The estimated area of the hypoxic zone might be one of the largest in the world (Diaz, 2001; 

Rabalais et al., 2002 and citations therein). 

 

MATERIALS AND METHODS 

Study area, sampling, and hydrographic measurements. This study is part of the 

Long-term Observation and Research of the East China Sea (LORECS) program. Samples 

were collected on board R/V Ocean Researcher I in June (6/18 – 6/26) and August (8/13 – 

8/23) 2003 at a total of 21 and 35 stations in the East China Sea, respectively (Fig. 1). Using 

Teflon coated Go-Flo bottles (20 l, General Oceanics Inc., USA) mounted on a General 

Oceanic rosette assembly, seawater at each station was sampled at 6 to 10 water depths, at 

depth intervals of 3 to 20 m depending on the water column depth of each station. 

Subsamples were taken immediately for further analysis including dissolved oxygen, 

dissolved inorganic nutrient (e.g., nitrate and phosphate), and chlorophyll a (Chl a). 

Temperature, salinity and density were recorded throughout the water column with a 

SeaBird CTD (SBE 9/11 puls, SBE Inc., USA) with salinity calibrated by Autosal. It 

should be noted that the data used in this study have been partly published together with 

other components (Chen et al., 2006). 

Dissolved oxygen, nutrient, and chlorophyll a. Water samples for dissolved oxygen 
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(DO) from every sampling depth were siphoned into 60 ml BOD bottles. They were fixed 

immediately by addition of 0.5 ml of manganese chloride and 0.5 ml of alkaline iodide 

reagent (Pai et al., 1993). Concentration of O2 was measured using a direct 

spectrophotometry method with a precision of 0.02 mg l-1 (Pai et al., 1993). Water 

subsamples for nutrient analysis were collected in 100 ml polypropylene bottles and frozen 

immediately in liquid nitrogen. A custom-made flow-injection analyzer was used for 

nitrate and phosphate analysis (Gong, 1992). Chlorophyll a was measured using 

fluorometery (Turner Design 10-AU-005) following acetone extraction (Parsons et al., 

1984; Chen et al., 2005). 

 

RESULTS and DISCUSSION 

Hypoxia in the East Chain Sea 

Low dissolved oxygen (DO) conditions in the ECS were first documented in the 

bottom waters of Changjiang Estuary in August 1981 (Limeburner et al., 1983). Previous 

the most comprehensive study of hypoxia in the ECS was in August 1999 (Li et al., 2002), 

and there have been only a few related reports (e.g., Tian et al., 1993). Li and colleagues 

(2002) showed that a large zone of low DO was oriented along the coast extending ~150 

km offshore from the Changjiang River mouth in August of 1999. The low-oxygen region 
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that we observed in August 2003 appeared to have a different orientation, extending further 

(~400 km) offshore as a plume from the Changjiang River mouth. This 2003 hypoxic 

region, as defined by concentrations <3 mg l-1, covered an area of almost 12,000 km2 (Fig. 

2b). The total volume of this hypoxic waters was about 432 km3 (using an averaged water 

column height of 36 m below mixed layer in August). The area of this low-oxygen region is 

close to that of the < 3.0 mg l-1 zone estimated for the northern Gulf of Mexico, which was 

~18,500 km2 based on a 3-year average of bottom DO distributions (Fig. 2 in Rabalais et al., 

2002). The largest corresponding < 2 mg l-1 hypoxic zone reported for the northern Gulf of 

Mexico was 21,000 km2 (Diaz, 2001; Rabalais et al., 2002). In June of 2003, we observed 

DO concentrations in the bottom waters to be consistently higher than 4 mg l-1 in most of 

the ECS shelf region, with the exception of St. 29 which had values of 3.84 mg l-1 (Fig. 2a). 

The pattern of bottom DO isopleths that we observed on the ECS shelf in August 2003 

suggests that only a portion of the low-oxygen area was captured in our field sampling (Fig. 

2b). It is apparent that DO concentrations were decreasing consistently in a northerly 

direction along the entire upper margin of our sampling area.  Presumably, DO levels 

reaching 1-2 mg l-1 or lower were situated just north of our sampling transect. This 

interpretation is further supported by the fact that severely DO-depleted waters with such 

concentrations were reported in the previous study of this region (Fig. 2b; Li et al., 2002). 
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Thus, the actual hypoxic region during August 2003 may have been several times larger 

than our estimates, a point worthy of further focus in future stud ies. 

To examine the vertical profile in the hypoxic area and adjacent sea, results for DO 

and other parameters (salinity, temperature, Chl a, nitrate, and phosphate) along transect 

stations in the northern ECS (Fig. 1) were compared between June and August (all mean 

values are accompanied by the calculated Standard Deviation). For the DO profiles along 

the transect, two general features could be derived. First, DO concentration was higher in 

June than August for most of the profiles at transect stations (Fig. 3a - e). Second, DO 

concentration was higher in the surface water and the values decreased with increasing 

depth, and this gradient was more pronounced in August. In June, subsurface oxygen 

maxima were observed at several stations including, Sts. 19, 21, 22, and 23 (Fig. 3a, c, d, 

and e). This indicated that DO was oversaturated due to high primary production at stations 

during this period. The saturation of DO was as high as 139 % (St. 19), and oversaturation 

(> 100 %)  was observed in the surface 10 m of the water column at almost all measured 

stations in June (mean 105.8 ± 11.5 %). During the hypoxic period (August) DO 

concentrations reached minimum values and extended throughout the water column from 

directly below the mixed layer depth (~7 – 17 m) to the sediment surface (~30 – 70 m) at 

most of the hypoxic stations (Fig. 3a, b, and c). The lowest DO concentration was observed 
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in the bottom water of Sts 18 and 21 with values of ca.1.8 mg l-1 (Fig. 3). The mean DO % 

saturation in the bottom water of hypoxic stations was 34.3% (± 6.3 %). All our results 

indicate that hypoxia may not appear until middle to late summer in the Changjiang River 

plume and nearby sea (Li et al., 2002). To develop and maintain hypoxia, two principle 

factors are essential. First, the water column must be stratified to isolate the bottom layer 

from exchange with the oxygen-rich overlying surface water (Rosenberg et al., 1991; Diaz, 

2001; Rabalais et al., 2002). Second, a large oxygen sink must be driven by decomposition 

of rich organic matter supply to the bottom waters (Turner and Rabalais, 1994; Diaz, 2001). 

These essential features have, however, rarely been examined in the hypoxic regions of the 

Changjiang River plume and adjacent areas of the ECS (Li et al., 2002). 

 

Causes of hypoxia in the ECS – isolation of oxygen supply to bottom waters  

Some marine systems have a great tendency to develop hypoxic conditions due to 

their geomorphology and circulation patterns. Diaz (2001) suggested that a marine system 

with low physical energy (tidal, currents, or wind) and large freshwater input is prone to 

hypoxia. Combinations of these features will result in stratification of the water column 

and the stabilization of water masses near the bottom which become hypoxic when they are 

isolated from reoxygenation with surface waters. In the ECS, a variety of water masses 
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(China coastal fresh water, the Kuroshio waters, the Yellow Sea waters, and the Taiwan 

Strait waters) contribute to this shelf ecosystem (e.g., Liu et al., 2003a). Among these 

sources, Chinese river discharge, especially the Changjiang River, might be one of the 

most important driving forces for the dynamic hydrography along the coast in the ECS. 

The average water discharge of the Changjiang River is ca. 29,300 m3 s-1, annually, 

observed from the seaward-most station of the Changjiang River 

(http://sqqx.hydroinfo.gov.cn/websq/river_jhcx/index_cx.asp). This might explain general 

physical features observed year-round, which are low temperature and salinity in the inner 

shelf, and high temperature and salinity on the slope (Gong et al., 1996; Tseng et al., 2000). 

Spatially, sea surface temperature (SST) and salinity showed an increasing trend from the 

inner shelf to the slope in the ECS (see Fig. 2 in Chen et al., 2006), and a more dynamic 

hydrographic pattern was observed in the Changjiang River Plume.  

These inshore-offshore gradients were especially pronounced during the high river 

flow period (late spring to the early summer) as our results showed in June (Chen et al., 

1994; Tseng et al., 2000). Lower temperatures of saline waters predominated along the 

coast, especially in the Changjiang River Plume regions in the early summer (see Fig. 2a, b 

in Chen et al., 2006). To compare, SST in the hypoxic areas in June and August were in the 

range 18.95 – 22.32 °C and 27.27 – 29.31 °C, respectively (see Fig. 2a, c in Chen et al., 
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2006). Lower salinity water was observed in early (June) rather than the middle (August) 

summer, the values in the hypoxic areas were in the range 26.98 to 32.26 and 31.27 to 

32.81, respectively (see Fig. 2b, d in Chen et al., 2006). This indicates that more freshwater 

was discharged into the ECS during the early summer, and suggests that a large amount of 

low saline water, relative to water temperature, in the surface of water column in June 

might be the most important factor contributing to stratification. Indeed, this assumption 

may be evident from the vertical profiles of salinity at most stations, where a thin layer of 

low saline water on top of the water column was observed ( Sts.19, 20, and 21) in the 

hypoxic areas in June (Fig. 3f, j, and k). This feature has commonly been found in the 

Changjiang River plume regions in summer, and Beardsley et al. (1985) showed that this 

relatively shallow, low salinity plume-like structure extends to middle shelf, on average, 

towards the northeast (Chu et al., 2005). Surprising, this plume-like region is similar to the 

observed hypoxic area in our study. 

Further analyses also showed that the mixed layer depths (MLD) were shallow in both 

June and August with mean values of 7.6 ± 2.6 m and 12.7 ± 4.7 m respectively (Table 1). 

Results also showed that salinity differences between the MLD and the bottom 10 m of the 

water column were larger in June than August with mean values of -2.4 ± 2.1 and -1.9 ± 0.6 

respectively (Table 1). Interestingly, in addition to haline gradient, a thermal gradient 
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might also contribute significantly to stratification of the water column in August, which 

was mainly due to haline stratification in June. Stratification of the water column might be 

attributed to either the halocline or thermocline or both in different conditions or seasons 

(Wiseman et al., 1997). This may be evident in either the vertical profiles of salinity and 

temperature at transected stations (Fig. 3f –j, k - o) or from the large temperature difference 

between the MLD and the bottom 10 m in the water column in August compared to June, 

which had a mean value of 6.9 ± 1.9 °C and 4.4 ± 2.8 °C, respectively (Table 1). Sharper 

density gradients in the water column were observed in August compared to June where 

density differences between MLD and the bottom 10 m of the water column were –3.5 ± 

0.9 kg m-3 and –2.9 ± 1.6 kg m-3 respectively (Table 1). 

These data indicate that the water column was more stratified in August compared to 

June, and this phenomenon resulted from both temperature and salinity gradients in August. 

Our results also indicate that strong stratification of the water column in August was 

essential for hypoxic zone development, as it isolates the bottom layer from exchange with 

oxygen-rich overlying surface water. 

 

Causes of hypoxia in the ECS – reduction of oxygen level in bottom waters  

 Although seasonal variation in stratification and hydrodynamic transport were 
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important in establishing low oxygen conditions in the bottom layer, maintenance of these 

conditions required an elevated supply of organic matter. The source of organic matter in 

the hypoxic region might have been derived from sinking of in situ production or discharge 

from fluvial input, as seen in the northern Gulf of Mexico (Rabalais et al., 2002 and 

citations therein). The Changjiang River plume in the high flow period is dominated by two 

different sources of particulate organic carbon, river-borne detritus and marine plankton 

production (e.g., Cauwet and Mackenzie, 1993). Although we have no direct observations 

that would reveal the relative importance of these two sources of organic matter in the 

Changjiang River plume and adjacent ECS, indirect information can shed light on this 

question. For example, high water discharges observed at the seaward-most station of the 

Changjiang River (http://sqqx.hydroinfo.gov.cn/websq/river_jhcx/index_cx.asp), show 

relatively high flow in both June (37.1 x 103 m3 s-1) and July (56.6 x 103 m3 s-1) 2003 

(compared to annual mean value = 29.0 x 103 m3 s-1). Therefore, significant amount s of 

freshwater flow into the ECS produce the low salinity plume-like structure observed in the 

same study (see Fig. 2 in Chen et al., 2006). 

During high river flow periods, sediment load is especially pronounced in the 

Changjiang River (Chen et al., 2001). Monthly concentrations of suspended sediment 

averaged over thirty years can be as high as 0.65 kg m-3 at the river mouth during the wet 
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season which runs from May to October (e.g., Cauwet and Mackenzie, 1993; Chen et al., 

2001). Even though most of the discharge sediment is deposited along the shore southward, 

patches of suspended sediment influenced by the Changjiang plume can reach eastward 

and northeastward from the middle to the outer shelves of the ECS in summer (Deng et al., 

2006 and citations therein). 

Seasonally, both biomass and production of phytoplankton were the highest in the late 

spring and early summer in the coastal region of the ECS (Gong and Liu, 2003; Gong et al., 

2003). In our study, Chl a values were significantly higher in the early summer (June) than 

they were in August for both integrated and averaged values over the euphotic zone for the 

entire ECS (Chen et al., 2006). The difference in Chl a concentration between the periods 

was particularly pronounced at the hypoxic zone stations, 6.44 ± 12.00 mg Chl m-3 in June 

compared to 0.71 ± 0.33 mg Chl m-3 in August. Peak Chl a concentration reached 90.3 mg 

Chl m-3 at St. 20 in June (Fig. 4b). Substantial algal blooms dominated by S. costatum were 

also observed during a comparable period and location in previous studies (Gao and Song, 

2005; Zhu et al., 2005). Even though occurrence of phytoplankton blooms in the 

Changjiang River plume varied temporally and spatially, they frequently appeared in a 

region bounded by 30.5° – 32.0°N and 122.25° – 123.25°E during the period May to August 

(Gao and Song, 2005 and citations therein). This suggests that a tremendous amount of 
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marine biogenic organic matter is deposited into the bottom water or sediment around the 

Changjiang River plume, which usually tends towards the northeast during this period 

(Beardsley et al., 1985; Chu et al., 2005). Large quantities of DO are therefore consumed 

during the decomposition processes, as evident from high values of  apparent oxygen 

utilization (AOU) observed in the bottom water at the hypoxic stations in August (4.67 ± 

0.48 mg l-1). 

The main cause of phytoplankton blooms in the Changjiang River plume might be 

associated with the huge amount of nutrients from fluvial input. The average dissolved N 

flux is 10 x 109 mole month-1 in the flood season (Gong et al., 2003; Liu et al., 2003b; Zhu 

et al., 2005; Chen et al., 2006). Significant linear relationships have been observed between 

nutrient concentrations and salinity in the surface water (Chen et al., 2006). Vertical 

profiles of nitrate and phosphate concentrations also showed that values were higher in the 

surface water of the Changjiang River plume and the adjacent sea area of the ECS during 

the high river flow period (June). Nitrate and phosphate concentrations were both 

relatively high in June reaching levels of 10.4 - 22.2 µM and 0.1 –0.8 µM, respectively. In 

contrast, nitrate and phosphate concentrations in the surface water were low in August. 

Although surface nutrients were lower in August than in Jun, the bottom water 

concentrations in August exceeded those in June, especially at the hypoxic stations (Fig. 4f 
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- o). Previous studies have shown that low redox conditions, tend to cause higher effluxes 

of ammonium and phosphate from sediment to overlying water in coastal ecosystems (e.g., 

Kemp et al., 2005 and citations therein). 

Our results suggest that the reduction of oxygen level in the bottom water might be 

due to increasing rates of bacterial decomposition as a consequence of elevation of organic 

matter from both fluvial input and marine origin during high river flow periods of late 

spring and early summer. In addition, water temperature not only plays an important role in 

water stability and O2 dissolution, it also affects the rate of bacterial decomposition and 

growth. Rates of bacterial decomposition and growth are enhanced by higher water 

temperatures (White et al., 1991; Shiah et al., 2000). This could partially explain why 

hypoxia was not as evident during the high organic matter input period in June, since water 

temperature was low in the bottom water with average values ~16.6 °C at the hypoxic 

stations. Average water temperature in the bottom water was about 7 °C higher in August 

than June at the hypoxic stations (Fig. 3k - o). The decomposition rate may thereafter be 

accelerated by higher water temperature in the bottom water in August. 

 

CONCLUSION 

In this study, a hypoxic area estimated at greater than 12,000 km2, with DO 
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concentrations < 2 - 3 mg l-1, extended from the Changjiang River plume ~ 400 km 

offshore and ~300 km southward along the coast of the ECS was observed in August 2003. 

This hypoxic area is comparable to the largest coastal hypoxic zones observed in the world 

(Diaz, 2001; Rabalais et al., 2002 and citations therein). Vertically, DO concentrations 

promptly reached minimum values which extended throughout the water column directly 

below the mixed layer depth (~7 – 17 m) in the hypoxic region. To further understand 

development and maintenance of hypoxia, two principle processes were examined. Our 

results indicated stratification through sharp density gradients in the water column in 

August where density difference between the MLD and the bottom 10 m of the water 

column were –3.5 ± 0.9 kg m-3. Interestingly, this phenomenon was controlled primarily by 

temperature as well as salinity. Second, our data suggested that two important sources of 

organic matter, river-borne detrital and marine biogenic, are deposited in the hypoxic 

region in the Changjiang River plume and adjacent areas of the ECS. This was indirectly 

evident from the observed algal bloom in June in the hypoxic area, and was also supported 

indirectly by the high water discharge from the Changjiang River observed during the 

study period. Overall, our results suggest that hypoxia in the ECS might be mainly due to 

decomposition of elevated inputs of organic matter which resulted in reduction of oxygen 

levels in the bottom water, in conditions a strong pycnocline which restricted vertical 
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re-aeration. It also should be noted that the actual hypoxic area might have been 

significantly underestimated in our study, suggesting the need for broader sampling 

schemes in future studies of this ECS region. 
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Table 1. The mean ± SD values of difference in variables between averaged values 

of mixed layer and the bottom 10 m of the water column including temperature ( °C), 

salinity, and density (kg m-3) in June and August at hypoxic stations (i.e., Sts. 18, 19, 

20, 21, 22, 23, and 19A). The mixed layer depth (MLD) was based on a 0.125 unit 

potential density criterion (Levitus, 1982), and the values of MLD are also shown 

for reference.  

 

Variables 

Months Temp Salinity Density MLD 

June 4.4 ± 2.8 -2.4 ± 2.1 -2.9 ± 1.6 7.6 ± 2.6 

August 6.9 ± 1.9 -1.9 ± 0.6 -3.5 ± 0.9 12.7 ± 4.7 
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FIGURES LEGENDS 

Fig. 1. Map of stations in June (x) and August (o) 2003 in the East China Sea (ECS) with 

station number above the mark. Transect stations (i.e., Sts. 19, 20, 21, 22, and 23) for 

further data comparison is marked in grey line. Bottom depth contours (dashed lines) 

are also shown. It should be noted that the Changjiang River also has been known as 

Yangtze River. 

Fig. 2. Contour plots of dissolved oxygen concentrations (DO; mg l-1) in the bottom waters 

of the ECS in June (a) and August (b) 2003. The contour interval of DO is 0.5 mg l-1. 

The polygon in panel (b) also shows the estimated low oxygen zone (DO ?  3 mg l-1) 

from Li et al. (2002). 

Fig. 3. Depth profiles of dissolved oxygen (DO; panels a - e), salinity (Sal; panels f - j), and 

temperature (Temp; panels k - o) in June (dashed line) and August (solid line) along 

transect stations as shown on top of panels. Please refer to Fig. 1 for transect stations. 

The mixed- layer depth is showed as horizontal lines for June (dashed line) and August 

(solid line). 

Fig. 4. Depth profiles of concentrations of Chl a (panels a - e), nitrate (NO3
-; panels f - j), 

and phosphate (PO4
3-; panels k - o) in June (dashed line) and August (solid line) along 

transect stations as shown on top of panels. Please refer to Fig. 1 for transect stations.  
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