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Summary

Mitochondrial  dysfunction  is  an important  intracellular  lesion associated  with  a  wide 

variety of diseases including neurodegenerative disorders. In addition to aging, oxidative 

stress and mitochondrial DNA mutations, recent studies have implicated a role for the 

mitochondrial  accumulation of proteins such as plasma membrane associated amyloid 

precursor  protein  (APP)  and  cytosolic  alpha  synuclein  in  the  pathogenesis  of 

mitochondrial  dysfunction in Alzheimer’s disease (AD) and Parkinson’s disease (PD), 

respectively. Both of these proteins contain cryptic mitochondrial targeting signals, which 

drive  their  transport  across  mitochondria.  In  general,  mitochondrial  entry  of  nuclear 

coded  proteins  is  assisted  by  import  receptors  situated  in  both  outer  and  inner 

mitochondrial membranes. A growing number of evidence suggests that APP and alpha 

synclein interact  with import  receptors to gain entry into mitochondrial  compartment. 

Additionally,  carboxy  terminal  cleaved  product  of  APP,  ~  4kDa  Abeta,  is  also 

transported  into  mitochondria  with the  help of  mitochondrial  outer  membrane  import 

receptors. This review focuses on the mitochondrial targeting and accumulation of these 

two structurally different proteins and the mode of mechanism by which they affect the 

physiological functions of mitochondria

. 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 (1) Introduction 

Nature of signal sequences required for directing a protein molecule to a specific cellular 

compartment have been defined (1, 2 ). Studies for the past several decades on the protein 

targeting have remarkably contributed to our understanding of mechanisms underlying 

the transport of protein molecule to a specific cellular compartment (as reviewed in ref# 

1-11).  Recent studies have demonstrated that several physiologically important protein 

molecules  belonging  to  animal  and  plant  kingdoms  also  target  to  more  than  one 

compartment suggesting the presence of multiple hidden signals in these proteins (12-26). 

Studies have also suggested the need for post translational modifications to activate these 

hidden signals  (13, 19, 21-25). Nevertheless, we are still  beginning to understand the 

mechanisms involved in the activation of hidden signals during the targeting of these 

proteins  to  multiple  compartments  and  cellular  consequences  of  multiple  organelle 

localization.  Mitochondria  are  vital  organelles  for  various  neuronal  functions.  The 

mitochondrion,  a  double-membrane  structure  organelle,  contains  machinery  for 

transcription,  translation,  and  five  protein  complexes  involved  in  the  oxidative 

phosphorylation to generate adenosine triphosphate (ATP).  Each mitochondrion contains 

multiple copies of 16.5 kb DNA that codes for the 13 proteins. Among 13 proteins, seven 

are part of complex I, one of complex III, three of complex IV and two of complex V. To 

carry  out  the  cellular  commitments,  mitochondria  need  to  import  a  large  number  of 

proteins that are coded by nuclear DNA. Recent proteomic studies suggest that over 1500 

nuclear  encoded  proteins  are  reported  to  be  imported  into  mammalian  mitochondria 

under  physiological  conditions  (27).  Furthermore,  dysfunction  of  these  mitochondrial 

complexes is well documented during the pathogenesis of neurodegenerative disorders 
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(28-48).  However,  the  precise  cause  for  dysfunction  of  these  complexes  in  the 

neurodegenerative  disorders  is  not  well  understood.  A  large  body  of  literature  has 

suggested  an  important  role  for  a  number  of  factors  including  oxidative  stress, 

mitochondrial  DNA  mutations,  imbalance  in  calcium  homeostasis  and  aging  in  the 

dysfunction of mitochondrial complexes (28-34, 40, 46, 47). In addition, recent studies 

have also implicated a role for targeting and accumulation of plasma membrane APP and 

cytosolic  alpha  synuclein  to  mitochondria  in  the  pathogenesis  of  mitochondrial 

dysfunction in Alzheimer’s and Parkinson’s diseases, respectively. (49-66). It is not clear 

how APP and alpha synuclein accumulate in the mitochondrial compartment during the 

pathogenesis of AD and PD respectively. Mitochondrial targeting of alpha synuclein and 

APP is a challenging and newly emerging field, which may be an important contributor 

in  understanding  the  mitochondrial  dysfunction  in  neurodegenerative  disorders.  This 

review focuses on the role of players involved in the mitochondrial targeting of APP and 

alpha synuclein and the inhibitory effects of mitochondrial accumulated APP and alpha 

synuclein  on  wide  varieties  of  mitochondrial  physiological  functions  resulting  in  the 

mitochondrial dysfunction as seen in AD and PD, respectively.

(2) Alpha synuclein and mitochondrial dysfunction in PD models

  PD is  the second most  common progressive neurodegenerative disorder in  humans, 

which  is  associated  with  loss  of  dopaminergic  neurons  in  substantia  nigra  (67-69). 

Clinically,  PD is  characterized  by  severe  motor  dysfunction  including  uncontrollable 

resting tremor, muscular rigidity, impaired postural reflexes, and bradykinesia. One of the 

pathological  hallmarks  of  PD and related  synucleinopathies  is  intracellular  inclusions 

called lewy bodies that  consist of aggregated alpha synuclein (67-72).  Although, the 
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physiological  functions of alpha synuclein are  not clear  but several  lines  of evidence 

suggest that it may act as a chaperone that plays a role in regulating membrane stability, 

neuronal plasticity and enzymatic activities (67, 68, 71-73). Moreover, constitutive levels 

of  alpha  synuclein  may  be  important  for  maintaining  the  functional  integrity  of 

mitochondria inner membrane complexes I and III (57, 74). 

 Alpha  Synuclein  exhibits  dynamic  structural  changes  based  on  the  local  cellular 

conditions.  Various  triggering  factors,  either  environmental  or  genetic,  can  lead  to  a 

cascade of events involving misfolding or loss of normal function of alpha synuclein (67-

69,71-73,75).  Importantly, two autosomal dominant mutations (A53T), and (A30P) and 

triplication of the alpha  synuclein gene resulting in the increased study state levels of 

synuclein were linked to familial early onset PD (76-78). It is thought that mutant alpha 

synuclein  proteins  tend  to  aggregate  more  rapidly  than  the  wild  type  human  alpha 

synuclein, to form lewy body-like intraneuronal inclusions (67-69, 71, 72). 

Several groups have shown mitochondrial dysfunction, oxidative stress and impairment 

of complex I in pathogenesis of PD (34-39). Complex I is the largest and first of five 

electron  transport  linked  oxidative  phosphorylation  complexes  of  mitochondria  and 

catalyzes the oxidation of NADH, reduction of ubiquinone to generate proton gradient 

across the membrane. Defect in the function of complex I results in the production of 

reactive oxygen free radicals. Mammalian complex I is an L shaped structure consisting 

of  45  subunits.  Functionally,  the  complex  I  can  be  subdivided  into  three  distinct 

fragments.  The  first  part  is  flavo  mononucleotide  containing  NADH  dehydrogenase 

segment, which is exposed to matrix side of mitochondria.  The second part is iron sulfur 

clusters containing membrane buried portion, which is involved in electron transfer to the 
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electron transporter ubiquinone. The membrane bound transporter segment is the third 

part  of  complex  I,  which  is  involved  in  proton  translocation.  Evidence  for  impaired 

complex I mediated mitochondrial dysfunction in PD comes from studies using cybrids 

that contained mitochondria from PD patients, which showed reduced complex I activity 

(79,  80).  Moreover,  chronic  administration  of  rotenone,  an inhibitor  of mitochondrial 

complex I, to rat induced the degeneration of tyrosine hydroxylase positive neurons in 

nigrostriatal  region  indicating  that  the  perturbation  of  mitochondrial  functions  may 

trigger PD like symptoms (81). Furthermore, overexpression of either wild type or mutant 

alpha synuclein forms  in cell culture systems as well as in transgenic animal models is 

associated  with mitochondrial  abnormalities,  oxidative  stress,  and cell  loss  (57,59,62-

64,66).  These  studies  clearly  demonstrate  the  possible  relationships  among  increased 

alpha synuclein levels,  mitochondrial  defects  and PD pathology in human and rodent 

models

(3) Mitochondrial abnormalities and APP in AD models

 AD is the fourth leading cause of death in the developed world. Besides dementia, the 

most prominent clinicopathological features of this disease are extracellular deposition of 

amyloid plaques, intracellular neurofibrillary tangles, synaptic and progressive neuronal 

degeneration/loss (82, 83). Amyloid plaques consist of deposits of ~4 kDa peptide called 

beta amyloid (Abeta),  which are derived through proteolytic  processing of APP. APP 

occurs as 3 major isoforms due to alternative splicing of the gene. The shortest form, 

APP695, lacks the serine protease inhibitor domain and occurs predominantly in neurons 

while  longer  non-neuronal  forms  such  as  APP770  and  APP751  contain  the  serine 

protease  inhibitor  domain  (82,  53).  However,  normal  physiological  functions  of 
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endogenous APP are not thoroughly understood but are thought to be involved in the 

stabilizing contact points between synapses and maintaining mitochondrial functions (51, 

82, 84).

Decreased energy metabolism, decreased mitochondrial fluidity and decreased activity of 

mitochondrial  cytochrome c oxidase,  a 13 subunit  terminal  oxidase in the respiratory 

chain, leading to mitochondrial dysfunction have been reported in various AD models 

(33,  40-45).  A  growing  number  of  studies  have  reported  a  possible  interconnection 

among  accumulation  of  full  length  APP  and  it’s  cleaved  product,  especially  Abeta, 

oxidative stress and mitochondrial dysfunction in the cellular, transgenic and human AD 

models including Down’s syndrome patients  (85-98).  Upregulation of APP, which is 

influenced by aging, stress and depletion of tropic factors, is also considered to play an 

important role in the cellular abnormalities including mitochondrial dysfunction in AD 

(99-102).  However,  the  amount  of  APP  expression  needed  to  bring  about  cellular 

abnormalities various from model to model and the presence of familial mutations in and 

around abeta domain of APP (49, 52, 85-90, 103). Higher levels of mutations bearing 

neuronal  and  non-neuronal  forms  of  APP are  reported  to  bring  about  mitochondrial 

abnormalities  faster  than  their  wild  type  counterparts  (103).  Using  biochemical  and 

electron  microscopy  techniques,  studies  have  observed  that  over  expression  of  non 

neuronal  form  APP751  in  cultured  human  muscle-fiber  cells  and  mouse  embryonal 

carcinoma (P19)  cells  was  associated  with mitochondrial  structural  abnormalities  and 

altered mitochondrial membrane potentials (88,89). Collectively, these studies indirectly 

suggest the involvement of APP in the mitochondrial dysfunction



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

(4) Mitochondrial Import machinery

The investigations of nature of targeting signals and the interaction with mitochondrial 

receptors of APP and alpha synuclein are of great importance to understand their direct 

role in the mitochondrial dysfunction.  Mitochondrial targeting signals are rich in basic 

amino acids, which can form amphipathic α-helices. Majority of mitochondrial proteins 

have N-terminal mitochondrial targeting signals but in some proteins these signals can 

either be found at C-terminus or in the internal part of the protein molecule (104-106). In 

addition,  mitochondrial  targeted  proteins  are  required  to  maintain  import  competent 

unfolded confirmation to be recognized by translocases of outer membrane (TOM). The 

functions of these mitochondrial import receptors are well conserved in prokaryotic and 

eukaryotic organisms (106). Mitochondrial import signals are first recognized by a group 

of major translocases of outer membrane namely TOM 70, TOM 20 and TOM 22 in a 

sequential manner. Recent study demonstrates that TOM70 can act like a chaperone to 

keep proteins in import competent confirmation (107,108).  Following the recognition of 

signals by these surface receptors, proteins are transported through TOM 40, which is a 

general  import  pore  (GIP)  forming  protein  (109).  Barrel  forming  outer  membrane 

proteins are further recognized by another group of receptors called SAM (sorting and 

assembly machinery) complex, which assists the insertion of these proteins in to outer 

membrane  (  104,  105,  106,  110).  Recent  study  has  suggested  that  mitochondrial 

translocation of some proteins including the ones with N-terminal chimeric signals may 

involve by passing of  outer membrane receptors such as TOM70, 20 and 22 but not 

TOM40 (111, 112). Proteins that are passed through TOM40 are further recognized by 
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inner  membrane  translocases  (TIM)  namely  TIM22  and  TIM23.  TOM40  channel  is 

thought  to  be  larger  than  TIM  22  and  23  channels.  Importantly,  targeting  to  inner 

membrane receptors requires ATP as well as mitochondrial  membrane potential  (104-

112). Polytypic inner membrane proteins are recognized by the TIM22 complex consists 

of channel forming TIM22 and peripheral Tim12, Tim8 and Tim13. Matrix and inner 

membrane anchored mitochondrial proteins are recognized by TIM 23 complex consists 

of  channel  forming  Tim23  and  peripheral  (104-106,  110).  Though  many  of  matrix 

targeted proteins contain N-terminal cleavable signals, but there are a large number of 

mitochondrial proteins do not contain cleavable signals (104, 105, 112). 

(5) Mitochondrial targeting signals of alpha synuclein and APP

(a)  Mitochondrial  signals  of  Alpha  synuclein: Alpha synuclein,  a  140  amino  acid 

presynaptic  soluble  protein.  Prediction  analyses  suggest  the  possible  presence  of 

mitochondrial  targeting  like  signals  (57).   In  addition,  the  alignment  of  N-terminal 

sequence of alpha synuclein with cleavable N-terminal mitochondrial targeting signals of 

bonafied mitochondrial  cytochrome P450Scc (CYP11A1) and cytochrome P450 sterol 

27-hydroxylase (CYP27A1) suggests that first 32 amino acids of N terminus of alpha 

synuclein contains 6 positively charged amino acids (Lysine) and are capable of forming 

helical  structure.  These  properties  of  N-terminus  of  alpha  synuclein  resemble  the 

physico-chemical properties of mitochondrial targeting sequences (Fig.1A). However, it 

is  unclear  whether  mitochondrial  targeting  signals  of  alpha  synuclein  are  cleaved  by 

matrix  proteases  following the  intramitochondrial  entry.  Recent  reports  including  our 

laboratory have observed constitutive presence of synuclein in the mitochondria from the 

brains of rodents and humans (57-61). Using biochemical and cell biological approaches 
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including  deletion  constructs  of alpha synuclein,  Devi  et  al  (57) have shown that  N-

terminal 32 amino acid region of synuclein may be critical for mitochondrial targeting in 

dopaminergic DAN neurons and isolated mitochondria. 

(b) Mitochondrial signal of APP: Unlike alpha synuclein, mitochondrial targeting signals 

of APP, which are conserved in all three major forms of APP, seem to be different and 

show  similarities  with  non-cannonical  chimeric  signals  that  are  discovered  and 

characterized by Avadhani and colleagues (22-26). Chimeric signals are defined as the 

combination of endoplasmic reticulum (ER) and mitochondrial targeting signals arranged 

in tandem. These signals can localize a protein translated from a single gene to ER and 

mitochondria. By virtue of these chimeric signals at the N-terminus, xenobiotic-inducible 

cytochrome P4501A1, 2B1, 2E1 and 2D6 are targeted to both endoplasmic reticulum and 

mitochondria (22-26). The first 35 amino acid residues of APP resemble ER targeting 

signal, while 35-67 aminoacid sequence resemble the mitochondrial targeting signal of 

cytochrome P4501A1, 2B1 and 2E1 (Fig.1B). Studies for the past decade showed that the 

activation of mitochondrial signals hidden in the chimeric signals of proteins is under the 

control of several physiological factors such as proteases and phosphorylation.  These 

factors likely vary from protein to protein.  For example, mitochondrial targeting signals 

of P4501A1 are activated  by soluble  serine protease,  which cleaves  the ER targeting 

domain of this protein (22, 25). In contrast, PKA-mediated phosphorylation at ser 128 

and  ser  129  activates  mitochondrial  signals  of  cytochrome  P4502B1  and  2E1, 

respectively (23, 24).

Using  in vitro mitochondrial import,  in vivo transient transfection and confocal 

immunofluoroscence our laboratory showed that the endogenous as well as ectopically 
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expressed Alzheimer’s full length wild type and Swedish APP695 in HCN-1A neuronal 

cells are localized to both plasma membrane and mitochondria (49).  Furthermore, the 

positively charged residues at  40, 44, and 51 of APP are seemed to be important  for 

targeting  to  mitochondria  (49).   Consistent  with these  results,  using  biochemical  and 

immunofluorescence techniques several  reports have  demonstrated that endogenous as 

well as ectopically expressed APP forms are localized to mitochondria in wide variety of 

cell  lines  such  as  PC12,  COS,  HEK  293,  MEF  cells  (49-52,54,55).  However,  the 

mechanism by which hidden mitochondrial targeting signals are activated in APP protein 

is unclear.

(6) Interactions of alpha synuclein and APP with mitochondrial import receptors.

(a) Interaction of Alpha synuclein with import receptors: Mitochondrial localization of 

alpha synuclein seems to vary with physiological conditions, cell lines and species (57-

64). Very limited number of studies has focused on the involvement of mitochondrial 

outer and inner membrane receptors in the import of alpha synuclein (57-65). However, 

recent study suggests that the interaction of alpha synuclein with mitochondria is very 

selective and instant (113). Furthermore, intra mitochondrial localization of α synuclein is 

dependent on energy and membrane potential  (57). Using  in vitro import,  it  has been 

shown that the intra mitochondrial entry of alpha synuclein is blocked by antibodies to 

outer  membrane  TOM40  protein  suggesting  the  requirement  of  general  import  pore 

forming TOM 40 protein (57). In support of this, an interesting study using in vitro pull 

down  of  mitochondrial  proteins  by  synthetic  C-terminal  peptide  of  alpha  synuclein 

suggests the interaction of alpha synuclein with TOM40 (65). In addition, alpha synuclein 
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is also reported to interact  with SAM 50, an outer membrane protein involved in the 

insertion of beta barrel protein (65). 

(b) Interaction of APP with import receptors: Topology of mitochondrial full length APP 

as judged by limited trypsin digestion is such that its NH2-terminus is located inside the 

mitochondria while the COOH-terminal of the protein facing the cytoplasmic side (49). 

Nin-Cout orientation  of  mitochondrial  APP  was  further  supported  by  using  multiple 

biochemical  and  proteomic  approaches  (54).  Furthermore,  mitochondrially  associated 

APP is  a  non-glycosylated  protein  as  opposed to  plasma  membrane  associated  APP, 

which  is  glycosylated.  Combination  of  chemical  cross-linking  and  immunoelectron 

microscopy  study  suggest  that  mitochondrial  associated  APP  is  in  contact  with 

mitochondrial  outer  membrane  (TOM20,  22  and  40)  and  inner  membrane  (TIM23) 

translocase proteins (49). This is in contrast to the import mode of putative mitochondrial 

proteins  whose  interactions  with  translocases  are  transient  during  their  entry  in  to 

mitochondria (97).  Additionally, acidic domain spanning 220–290 amino acids of APP 

may be responsible for the Nmito- Ccyto topology and the incomplete intra mitochondrial 

entry resulting  in  the  contact  with import  receptors  (49).  This  phenomenon was also 

observed  in  the  mitochondria  of  post  mortem  AD  brains  by  Blue-native  gel 

electrophoresis  coupled  western  blotting  with  antibodies  specific  to  import  receptors, 

which showed outer membrane TOM40 associated ~ 480 and ~620 kDa complexes and 

inner membrane translocase TIM 23 associated ~620 kDa complex (56).  These results 

suggest the possibility that  mitochondrial  APP may form at least two different steady 

state import intermediates in AD brain mitochondria.  

(7) Sub mitochondrial localization of alpha synuclein and APP. 
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(a) Localization of Alpha synuclein: Alpha synuclein is reported to be localized to outer 

membrane,  intermembrane  space  and  inner  membrane  of  mitochondria  depending on 

species, cell lines and variations in the intracellular pH (57-62, 64). Interestingly, under 

acidic  conditions,  ectopically  expressed  alpha  synuclein  has  been  shown  to  localize 

exclusively to  outer  membrane  (62).  Studies have shown the constitutive presence of 

alpha synuclein in mitochondria of rodents and humans (57, 59-61). Electron microscopy 

analysis suggest that constitutively expressed alpha synuclein is exclusively localized to 

outer membrane in mouse mitochondria (57, 63), while outer and inner membranes of 

mitochondria from rat and human brain show the immunoreactivity for alpha synuclein 

(57,59-61). In vitro imported alpha synuclein in the presence of energy predominantly 

localizes  to  inner  membrane  (57).  In  agreement  with  these  studies,  using  sub 

mitochondrial  fractionation  technique  a  recent  study  demonstrated  that  the  in  vitro 

transported  alpha  synuclein  was  mainly  accumulated  in  the  inner  membrane  of 

mitochondria  (61).  However,  the  topology  of  mitochondrial  alpha  synuclein  and  the 

reason for it’s versatile sub mitochondrial localization is not known. 

(b) Localization of APP: In vitro, neuronal cultures and human AD models show that full 

length  APP resides  in  mitochondria  in  Nin  mito-Cout  cyto orientation  as  well  as  in  close 

association with outer membrane channel forming TOM40 protein (49, 56). However, ~4 

kDa abeta, a derivative of full length APP is predominantly localized to inner membrane 

of mitochondria (56, 90, 93, 95, 97,114). 

(8) Regional and cellular distribution of mitochondrial  alpha synuclein and APP 

under normal and disease status. 
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The  brain  is  a  complex  organ,  with  cellular,  regional  and  functional  heterogeneity. 

Pathology of PD and AD that includes mitochondrial dysfunction is regional and cellular 

specific. However, the cause for regional and cellular specificity of these pathologies is 

not known. Clearly, alpha synuclein and APP are implicated in the pathogenesis of PD 

and  AD,  respectively.  Furthermore,  mitochondrial  accumulation  of  these  proteins  is 

associated with mitochondrial dysfunction in the culture systems (49, 52, 53, 57, 59, 62). 

Thus, investigation of mitochondrial association of alpha synuclein and APP in different 

regions and neurons in normal and disease brains may help in understanding the regional 

and cellular specificity of these proteins in causing mitochondrial dysfunction during the 

pathogenesis of PD and AD. 

(a)  Distribution  of  mitochondrial  Alpha  synuclein: Constitutive  presence  of  alpha 

synuclein in the mitochondria of brain differs from region to region in rat and humans 

(57, 60, 61). Mitochondria from cerebellum and cortex have relatively lower levels of 

alpha synuclein than hippocampus, striatum and substantia nigra (57, 60, 61). However, 

alpha synuclein seems to be accumulating in the striatum, substantia nigra and cortex of 

PD  brains  and  these  levels  varies  from  10-100  ng/mg  mitochondrial  protein  (57). 

Dopaminergic  neurons  are  the  most  affected  neuronal  type  in  the  PD.  Ectopically 

expressed  alpha  synuclein  in  dopaminergic  DAN  neurons  accumulates  in  the 

mitochondria compartment (57). To test the presence of α synuclein in mitochondria of 

dopaminergic  neurons  of  PD brains,  we carried  out  using triple  immuno  staining  on 

deparaffinised tissue sections from postmortem substantia nigra (SN) of normal and PD 

subjects  (obtained  from NDRI,  Philadelphia  according  to  institutional  IRB  approved 

protocols and were characterized as described ref # 57) with antibodies against alpha 
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synuclein  and  TOM20.   Following  this,  sections  were  also  stained  with  tyrosine 

hydroxylase (TH) antibodies to identify dopaminergic neurons.  In the SN of normal, a 

robust intracellular staining of alpha synuclein antibodies (Fig 2A.) and TOM 20 (Fig 

2B.)-specific staining of particulate structures reminiscent of mitochondria was observed. 

However,  very little  staining  of  α synuclein  overlapped with  mitochondrial  TOM 20 

staining in normal of SN (Fig. 2D) and some of these neurons stained positively for TH 

antibody  (Fig.2C).   However,  in  the  SN  of  PD,  the  α synuclein  antibody  stained 

appreciable amount of extranuclear punctate structures (Fig.2F) while TOM20 antibody 

showed  specific  mitochondrial  staining  (Fig.2G).   Contrary  to  control,  extranuclear 

punctate structures of α synuclein staining in the SN of PD overlapped with a significant 

number  of  mitochondrial  TOM 20  staining  (Fig.2I)  and  some  of  these  neurons  also 

stained for TH antibody (Fig.2H). These results suggest the presence of low levels of 

alpha synuclein in the mitochondria of dopaminergic neurons of normal brain while in 

the dopaminergic neurons of PD brain contains higher levels of alpha synuclein. 

   (b) Distribution of mitochondrial APP: APP immunoreactivity in the mitochondria 

from post mortem AD brains (n=20) was higher than that of non-AD brains (n=20) (56). 

Furthermore,  accumulation  of  mitochondrial  APP in  AD brains  is  dependent  on  the 

severity of the disease, which varied from region to region. Using quantitative ELISA, it 

is  estimated  that  mitochondrial  APP levels  were  in  the  range  of  0.1  to  2.5  µg APP 

antibody reactive  protein/mg mitochondrial  protein  (56).  Interestingly,  AD vulnerable 

brain regions such as frontal cortex, hippocampus and amygdale showed higher amounts 

of  mitochondrial  APP in AD brains.  However,  mitochondrial  APP levels  seem to be 

below detectable in non-AD brains (56). Mitochondrial accumulation of APP in different 
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neurons in AD brain also show variability with respect to the severity of the disease. AD 

brains of all stages showed the accumulation of APP in the mitochondria of cholinergic 

neurons  while  mitochondrial  APP  accumulation  was  observed  in  dopaminergic, 

GABAergic and glutamatergic of AD brains belong to severe category (56). Collectively, 

these results suggest that mitochondrial accumulation of APP in various neuronal systems 

in different brain regions may have far reaching influence on mitochondrial dysfunction 

that might influence the neuronal survival in the pathogenesis of AD.

. It is known that the presence of ApoE4 allele is considered to be one of the risk factors 

in the pathogenesis of sporadic AD (115,116). Studies have reported that apolipoprotein 

E (ApoE) genotype may also influence mitochondrial  dysfunction (117). Interestingly, 

majority  of  AD subjects  showed one  or  two ApoE4 alle  and  also  possessed  highest 

amounts  of  mitochondrial  APP  (56).  Nevertheless,  the  precise  relationship  between 

mitochondrial  accumulation of APP and ApoE genotyping in the pathogenesis  of AD 

subjects  is not known. However,  it  is noteworthy to mention that recent studies have 

shown mutations on TOM40 gene, which is located on the chromosome (19q) in close 

proximity to upstream of ApoE, as a possible risk factor in the genesis of AD (118,119). 

Based  on  this,  one  can  speculate  that  mutations  on  TOM40 gene  may  result  in  the 

dysfunction of general import pore TOM40 protein, which may in turn accentuate the 

mitochondrial  translocational  arrest  of APP and associated  mitochondrial  dysfunction. 

However,  it  remains  to  be  seen  whether  mutations  render  impairment  of  TOM40 

functions during the pathogenesis of AD. 

 (9)  Mitochondrial  accumulation  of  synuclein  and  mitochondrial  dysfunction  in 

cellular and human PD models: 
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The  involvement  of  alpha  synuclein  in  bringing  about  the  complex  I  dysfunction  in 

alpha synuclein linked PD or sporadic PD has been a subject of intense investigation. 

Recent evidences suggest that alpha synuclein and mitochondria interact with each other 

(57-65, 113). Lee et al (120) have also shown that an impaired mitochondrial function 

can  induce  increased  alpha  synuclein  expression  and  formation  of  alpha  synuclein 

inclusions.  Alpha  synuclein  overexpression  is  also  associated  with  the  release  of 

cytochrome  c,  increase  of  mitochondrial  calcium  and  nitric  oxide,  and  oxidative 

modification  of  mitochondrial  components  (121,122).  Since  increased  expression  of 

alpha  synuclein  and  mitochondrial  complex  I  deficiency  are  both  implicated  in  PD 

pathogenesis,  alpha  synuclein  localization  in  mitochondria  may  indirectly  suggest  a 

functional link between alpha synuclein and complex I. 

Biochemical and immunoelectron microscopy data suggest that mitochondria-localized 

alpha synuclein is predominantly associated with inner membrane in the human and rat 

systems (57, 61). In DAN cell culture system and under in vitro import conditions alpha 

synuclein was shown to accumulate with time predominantly in the inner mitochondrial 

membrane (57). Interestingly, accumulation of α-synuclein in the mitochondria of human 

dopaminergic  neurons caused reduced mitochondrial  complex I  activity and increased 

production  of  reactive  oxygen  species  (ROS),  whereas  α-synuclein  lacking  the 

mitochondrial targeting signal failed to associate with the mitochondria and was not able 

to  induce  mitochondrial  dysfunction  (57).  These  results  show  a  direct  link  between 

mitochondrial  accumulation  of  alpha  synuclein  and  mitochondrial  dysfunction. 

Mitochondria from SN, striatum, and cerebellum of postmortem PD patients and controls 

showed the constitutive presence of α-synuclein in the mitochondria of all three brain 
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regions from normal subjects. Interestingly, mitochondria isolated from SN and striatum 

but not cerebellum from PD subjects showed significant accumulation of α-synuclein and 

decreased  complex  I  activity  (57).  Studies  on the incubation  of  alpha synuclein  with 

isolated cerebellar and striatal mitochondria show the inhibition of complex I activity (57, 

61).  Furthermore,  this  inhibition  by  alpha  synuclein  was  dose-dependent,  with  the 

minimal  effective  concentration  being  as  low  as  1  pM  (61).   Blue  native  gel 

electrophoresis  and  immunocapture  analysis  further  revealed  the  mitochondrial 

accumulated synuclein in both PD brains and neuronal cultures were associated with holo 

complex  I  (57).  In  addition,  these  experiments  also  revealed  the  presence  of  sub 

complexes of complex I. In support of these results a study using proteomic approach 

also  showed  the  interaction  between  alpha  synuclein  and  complex  I  subunits  (65). 

Recently,  it  has  been  shown that  the  intricate  assembly  of  complex  I  comprises  the 

assembly of small  sub complexes  to a holo complex  I  in a  sequential  manner  (123). 

However, it  is not clear how alpha synuclein brings about the complex I dysfunction 

either  by preventing the assembly or by disrupting the holo complex I.  Nevertheless, 

these  results  for  the  first  time  show  a  direct  connection  between  higher  levels  of 

mitochondrial  synuclein  and  complex  I  mediated  mitochondrial  dysfunction  in  the 

etiology of PD. Alpha synuclein has been shown to interact  with other mitochondrial 

complexes. Using yeast two-hybrid study, wild type alpha synuclein was found to interact 

with the mitochondrial  cytochrome c oxidase (124).  It  was  also reported that  mutant 

(A53T)  alpha  synuclein  over  expressing  transgenic  mice  developed  mitochondrial 

degeneration  as  well  as  reduced  complex  IV activity  (64).Taken  together,  the  above 

literature suggests that the background levels of mitochondrial alpha synuclein may be an 
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important factor influencing mitochondrial functions 

(10)  Implications  of  mitochondrial  accumulation  of  full  length  APP  and  its  C-

terminal product abeta in AD models.  

(a)  Mitochondrial  accumulation of  APP and mitochondrial  dysfunction: Results  from 

ours and other’s laboratories have observed decreased mitochondrial functions such as 

defects in oxidative phosphorylation, decreased ATP, decreased membrane potential, and 

increased production of ROS, perturbation in mitochondrial fusion and fission following 

the  mitochondrial  association  of  full  length  APP  in  various  cellular,  transgenic  and 

human  AD  models  (49-56).  Accumulation  of  full-length  APP  in  the  mitochondrial 

compartment of cortex and hippocampus was observed in familial APP over-expressing 

Tg2576 mouse model  (12 months  old), which is  accompanied by decreased impaired 

cytochrome c oxidase activity and decreased ATP level. (49). Decreased cytochrome c 

oxidase  activity,  decreased  ATP  levels  and  increased  nitric  oxide  levels  were  also 

accompanied by mitochondrial  accumulation of APP in PC12 and HEK cells (49,52). 

These abnormalities took place at a faster rate in models expressing APP with familial 

mutations than in wild type expressing models. Furthermore, mitochondrial accumulation 

of APP and the associated mitochondrial abnormalities were progressive. 

Consistent with animal and cellular models, mitochondria isolated from these AD brains 

showed increased H2O2 levels, indicating impaired cytochrome c oxidase activity, which 

was  associated  with  translocationally  arrested  mitochondrial  APP (56).  These  studies 

indicate  that  mitochondrial  function  may  be  a  direct  target  for  APP.  However,  the 

expression of mitochondrial targeting mutant was accompanied by reduced mitochondrial 

dysfunction  suggesting  the  direct  involvement  of  mitochondrial  accumulated  APP in 
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bringing about the some of the mitochondrial  anomalies.  In addition,  accumulation of 

APP  lacking  the  acidic  domain  was  also  accompanied  by  decreased  mitochondrial 

dysfunction implying the involvement of incomplete mitochondrial translocation of APP 

mediated by the acidic domain spanning 220-290 amino acids of the protein in causing 

mitochondrial dysfunction. (49) Translocational arrest by acidic domain may result in the 

inhibition of the import of proteins essential for normal mitochondrial functions. In vitro 

mitochondrial  import  using freshly isolated mitochondria from AD brains showed the 

inhibition of cytochrome c oxidase subunits IV and Vb (56). The consequences of such 

inhibition under in vivo environment may result in oxidative stress from perturbation of 

cytochrome c oxidase. In support of the negative role associated with the acidic domain, a 

study showed that intracellular accumulation of acidic domain is capable of inducing cell 

death.  However,  the  precise  mechanism  for  acidic  domain  mediated  mitochondrial 

translocational arrest in the pathogenesis of AD is unclear.

In  contrast,  constitutive  low  levels  of  APP  in  mitochondria  are  important  for 

maintaining mitochondrial functions (51). Furthermore, mitochondrial APP is reported to 

be  interacting  with complex  V in  primary  neuronal  cultures  (50).  Collectively,  these 

studies suggest that the like mitochondrial alpha synuclein, background concentration of 

APP associated with mitochondria may play a critical role in influencing mitochondrial 

functions.   

(b)  Mitochondrial  accumulation  of  Abeta  and  mitochondrial  dysfunction:  Using 

immunoelectron  microscopy,  Yamaguchi  et  al  (125)  for  the  first  time  reported  the 

presence of immunoreactive Abeta in the mitochondria of AD brains. A large number of 

studies  using  multiple  approaches  have  found  ~4kDa  Abeta in  the  mitochondria  of 
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transgenic mouse, cellular and human AD models (56, 90-97,114). Very recently, Abeta 

is  reported  to  be  imported  from outside  into  mitochondria  (94,  114).  Using antibody 

inhibition  technique,  Hanson,  et  al  (114)  found  that  mitochondrial  import  of  Abeta 

requires  the  interaction  with  all  major  TOM  proteins  such  as  TOM20,  TOM70  and 

channel forming protein TOM40. Though in vitro imported Abeta is localized to inner 

membrane of mitochondria interestingly,  it’s import is not dependent on mitochondrial 

membrane potential (114). However, the presence of mitochondrial targeting signals in 

Abeta is  yet  to be identified.  Several  reports  have reported the role  of mitochondrial 

Abeta in affecting a wide variety of mitochondrial  functions (90-97). In collaboration 

with Cu2+, Abeta was shown to inhibit the cytochrome c oxidase activity. in transgenic 

mouse models (92). Reddy and colleagues using various biochemical and cell biological 

approaches have shown that Abeta can induce hydrogen peroxide production, decreased 

cytochrome oxidase activity,  synaptic dysfunction and increased formation of carbonyl 

proteins in transgenic and cellular models of AD (48,87,90,126). In addition, Yan and 

colleagues showed that mitochondrial localized Aβ has been directly shown to (a) inhibit 

Aβ binding alcohol dehydrogenase (b) perturb mitochondrial permeability transition pore 

functions and (c) impair  enzymatic  activities of respiratory chain complex III and IV 

resulting in the reduced rate of oxygen consumption in transgenic mouse and human AD 

models (93,95,97). These studies collectively suggest that Aβ localized to mitochondria 

may  render  mitochondria  vulnerable  to  oxidative  damage  by  interacting  with 

mitochondrial proteins. 

(11) Concluding remarks
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Physico-chemical properties of mitochondrial targeting signals of alpha synuclein and 

APP share similarity with that of putative mitochondrial signals. Though, these signals 

interact  with  mitochondrial  import  receptors,  the  mechanisms  by which  these  signals 

become fully active are not clear. Studies show that accumulation of these proteins in the 

mitochondrial  compartment may bring about mitochondrial  dysfunction.  The available 

literature suggests that the mitochondrial targets for these proteins seem to be different. 

Mitochondrially accumulated alpha synuclein may prefer to target complex I while APP 

may  prefer  to  target  complex  IV  and  import  machinery.  It  is  important  to  further 

investigate the mechanisms underlying sub-mitochondrial localization of these proteins in 

order  to  understand  their  influence  on  mitochondrial  functions.  Another  note  worthy 

point is that mitochondrial accumulation of these proteins in certain brain regions and 

neurons  may  be  an  important  factor  in  inducing  mitochondrial  abnormalities  in  the 

pathogenesis of AD and PD. In conclusion, investigation of factors responsible for the 

regional and cellular variations in the mitochondrial targeting and accumulation of these 

proteins may be an important future direction to unravel the mitochondrial dysfunction in 

AD and PD.
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Figure legends

Figure 1. Mitochondrial targeting signals in alpha synuclein and APP proteins. 

A, Physico-chemical similarities of N-terminal 32 aminoacid sequence of human alpha 

synuclein with mitochondrial targeting signals of  human P40Scc and P450 c27. (B) 

Comparison of N-terminal chimeric signals of P450 1A1, 2B1, 2E1 and 2D6 with N-

terminus of APP comprising of hydrophobic ER-targeting domain followed by the 

positively charged mitochondrial-targeting domain.  

Figure 2.. Immunofluorescence microscopy analysis of mitochondrial α synuclein in 

dopaminergic neurons of substantia nigra of non-PD and PD subjects. Figures A-E: 

Triple  labeling  of  dopaminergic  neurons  of  substantia  nigra  of  post  mortem non-PD 

subject (NPS # 11) with anti rabbit α synuclein (A), anti goatTOM20 (B), and anti mouse 

TH (C). (D) Merged image of A and B. E= enlarged neuron. Figures F-J: Triple labeling 

of dopaminergic neurons of substantia nigra of post mortem PD subject (#11)  with anti 
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rabbit α synuclein (F), anti goatTOM20 (G), and anti mouse TH (H). (I) Merged image 

of F and G. J= enlarged neuron. Immunostaining was carried out as described in ref# 56. 

Bar= 100 µm.
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