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Mitochondrial dysfunction has severe cellular consequences, and is linked to aging and 

neurological disorders in humans. Impaired energy supply or Ca2+ buffering, increased ROS 

production, or control of apoptosis by mitochondria may contribute to the progressive decline of 

long-lived postmitotic cells. Mitochondrial biogenesis refers to the process via which cells increase 

their individual mitochondrial mass.  Mitochondrial biogenesis may represent an attempt by cells to 

increase their aerobic set point, or an attempt to maintain a pre-existing aerobic set point in the 

face of declining mitochondrial function.  Neuronal mitochondrial biogenesis itself has been poorly 

studied, but investigations from other tissues and model systems suggest a series of transcription 

factors, transcription co-activators, and signal transduction proteins should function to regulate 

mitochondrial number and mass within neurons.  We review data pertinent to the mitochondrial 

biogenesis field, and discuss implications for brain aging and neurodegenerative disease research 

efforts. 
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Mitochondria are the only organelles in animal cells, besides the nucleus, that contain their 

own separate DNA. The human mitochondrial DNA (mtDNA) is a 16 569 bp circular, double-

stranded molecule encoding 13 respiratory chain protein subunits, and 24 RNA components (22 

tRNAs and two rRNAs) necessary for mitochondrial protein synthesis [1]. The majority of the ~1500 

different mitochondrial proteins are encoded by nuclear DNA (nDNA), translated in the cytoplasm 

and transported into mitochondria [1]. The biogenesis of the respiratory chain is therefore 

dependent on an intricate and still poorly understood cross talk between mitochondrial and nuclear 

genomes.  

Mammalian cells each have ~ 1000–10 000 copies of the mitochondrial genome. This high 

copy number of mtDNA ensures that mutations affecting a single copy do not impact overall 

mitochondrial function but does not prevent expansion of de novo mutations arising in a single 

mtDNA molecule.  Mitochondrial number and morphology are controlled by an equilibrium of 

mitochondrial fusion and fission [2] that is vital for mitochondrial metabolism, energy production, 

Ca2+ signaling, reactive oxygen species (ROS) production, apoptosis, and senescence [3-5]. 

Fusion allows the exchange of mitochondrial components including mtDNA between different 

mitochondria. Severe damage of mitochondria impairs fusion resulting in fragmentation of 

mitochondria that are then selectively removed by an autophagic process called mitophagy [6]. 

Mitophagy prevents the release of pro-apoptotic proteins from damaged mitochondria. Consistent 

with a cytoprotective function of autophagy, apoptosis is suppressed upon induction but induced 

upon inhibition of autophagy [7]. This effectively maintains the integrity and homogeneity of the 

mitochondria population throughout the cell [8-10]. This is vital for neuronal homeostasis including 

synaptic function and imbalances in mitochondrial fission and fusion is implicated in 

neurodegenerative diseases such as Charcot-Marie-Tooth neuropathy type 2A (CMT-2A) [11, 12], 
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dominant optic atrophy [13, 14], Parkinson's, Alzheimer’s, and Huntington’s diseases [15, 16,17, 

18, 19]. 

The first pathogenic mtDNA mutations in human patients were reported in 1988 [20, 21] 

with affected patients being either homoplasmic, i.e. having only mutated mtDNA [20], or 

heteroplasmic, i.e. having a mixture of wild-type and mutated mtDNA [21]. Heteroplasmic mtDNA 

mutations segregate during cell division as there is no mechanism to ensure that every mtDNA 

molecule is replicated once and only once during each cell cycle [22]. A minimal threshold level of 

a pathogenic mtDNA mutation is required to induce respiratory chain dysfunction. This has been 

reported to range from 90% for some tRNA mutations to 60% for mtDNA deletions [1], but research 

into threshold phenomena have used to a large extent models that are insensitive to aerobic 

perturbations and may thereby overestimate the amount of mtDNA mutation needed to have a 

functional consequence.  

 

Mitochondria in the aging brain and neurodegenerative diseases 

The brain is a highly metabolic tissue, and neurons in the central nervous system have an 

intense demand for mitochondria [17]. Mitochondria provide most of the ATP for cellular reactions. 

ATP production in mitochondria is coupled to an electron transport system in which the passage of 

electrons down the various electron carriers is associated with the transport of protons from the 

matrix into the intermembrane space. The majority of these protons reenter the mitochondrial 

matrix by the ATP synthase, thereby generating ATP. However, approximately 20% of 

mitochondrial oxygen consumption is not coupled to ATP production, and protons enter the matrix 

through the phospholipid bilayer and through uncoupling proteins, generating heat [23]. 
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Mitochondrial metabolism is also responsible for the majority of the ROS production in 

cells [24]. The formation of ROS occurs when unpaired electrons escape the electron transport 

chain and react with molecular oxygen, generating superoxide. Superoxide can react with DNA, 

proteins, and lipids; plays an important role in intracellular signaling; and is associated with both 

neurodegenerative diseases and aging [24]. ROS can also react with NO, generating reactive 

nitrogen species (RNS) [25]. The maintenance of physiologic ROS levels is critical to normal cell 

functions, and thus prolonged increases in mitochondrial activity can increase ROS levels and alter 

intracellular physiologic set points.  

Studies of aging brain mitochondria consistently report reductions of complex I activity, 

complex IV activity, and increased ROS production [26]. Other age-related mitochondrial changes 

include reduced membrane potential and increased size.  mtDNA mutations may contribute to age-

related mitochondrial decline.  mtDNA deletions accumulate with age in many tissues, especially 

brain [27].  It is easier to find low abundance, heteroplasmic point mutations (microheteroplasmy) in 

the brains of elderly individuals than in the brains of young individuals [28, 29]. The number of 

microheteroplasmic mtDNA CO1 gene mutations inversely correlates with cytochrome oxidase 

activity [29].  Mice with impaired mtDNA polymerase γ (mtPOLG) proofreading show accelerated 

mutation accumulation, an age-dependent progressive reduction of electron transport chain (ETC) 

enzyme activities, and accelerated aging despite the fact that oxidative stress markers are not 

increased [30-32]. 

Mitochondria are altered in brains of persons with certain neurodegenerative diseases [33, 

34].  There are activity reductions of complex I in Parkinson’s disease (PD), cytochrome oxidase in 

Alzheimer’s disease (AD), and multiple electron transport chain (ETC) enzymes in Huntington’s 

disease (HD).  Mitochondrial dysfunction occurs in amyotrophic lateral sclerosis and progressive 

supranuclear palsy.  Leber’s hereditary optic neuropathy (LHON), a focal degeneration of the optic 
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nerves, arises from mutations in mtDNA-encoded complex I genes and is associated with complex 

I dysfunction.  

Falling oxidative phosphorylation capacity in aging human brain associates with increased 

amounts of mtDNA [35, 36].  This mtDNA increase occurs in conjunction with a steady state 

decrease in mRNA levels and presumably is compensatory.  The status of mitochondrial 

biogenesis in AD is unclear.  In AD brain increased mtDNA, ETC protein, and ETC gene 

expression are reported [35, 37].  Upregulated expression of ETC genes occurs in mutant APP 

transgenic mice and low levels of beta amyloid (Aβ) induce mitochondrial biogenesis [37, 38].  

Other studies alternatively report reduced AD brain mtDNA and ETC gene expression [39-42]. 

Perhaps neurons in different stages of disease show different patterns of mitochondrial biogenesis.   

 Data pertinent to mitochondrial mass regulation in a neurodegenerative disease state are 

also inferred from transgenic mouse models of HD.  The R6/2 HD mouse shows reduction of the 

peroxisome proliferator-activated receptor γ coactivator 1α  (PGC1α), a transcriptional coactivator 

critical to mitochondrial biogenesis [43].  This suggests polyglutamine-expanded huntingtin 

interference with mitochondrial biogenesis.  Beyond HD and AD, though, little is known about 

mitochondrial biogenesis pathway activation or deactivation in late-life neurodegenerative diseases 

but relevant precedents do exist.  For example, some mitochondrial encephalomyopathies such as 

the myoclonic epilepsy and ragged red fiber (MERRF) syndrome, which does exhibit 

neurodegeneration, shows profound muscle cell mitochondrial proliferation [44].   

 

Manipulation of mitochondrial biogenesis 

A variety of interventions appear able to influence cell aerobic setpoints in general and 

mitochondrial biogenesis specifically.  Some of these interventions are discussed below.  
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Caloric restriction 

Caloric restriction (CR) induces endothelial NO synthetase (eNOS) expression which 

increases nitric oxide (NO) production and ultimately mitochondrial biogenesis [45]. This process 

involves PGC1α [45, 46]. This leads to increased autophagy, recycling damaged components and 

producing newer, more efficient organelles. This process is modulated, in part, by mammalian 

target of rapamycin (mTOR)  and forkhead box-containing protein O (FOXO)  transcriptional factors 

[47, 48].  The arising mitochondria have a reduced membrane potential, produce less ROS, 

consume increased levels of oxygen and exhibit an improved ATP/ROS ratio – leading to 

decreased energy expenditure [46].  

 

Anti-oxidants  

CR induces a switch to mitochondrial respiration and increased ROS, which in turn, 

activates mitochondrial biogenesis. Subjecting neurons to adverse stimuli in order to mitigate 

damage induced by subsequent stressors has provided insight into the hormesis-mediating role of 

ROS [49]. ROS and reactive nitrogen species (RNS) may mediate the protective influence of 

preconditioning on various cell populations and may actually operate as signal transduction 

elements. The stress associated with the fasting state may inflict modest damage upon 

metabolically active neuron mitochondria, which prompts the neurons to increase mitochondrial 

mass and maintain mitochondrial integrity via mechanisms that encompass mitophagy, 

mitochondrial fusion, upregulated antioxidant defenses, and enhanced mtDNA repair i.e. 

‘‘mitohormesis’’ [50, 51]. In this context ROS primarily appear to serve as drivers of hormetic 

phenomena as opposed to drivers of cell damage. It is nevertheless necessary to note 

mitochondria that are damaged due to mutated mtDNA or to deleterious protein alterations may not 
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be able to withstand stressors tolerated by intact mitochondria, and activate quality-control proteins 

such as the putative mitochondrial membrane potential sensor, DAPK [52].  

Recently the hormesis theory has been extended to the ROS-generating effects of 

exercise [53, 54]. ROS increase in skeletal muscle during exercise and there is some evidence that 

such small, physiological increases in ROS are required for normal increases in mitochondrial 

biogenesis following exercise [55].  Indeed, markers of mitochondrial biogenesis do not increase 

during exercise-training if rats are treated with vitamin C as a non-specific antioxidant [55]. PGC-

1α has been shown to switch on the anti-oxidant system when free radicals begin to accumulate. 

This protective system may be what fails in some neurodegenerative diseases. PGC-1α both 

drives the mitochondria to make energy and establishes the maximum level of free radicals the cell 

will accept as a consequence of increased aerobic activity. As excess free radicals build up, the 

cell enters a state of "oxidative stress," which prompts the cell to produce more PGC-1α, which in 

turn spurs the anti-oxidant defenses into action [56]. The administration of antioxidants may 

actually serve to disrupt this delicate and certainly physiologic feed-back loop.  

Resveratrol 

The polyphenol resveratrol is a natural polyphenolic compound mainly found in the skin of 

grapes and is well known for its phytoestrogenic and antioxidant properties [57]. It has been shown 

to induce mitochondrial biogenesis by significantly increasing SIRT1 activity through an allosteric 

interaction, resulting in the increase of SIRT1 affinity for both NAD+ and its acetylated substrates 

[58]. These findings are consistent with the fact that in various species, resveratrol treatment 

mimics Sir2-dependent lifespan extension during CR [58-60]. 

Exercise 
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Exercise is a powerful inducer of mitochondrial biogenesis in skeletal muscle [61, 62]. It 

increases muscle AMP/ATP ratios and activates AMP-activated protein kinase (AMPK), which 

proliferates mitochondria [63].  Drugs that activate AMPK also induce mitochondrial biogenesis.  

Thiazolidinediones 

Thiazolidinedione drugs activate peroxisome proliferator-activated receptor γ (PPARG) 

and are used to reduce insulin resistance in type II diabetes [64-66]. These agents affect 

mitochondria and the consequences of acute versus chronic exposure differ [67, 68].  

Thiazolidinediones increase ETC uncoupling [69-72].  Although uncoupling should reduce ROS, 

acute exposure of hepatocytes to a thiazolidinedione increases oxidative stress.  Chronic exposure 

induces mitochondrial biogenesis in human subcutaneous adipose tissue, human neuronal NT2 

cells, and mouse brain [67, 73, 74].  The clinically available thiazolidinediones, pioglitazone and 

rosiglitazone, poorly cross the blood brain barrier but have been considered for treating AD [75-78].  

Rationales are that thiazolidinedione anti-inflammatory effects or insulin system modulation confers 

putative benefits [78, 79].  More recently, it was proposed thiazolidinedione induced mitochondrial 

effects are worth considering [80].   

Pyruvate  

Increasing concentrations of pyruvate have been shown to increase mitochondrial 

biogenesis in myoblasts [81] . Acetyl-CoA generated from pyruvate entering into the mitochondria 

is converted into acetyl-carnitine.  Acetyl-carnitine in addition to liberating mitochondrial CoA, can 

pass out of the mitochondria and cell, providing an overflow mechanism for excess energy supply 

when the cell is energy depleted. Supplementing diets with acetyl-carnitine has been shown to help 

maintain or improve mitochondrial function in rats [82, 83]. Excess pyruvate results in the 

production of lactate with the concomitant oxidation of NADH to NAD+. The NAD+-dependent 
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histone deacetylase SIRT1 interacts with PGC1α [84] and regulates PGC1α -dependent gene 

expression in a nutrient-sensitive manner in hepatocytes [85].  

 

Proteins and pathways implicated in mitochondrial biogenesis  

PGC1αααα     

While the mechanisms that underlie mitochondrial biogenesis vary between tissues 

PGC1α often serves as a master regulator, modulating ~20% of the genes that are regulated 

during CR, including acute phase response (APR) genes [86]. PGC1α co-activates numerous 

metabolically relevant nuclear and non-nuclear receptor transcription factors [87-89].  It is highly 

expressed in brown adipose tissue, skeletal muscle, and brain.  Nuclear respiratory factor 1 

(NRF1) and nuclear respiratory factor 2 (NRF2) are PGC1α co-activated transcription factors.  

Their activation coordinates expression of genes encoding mitochondrial proteins [90].  Part of this 

coordination includes expression of mitochondrial transcription factor A (TFAM), which increases 

levels and expression of mtDNA [91, 92].  In some tissues PGC1α increases expression of 

transcription factors it subsequently co-activates, creating positive feedback loops.  For example, 

the estrogen-related factor α (ERRa) promoter contains cis-elements that bind NRF2 and ERRa 

itself.  PGC1α increases NRF2 and ERRa expression, and subsequently co-activates them to 

produce even more ERRa.  ERRa then binds PGC1α to drive NRF1 expression [93, 94].  PGC1α 

also co-activates antioxidant enzyme expression [95] and expression of mammalian homolog of 

tribble 3 (TRB-3), an Akt pathway inhibitor [96].     

PGC1α is influenced by post-translational modification, including acetylation (usually 

suppresses activity), p38 MAP kinase-mediated phosphorylation (enhances activity by reducing 

binding of the p160MBP repressor protein, as well as by increasing the PGC1α half-life), and 
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arginine methylation [89, 97-100]. PGC1α levels are also controlled by the cAMP response 

element binding protein (CREB) and FOXO transcription factors.  CREB activates the PGC1α 

promoter and drives PGC1α expression [101, 102].  In this function CREB acts in conjunction with 

a family of calcium and cAMP-sensitive co-activators, the transducer of regulated CREB binding 

protein family (NB: TORC; not to be confused with mTORC).  Of the three TORC proteins, under 

basal conditions TORC1 and TORC2 are in the cytoplasm, and move to the nucleus when calcium 

and cAMP levels rise.  TORC1 is especially prominent in the brain.  Like CREB, forkhead in 

rhabdomyosarcoma (FKHR; FoxO1) activates the PGC1α promoter by binding internally located 

insulin response sequences [103].  It is activated by oxidative stress, which favors nuclear over 

cytoplasmic localization, and by SIRT1-mediated deacetylation [104, 105].  Akt prevents FKHR 

transcription, since phosphorylation causes cytoplasmic retention.  Akt phosphorylation of FoxO3 

also prevents its nuclear localization.  FoxO3-mediated transcription is associated with longevity 

[106]. 

Some mitochondria-targeted, nuclear-encoded protein gene expression is mediated by 

signal protein 1 (Sp1) or myocyte-enhancing factor-2 (MEF2) rather than the NRFs.  Other nuclear 

receptors not discussed (PPARa, PPARG, thyroid hormone receptors, retinoid receptors, 

glucocorticoid receptors) contribute to mitochondrial biogenesis through effects on PGC1α 

expression, PGC1α interactions, or both [107].  Along with PGC1α two other related transcription 

factors, PGC-1-related coactivator (PRC) and PGC-1-related estrogen receptor coactivator 

(PERC), comprise the PGC-1 “family” of coactivators.  There is functional overlap within the family, 

although its members vary in promotional emphasis.  PRC may play a particularly important role in 

regulating mitochondrial content in cultured fibroblasts, which do not express PGC1α [108].   
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SIRT1 

SIRT1 is activated by a rising NAD+/NADH ratio [99, 109]. SIRT1 is a member of the 

sirtuin family of NAD+-dependent class III histone deacetylases (HDAC) [110-113]. SIRT1, 

deacetylates and thereby activates the nuclear PGC1α, which in turn induces mitochondrial 

biogenesis [114].  Although SIRT1 is largely nuclear where it deacetylates histones H3 and H4 as 

well as transcription factors such as NF-κB, p53, FOXO, Ku70, and PGC1α [115, 116],  it has 

however been shown to shuttle between the nucleus and cytosol in response to oxidative stress 

[115, 117, 118].  Since it requires NAD+ for its activation and as substrate for deacetylase 

reactions, changes in the cellular NAD+/NADH ratio, i.e., the redox state, influence its activity. 

Increased NAD+ biosynthesis and SIRT1 activation have been shown to protect axons against 

degeneration [119]. However, since HDAC inhibitors, including  nicotinamide, confer 

neuroprotective effects in models of neurodegenerative diseases [120, 121], the role of HDAC in 

neuronal survival becomes complicated. Since both SIRT1 and PARP-1 utilize NAD+ for their 

activity, depletion of cellular NAD+ due to PARP-1 activation may influence SIRT1 activity [122, 

123]. SIRT1’s requirement of NAD+ has the potential to consume cellular energy and render 

neurons vulnerable to stress. 

AMPK 

PGC1α function is also modulated by AMPK [124]. AMPK therefore appears to be critical 

in the mitochondrial bioenergetic process, especially during exercise [125]. In muscle, PGC1α  is 

activated by AMPK, a heterotrimer affected by cell AMP/ATP ratios [126].  AMPK favors 

catabolism, and serves as a counterweight to the anabolism-oriented Akt pathway.  Anabolic cell 

processes increase the AMP/ATP ratio, prompting AMPK to increase cell catabolic processes.  

ADP phosphorylation, glycolysis, mitochondrial biogenesis, and glucose uptake are stimulated, 

while anabolic processes are concurrently inhibited.  AMPK is stimulated by events that reduce 
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ATP production (hypoxia, glucose deprivation, metabolic inhibitors) or that increase ATP 

consumption.  Rising cytoplasmic calcium levels typically increase ATP consumption and activate 

AMPK.  A calcium/calmodulin-dependent protein kinase kinase (CaMKK) appears to mediate this, 

especially in neural tissue [127, 128].  Resveratrol activates AMPK in HepG2 cells and in C. 

elegans liver [129, 130].  In cultured myocytes, fibroblasts, and hepatocytes very short duration 

(under 3 hour) thiazolidinedione exposure increased AMP/ATP ratios and increased AMPK activity 

[131, 132].  Chronic thiazolidinedione administration also increased AMPK activity in rat liver and 

adipose tissue[133, 134].  Metformin, a diabetes drug, activates AMPK [135].  AMPK may also 

modulate the function of FOXO, implying coordination of resistance to oxidative stress and energy 

metabolism [136]. 

mTOR 

mTOR regulates cell growth in response to nutrient status and regulates PGC1α levels 

and oxidative phosphorylation capacity [126, 137]. It mediates both pro-survival and proliferative 

functions.  Its inhibition with rapamycin lowers mitochondrial membrane potential, oxygen 

consumption, and ATP synthetic capacity [138]. Its activity is modulated by p53 and AMPK [139]  

and it impacts mitochondrial function as part of a complex with PGC1α and the transcription factor 

yin-yang 1 (YY1) [140]. The mTOR pathway can also self inhibit via the s6 kinase [141]. Insulin 

may therefore promote mitochondrial biogenesis as part of a general proliferative function, while 

stressors promote it as a mechanism to ensure increased resistance to stress. 

HIF1αααα/ββββ  

The HIF-1α/β (hypoxia induction factor 1α and β) transcription factor heterodimer favors 

glycolysis over oxidative phosphorylation.  The HIF-1a component is degraded under normal 

oxygen concentrations and accumulates under hypoxic conditions.  HIF-1 suppresses 
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mitochondrial biogenesis [142].  This is at least partly mediated through negative regulation of 

AMPK.  Brief hypoxic exposure, on the other hand, induces mitochondrial biogenesis through nitric 

oxide-dependent physiology [143].  The fact that hypoxia is associated with mitochondrial 

biogenesis while HIF-1, which is hypoxia-induced, suppresses it is conceptually complex.  

Experimental details relating to the cell type or hypoxia stimulus duration may influence outcomes.   

TFAM and Mitochondrial Transcription Factor B 

Mitochondrial biogenesis induced by CR, resveratrol, exercise, or pyruvate is regulated by 

crosstalk between nuclear and mitochondrial genomes and is coordinated by nuclear coactivators 

such as PGC1α and the nuclear respiratory factors (NRF-1 and NRF-2), which transactivates 

genes for oxidative phosphorylation and protein importation [144-146]. These transcription factors 

also mediate mtDNA transcription and replication through two nuclear genes: mitochondrial 

transcription factor A (TFAM) and its cofactor, mitochondrial transcription factor B [144, 145]. 

Activation of these molecular regulators of biogenesis during adaptation to oxidative stress 

enhances cell and organ survival [144, 147, 148].  

 

Could mitochondrial biogenesis induction benefit the brain?   

The aging brain exhibits mitochondrial biogenesis although aging muscle apparently does 

not [26, 35, 149, 150].  Mitochondrial biogenesis may represent an attempt by cells to increase 

their aerobic set point, or an attempt to maintain a pre-existing aerobic set point in the face of 

declining mitochondrial function.  In the case of brain aging, it is reasonable to consider that 

increased brain mitochondrial mass might represent a compensatory response to longitudinal 

declines in brain mitochondrial function.  In AD, though, data suggest the mitochondrial biogenesis 

picture may be mixed.  There are certainly fewer normal mitochondria and more abnormal 

mitochondria in AD neurons.  Mitochondrial removal via lysosomes is increased [35].  Expression 
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of oxidative phosphorylation subunit genes also appears mixed, with some studies showing 

decreased expression and others showing increased expression (at least up through intermediate 

stages of the disease) [35, 41, 151, 152].  This raises the possibility that switching from an 

enhanced state of mitochondrial biogenesis to a diminished state of mitochondrial biogenesis could 

represent a key transition between normal brain aging and AD.  If so, then inducing mitochondrial 

biogenesis should represent a viable pharmacologic target for the treatment of AD and other 

NDDs.   

While enhancing mitochondrial biogenesis of abnormal brain mitochondria might prove 

therapeutically useful for AD as well as other neurodegenerative diseases associated with 

decreased oxidative phosphorylation enzyme activities, safety issues require consideration.  For 

example, in one mouse study PGC1α cardiac overexpression caused cardiomyopathy [153].    

 

Mitochondrial therapeutics of neurodegenerative diseases 

Since many neurodegenerative diseases cause mitochondria to malfunction, it may be important to 

focus on developing methods to repair and restore mitochondria. Already a few strategies are 

being developed that open up ways for manipulating mitochondrial functions and may allow for the 

selective protection or eradication of neurons in the treatment of neurodegenerative diseases.  

Recombinant-human mitochondrial transcription factor A (rhTFAM) 

A recent study shows that the human mitochondrial genome can be manipulated from outside the 

cell to change expression and increase mitochondrial energy production.  Mitochondrial 

transcription factor A (TFAM), a naturally occurring protein, can be engineered to rapidly pass 

through cell membranes and target mitochondria. It has been shown that rhTFAM acts on cultured 

cells carrying a mitochondrial DNA disease as well as lab mice. rhTFAM enters and energizes the 
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DNA of the mice's mitochondria, enabling these mice to run two times longer on their rotating rods 

than a control group cohort [154, 155].  

Dimebon 

Dimebon (or Dimebolin hydrochloride) is an antihistamine drug that may inhibit mitochondrial 

permeability transition pore and protect neuronal mitochondria from mutant proteins such as 

amyloid beta (Aβ), mutant Huntingtin and other mitochondrial toxic insults [156]. It clinically 

reduced cognitive deficits in AD patients in a phase II clinical trial and may enhance cognition in 

healthy individuals [19, 157]. 

Mitochondria targetting antioxidants 

Because mitochondria are the primary producers of cell ROS, oxidative damage of mitochondrial 

proteins or DNA is likely to contribute to the mitochondrial dysfunction that is characteristic of many 

neurodegenerative diseases [158]. Developing antioxidants that target mitochondria such as 

MitoQ, MitoVitE, MitoPBN, MitoPeroxidase, SS-tetra peptides, choline esters of glutathione and N-

acetyl-L-cysteine  maybe useful in protecting neurons from excessive ROS. Initial studies of aging 

and amyotrophic lateral sclerosis (ALS)-transgenic mice found that these antioxidants enter the 

mitochondria several hundred fold compared to naturally occuring antioxidants, neutralize free 

radicals rapidly and decrease mitochondrial toxicity. Therefore, such mitochondrially targeted 

antioxidants might be promising candidates to treat elderly persons and neurodegenerative 

disease patients [159]. 

Conclusions 

In the brain, mitochondrial function declines with age and this functional decline associates 

with increased mitochondrial biogenesis.  In various neurodegenerative disease states brain 
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mitochondrial function declines even further, perhaps to the point that mitochondrial biogenesis can 

no longer compensate for functional declines.  It is worth considering that at some point neurons 

with impaired mitochondria may reach a point where mitochondrial biogenesis pathways 

deactivate.  Neuron mitochondrial biogenesis has not been studied extensively, although it is 

reasonable to expect that proteins and pathways implicated in mitochondrial biogenesis in other 

tissues are also relevant in neuron mitochondrial biogenesis.  A complete and integrated picture of 

mitochondrial biogenesis mechanisms is worth pursuing, as pharmacologic manipulations of brain 

mitochondrial biogenesis could prove therapeutically useful.    
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