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ABSTRACT

1.  Introduction

The  evidence  for  impairment  in  the  ubiquitin  proteasome  system  (UPS)  in 

Parkinson  Disease  (PD)  is  mounting  and  becoming  increasingly  more 

convincing.  However, it is presently unclear whether UPS dysfunction is a cause 

or  result  of  PD  pathology,  a  crucial  distinction  which  impedes  both  the 

understanding  of  disease  pathogenesis  and  the  development  of  effectual 

therapeutic approaches.  Thus recent findings specifically regarding the role of 

the  UPS in  PD  are  discussed  within  this  review,  and  offer  new  insight  and 

provide direction for future research to conclusively resolve this debate. 

2.  Parkinson disease (PD) 

PD  is  a  progressive  neurodegenerative  disease  clinically  characterized  by 

bradykinesia,  gait  disturbances,  resting tremor,  muscular  rigidity,  and postural 

instability [1].  Pathological hallmarks of the disease include loss of dopaminergic 

neurons in the substantia nigra (SN),  as well  as the presence of eosinophilic 

cytoplasmic  inclusions  and  dystrophic  neurites  in  remaining  neurons,  first 

described by Friederich Heinrich Lewy in 1912 and termed Lewy bodies (LB) and 

Lewy neurites (LN) in  his  honor  [2].   The identification of  α-synuclein  as the 

major,  filamentous protein component of LBs [3],  in addition to the linkage of 
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missense mutations (A53T, A30P, E46K) and genomic duplication and triplication 

of the α-synuclein gene with autosomal dominant PD [4-8], is indicative of a key 

role for  α-synuclein in disease pathogenesis.  However, the detection of LBs in 

clinically  normal  individuals  upon  postmortem  analysis,  frequently  called 

incidental  Lewy  body  disease  (iLBD),  brings  into  question  the  pathological 

significance  of  α-synuclein  aggregation.   Utilizing  a  unique  brain  donation 

program to control  for  the inherent  biases associated with  more conventional 

case control studies, a recent population-based study estimates the prevalence 

of synuclein pathology in people over 70 years of age is approximately 37%, with 

synuclein burden a poor predictor of clinical status/diagnosis [9].  Despite these 

findings,  Dickson  and  colleagues  demonstrate  that  iLBD  cases  exhibit  a 

decrement in tyrosine hydroxylase, a marker of dopaminergic and noradrenergic 

neurons and a characteristic feature of PD, in both striatal and epicardial nerve 

fibers that is intermediate to control and PD patients [10].  The authors conclude 

that the absence of parkinsonian symptoms is the result of a subthreshold-level 

of  pathology,  thus further solidifying the pathogenic role of  α-synuclein in PD 

progression.

3.  Ubiquitin proteasome system (UPS)

The UPS regulates the degradation of key regulatory proteins that control signal 

transduction, cell cycle progression, apoptosis, as well as cellular differentiation 

[11].   In  addition  to  involvement  in  these processes,  the UPS also  degrades 
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misfolded and damaged proteins, thus collectively implicating the UPS in a wide 

range of conditions, including neurodegenerative diseases, cancer, inflammation, 

and autoimmunity [12, 13].  Given the detrimental consequences of unregulated 

protein  degradation,  the  UPS  utilizes  a  class  of  enzymes  to  covalently  link 

ubiquitin polypeptide chains to proteins, marking those proteins as substrates for 

the proteasome and allowing for targeted and selective degradation (reviewed in 

[14, 15]).  Initially, the carboxyl end of ubiquitin is activated in an ATP-dependent 

process by the ubiquitin-activating enzyme (E1), which results in a highly reactive 

ubiquitin thiolester that is transferred to a ubiquitin-carrier protein (E2).  The E3 

class of enzymes, which are also called ubiquitin protein ligases, recognize and 

bind proteins to be marked for degradation, subsequently catalyzing the transfer 

of ubiquitin chains from the E2 to lysine residues on protein substrates, which 

can serve as a signal for proteasome-mediated degradation.         

The  proteasome  is  a  large,  multisubunit  complex  containing  a  common 

proteolytic  core,  the  20S  proteasome,  which  is  composed  of  28  subunits 

arranged in four, heptameric rings (reviewed in [15, 16].  The two outer rings are 

each composed of seven alpha-type subunits (α1-α7), while the two inner rings 

each  contain  seven  beta-type  subunits  (β1-β7).   The  proteolytic  activity  is 

enclosed within the inner rings, with only  β1,  β2, and  β5 subunits possessing 

caspase-like, trypsin-like, and chymotrypsin-like cleavage specificity, respectively 

[17,  18].   These  active  sites  have  been  shown  to  allosterically  regulate  one 

another through substrate binding or cleavage, leading to a proposed model in 
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which single polypeptide chains are successively hydrolyzed by a structured and 

coordinated activation of  these catalytic  subunits  [19, 20].   However,  Liu  and 

colleagues present evidence that a disordered polypeptide loop, such as a  β-

hairpin structure, can also be permitted entry into the inner canal  of  the 20S 

proteasome, allowing for the endoproteolytic cleavage and partial degradation of 

unstructured  proteins  that  is  not  dependent  upon  ubiquitination  [21].   This 

describes a  novel  function of  the proteasome,  liberating  active  peptides  from 

precursor proteins, as well as correcting folding defects in internal domains of 

large proteins.

The  activity  of  the  20S proteasome is  modulated  by  a  variety  of  regulators, 

including the 19S/PA700 complex, PA200, as well as PA28 α/β and PA28γ [22-

24].  The most common regulator, the 19S/PA700 complex, contains six AAA-

family ATPases and is capable of binding both ends of the 20S proteasome in an 

ATP-dependent manner, forming the 26S proteasome, which is involved in the 

degradation of ubiquitinated proteins [20, 25, 26].  Given that only the 19S/PA700 

complex possesses ATPase activity and binds to polyubiquitin chains, alternative 

regulators of the 20S proteasome are believed to modulate ubiquitin-independent 

functions  of  the  proteasome.   However,  hybrid  proteasomes have  also  been 

described, in which the 19S/PA700 and PA28α/β complexes bind opposite ends 

of the 20S proteasome [27].   The specific  function of  these hybrid proteolytic 

complexes is unclear, and studies evaluating the cellular localization of the 20S 

proteasome,  which  has  been  detected  in  both  nuclear  and  cytosolic 
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compartments,  have  failed  to  distinguish  between  free  and  bound  20S 

proteasomes [28, 29].  A recent study has further investigated the modulation of 

20S proteasome activity and/or localization, demonstrating that 20S proteasomes 

associated  with  PA28γ complexes  are  localized  to  nuclear  speckles  and 

implicated in the intranuclear trafficking of SR proteins [30].  Additional research 

of  this  nature  will  be  needed  to  more  fully  characterize  the  precise  cellular 

functions  of  these  alternate  proteasome-regulator  complexes,  as  well  as  to 

decipher  the  specific  physiological  signals  that  regulate  proteasome-regulator 

composition.       

4.  UPS and PD

The evaluation of human postmortem brain tissue has provided a considerable 

amount  of  evidence implicating  proteasomal  dysfunction  in  PD pathogenesis. 

Using enzymatic assays to measure proteasome activity, a significant decrement 

in chymotrypsin-like, trypsin-like, and caspase-like activity was detected in the 

SN of PD patients when compared to age-matched controls [31-34].  However, 

no  deficits  in  proteasomal  activity  were  detected  in  extranigral  regions,  and 

Furukawa and colleagues actually observed an increase in proteasomal activity 

in unaffected regions, specifically the cerebral cortex and striatum, of PD patients 

compared  to  age-matched  controls  [31].   In  line  with  these  findings, 

immunoblotting and histological techniques revealed a decrease in subunits of 

the 20S proteasome and the PA700/19S complex in the SN of PD patients, while 
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protein levels where unchanged or increased in extranigral brain regions [31, 32, 

35].   In  addition,  the  accumulation  of  ubiquitinated  proteins,  heat  shock 

proteins/chaperones, and components of  the UPS within  LBs provides further 

support for a central role of UPS dysfunction in the etiopathogenesis of PD [36-

41].  However,  these findings must  be interpreted with  caution,  as the above-

mentioned studies do not take into account neuronal loss, nor do they identify the 

affected cell type (i.e. neuronal vs glial).

The link between proteasomal inhibition and the pathogenesis of PD was further 

solidified  by  the  demonstration  that  treatment  with  the  proteasomal  inhibitor 

lactacystin  dose-dependently  leads  to  the  degeneration  and  the  formation  of 

synuclein and ubiquitin-positive inclusions in rat ventral mesencephalic primary 

neurons  [42,  43].   In  vivo,  McNaught  and  colleagues  reveal  that  systemic 

administration of proteasomal inhibitors in Sprague-Dawley rats produced both a 

behavioral and pathological phenotype reminiscent of PD [44].  In addition to the 

progressive  nature  of  the  motor  impairment  exhibited  by  treated  rats, 

administration  of  dopamine  agonists  alleviated  behavioral  symptoms. 

Postmortem  analysis  revealed  loss  of  dopamine  in  the  striatum,  as  well  as 

neuronal  loss  and  the  presence  of  eosinophilic,  synuclein/ubiquitin-positive 

inclusions in remaining neurons of the SN [44, 45].  However, this model has 

since been viewed with great scrutiny due to the inability of different laboratories 

to  replicate these findings [46-49].   Although two additional  laboratories were 

able  to  replicate  dopaminergic  cell  loss  following  systemic  administration  of 
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proteasome  inhibitors,  only  Zeng  and  associates  detected  the  presence  of 

synuclein  aggregates  in  the  SN,  while  neither  group observed  a  progressive 

motor impairment [50, 51].  It is hypothesized that extraneous variables due to 

differences  in  formulation  of  the  proteasomal  inhibitors,  strain  background 

differences in  treated  rats  and mice,  as  well  as  environmental  factors,  could 

account  for  this  variability  in  findings.   However,  the  extensive  variability  in 

consequences of  in  vivo proteasomal inhibition casts significant  doubt  on the 

utility of this approach as an accurate model of PD.    

Despite  the  failure  of  in  vivo administration  of  proteasome  inhibitors  to 

consistently  produce  a  parkinsonian  phenotype,  an  exciting  new  report  from 

Bedford and associates provides striking evidence establishing a link between 

26S proteasome dysfunction and the development of α-synuclein neuropathology 

[52].  In this study,  Bedford and colleagues develop and characterize a novel 

mouse model expressing a conditional deletion of the Rpt2/PSMC1 subunit, an 

ATPase of  the 19S regulatory complex,  spatially  restricted to  neurons of  the 

forebrain, or a second model in which the Rpt2/PSMC1 subunit is ablated in TH-

positive neurons.  As the Rpt2/PSMC1 subunit is required for both the assembly 

and  activity  of  the  26S  proteasome,  conditional  knockdown  of  Rpt2/PSMC1 

expression produced a specific impairment of 26S proteasome activity, while 20S 

proteasome activity was unaffected.  Intriguingly, synuclein and ubiquitin-positive 

inclusions  resembling  LBs  were  observed  in  either  neurons  of  the  forebrain 

region or the nigrostriatal pathway, with the localization of pathology coincident 
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with Rpt2/PSMC1 knockdown, and thus 26S dysfunction [52].  Although no motor 

impairment or parkinsonian phenotype is reported in this study, genetic ablation 

of  Rpt2/PSMC1  in  the  forebrain  did  produce  a  learning  deficit,  as  well  as 

progressive  neurodegeneration  of  forebrain  regions.   As  restriction  of 

Rpt2/PSMC1 knockdown to TH-positive neurons is particularly relevant  to PD 

pathology,  it  is  disappointing that  autonomic dysfunction leading to premature 

death by 1 month of age prevents a full behavioral assessment of these mice 

[52].                               

           

The  relationship  between  UPS  impairment  and  sporadic  PD  has  also  been 

strengthened  by  a  number  of  in  vitro studies  demonstrating  a  decrease  in 

proteasome activity following exposure to pesticides and environmental  toxins 

linked to PD, including rotenone, paraquat, and maneb [53-55].  Consistent with 

in  vitro findings,  the  in  vivo administration  of  rotenone  led  to  a  reduction  in 

proteasome activity specifically in the ventral midbrain of rats [53].  Intriguingly, 

utilization of osmotic minipumps to continually deliver the PD-linked toxin MPTP 

to  mice  for  one month  produced a  PD-like  phenotype,  including  depletion  of 

striatal dopamine levels and neuronal loss in both the SN and locus coeruleus, 

which was accompanied by the formation of  α-synuclein and ubiquitin-positive 

inclusions [56].  These mice also exhibited a decrease in proteolytic activity of the 

proteasome in striatal extracts as assessed by enzymatic assays, as well as a 

progressive  decline  in  motor  activity  that  was  rescued  by  administration  of 

dopamine  agonists.   Surprisingly,  when  experiments  were  replicated  in  mice 
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lacking α-synuclein, neuronal loss, behavioral impairments, and the formation of 

ubiquitin-positive inclusions were alleviated [56].  Perhaps most telling was the 

demonstration  that  impairments  in  proteolytic  activity  following  MPTP 

administration were also alleviated in the absence of α-synuclein, suggesting that 

α-synuclein  exacerbates  the  deleterious  effects  of  PD-linked  environmental 

toxins on UPS function.  Furthermore, these findings imply that α-synuclein, and 

possibly  UPS  dysfunction,  is  critically  involved  in  the  manifestation  of  a  PD 

phenotype.  

The  demonstration  that  MPTP treatment  alters  proteasomal  activity  has  also 

been replicated in non-human primates [57].  Specifically, both proteolytic activity 

and expression of proteasomal subunits is decreased in extracts from the SN of 

MPTP-treated  marmoset  monkeys  similarly  to  alterations  observed  in  PD 

patients, though synuclein pathology, neuronal loss, and behavioral impairments 

were  not  assessed  in  this  cohort  of  monkeys.   However,  an  earlier  study 

performed  by  Kowall  and  colleagues  revealed  an  initiation  of  α-synuclein 

aggregation upon MPTP treatment in baboons, with regrettably no evaluation of 

either proteasomal activity or expression performed in this study [58].  Thus the 

precise  involvement  of  α-synuclein  pathology and UPS impairment  in  MPTP-

linked PD and parkinsonism remains to be more conclusively established.  

5.  Genetic links to PD and association with UPS 
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Although the majority of PD cases are sporadic, a number of genetic loci have 

been identified and linked to the inheritance of  familial  PD.  The relationship 

between these genes is  still  presently unclear,  as is  the connection between 

familial-linked genes and the etiology of idiopathic PD.  However, the clinical and 

pathophysiological  similarities  between  familial  and  idiopathic  forms  of  PD 

suggest  they  may  share  a  common pathogenic  mechanism [59].   Given  the 

considerable  evidence  implicating  a  central  role  for  UPS  impairment  in  the 

development and progression of sporadic PD, it is intriguing that a number of 

genetic  mutations  linked  to  PD  are  also  involved  in  the  regulation  of  UPS 

function.  The direct and indirect relationship(s) between these PD-linked genes 

and modulation of the UPS will be discussed below.

5.1. α-Synuclein 

α-synuclein is a natively unfolded presynaptic  protein initially  cloned from the 

electric lobe of Torpedo californica [60].  Although the function of α-synuclein is 

still unknown, it adopts an α-helical structure upon binding to phospholipids [61], 

and has been shown to modulate synaptic transmission through the regulation of 

synaptic vesicle recycling and the compartmentalization of neurotransmitters [62-

66].  In addition, Fortin and colleagues have demonstrated that lipid rafts are 

required  for  the  presynaptic  localization  of  α-synuclein,  and  further  that  both 

synaptic localization and membrane association of α-synuclein are modulated by 

neuronal activity [67, 68].  These findings, in concert with evidence that BDNF-
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TrkB signaling acts upstream of the UPS to regulate the expression level of key 

synaptic  proteins  in  response  to  neuronal  activity,  could  have  significant 

implications for  PD pathogenesis [69].   In particular,  given the suspected link 

between PD and UPS dysfunction,  a  local  impairment  of  the UPS within  the 

synapse theoretically could promote the accumulation of ubiquitinated proteins 

irrespective  of  BDNF-TrkB signaling,  thereby preventing  BDNF-TrkB-mediated 

synaptic remodeling and leading to a decrease in neuronal activity.  A reduction 

in  neuronal  activity  would  not  only  decrease  BDNF expression  and  synaptic 

release [70-73], but based on the findings of Fortin and associates, would also be 

expected to increase the amount of membrane-bound  α-synuclein localized to 

the  synapse  [67,  68].   Taking  into  consideration  the  higher  propensity  of 

membrane-bound synuclein to aggregate and seed the aggregation of the more 

abundant, cytosolic form of α-synuclein [74], a decrease in neuronal activity and 

subsequent increase in membrane-bound synuclein,  further  exacerbated by a 

decrement  in  BDNF  expression,  could  effectively  establish  a  pathogenic, 

positive-feedback  mechanism linking  neuronal  activity  and  UPS function  with 

synuclein aggregation (Figure 1).  In addition, the demonstration by Dluzen and 

colleagues that targeted deletion of a BDNF allele potentiates the age-dependent 

decline  in  nigrostriatal  dopaminergic  function  in  mice  provides  a  potential 

explanation for susceptibility of the nigrostriatal dopamine system to synuclein 

pathology with aging [75].

5.1.1. Modulation of aggregation potential of α-synuclein  
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The  precipitating  basis  of  α-synuclein  aggregation  in  synucleinopathies  is 

controversial, though broadly speculated to arise from an increase in α-synuclein 

protein expression (either through gene triplication or altered transcriptional or 

translational  activities),  excessive  posttranslational  modifications  (including 

phosphorylation,  ubiquitination,  oxidation,  nitration,  truncation),  or  through 

increased  interaction  with  other  proteins,  all  of  which  could  modulate  the 

propensity of α-synuclein to fibrillize [76-88].  In addition, the negatively-charged 

C-terminus  of  α-synuclein,  which  has  also  been  shown  to  bind  dopamine 

derivatives [89], appears to act as a negative regulator of aggregation [82, 84, 

90].   Thus it  is  highly likely that posttranslational  modifications to this region, 

including phosphorylation, ubiquitination, oxidation, nitration, and truncation [77, 

78, 91], influence the propensity of α-synuclein to aggregate.

  

Critical  evaluation  of  the  various  α-synuclein  species  observed  in  LBs 

demonstrates that  α-synuclein is selectively and extensively phosphorylated at 

Ser129  (pSer129)  in  these  lesions,  and  further  that  this  is  the  predominant 

modification of α-synuclein in LBs [77, 92, 93].  In addition to phosphorylation at 

Ser129, α-synuclein in LBs is also N-terminally acetylated and ubiquitinated, as 

well as C-terminally truncated [92].  Given that both normal and diseased brains 

contain trace amounts of soluble  α-synuclein pSer129, as well as species that 

are truncated at Asp119, it is believed these forms of α-synuclein are generated 

through  normal  metabolism [92].   However,  in  postmortem brain  tissue  from 
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synucleinopathy  patients,  the  majority  of  pSer129  is  detected  in  insoluble 

fractions.  Because the main ubiquitinated  α-synuclein species found in LBs is 

also pSer129  α-synuclein,  it  is  hypothesized that  an excess of  pSer129 may 

actually serve as the priming event which ultimately culminates in the formation 

of LBs.  Anderson and colleagues further posit  that pSer129 may serve as a 

signal for proteolysis, supported by their observation that all α-synuclein species 

truncated at Tyr133 were also pSer129 [92].  

Given  the  potential  ramifications  of  modulating  phosphorylation  at  Ser129,  a 

number of laboratories have investigated prospective kinases that phosphorylate 

this site, leading to the identification of casein kinase 1 and 2, as well  as G-

protein  coupled  receptor  kinases [94-97].   In  support  of  a  pathogenic role  of 

pSer129, overexpression of  α-synuclein and GRK5 (G-protein coupled receptor 

kinase 5), which colocalize in LBs, promotes GRK5-mediated phosphorylation at 

Ser129 and leads to the formation of soluble oligomers and aggregates of  α-

synuclein  [94].   In  addition,  pSer129  has  also  been  shown  to  increase  the 

propensity  of  α-synuclein  to  aggregate following exposure to  mitochondrial  or 

oxidative stressors [98, 99].  In contrast, Paleologou and colleagues demonstrate 

that in vitro phosphorylation of  α-synuclein at Ser129 inhibits fibrillogenesis, but 

does not perturb the overall conformation of synuclein and its ability to adopt α-

helical  conformations  upon  membrane-binding  to  synthetic  vesicles  [96]. 

Perhaps most importantly,  Paleologou and associates reveal a discrepancy in 

the structural and aggregation properties of  α-synuclein phosphorylated  in vitro 

14



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

and the phosphorylation mimics S129E, S129D [96],  which  could explain  the 

inconsistent  findings  evaluating  the  consequences  of  α-synuclein 

phosphorylation.   Specifically,  Gorbatyuk  and  coworkers  report  that  the 

phosphorylation mimic S129D is protective against dopaminergic cell loss when 

injected into the SN of rats, while Chen and Feany demonstrate an enhanced 

toxicity associated with  α-synuclein phosphorylation in  Drosophila   [76, 100]. 

However, Chen and Feany substantiate their findings by demonstrating that both 

the phosphomimetic and kinase-phosphorylated wild-type synuclein produce a 

similar  phenotype  [76].   In  addition,  Chen  and  Feany  observe  an  inverse 

correlation  between  α-synuclein  phosphorylation  and  aggregation  potential, 

which is consistent with the report by Paleologou and colleagues [76, 96].           

In addition to phosphorylation,  α-synuclein present in LBs is also ubiquitinated 

[77, 92].  Recently, the RING-type E3 ubiquitin ligase SIAH (seven in absentia 

homolog) has been shown to interact with and monoubiquitinate  α-synuclein  in 

vitro and  in vivo, thereby increasing the propensity of  α-synuclein to aggregate 

[101,  102].   Although  there  was  no  difference  in  the  ability  of  SIAH  to 

monoubiquitinate wild-type or mutant  α-synuclein,  significantly more inclusions 

were observed in cells overexpressing the A53T mutant [102].  This suggests 

that  despite  an  increased  tendency  of  α-synuclein  to  aggregate  upon  SIAH-

mediated monoubiquitination, additional factors further modulate this tendency. 

In addition, ubiquitination of  α-synuclein by SIAH increases cell susceptibility to 

proteasome impairment and promotes apoptotic cell death, suggesting that SIAH 
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activity  plays  a  crucial  role  in  determining  the  toxicity  of  α-synuclein  under 

conditions of proteasome dysfunction [101, 102].     

An additional  substrate  of  SIAH, synphilin-1,  is  a synuclein-interacting protein 

that colocalizes with α-synuclein in LBs [103-105].  Intriguingly, overexpression of 

synphilin-1  inhibits  proteasomal  function,  and  also  leads  to  the  formation  of 

ubiquitinated cytoplasmic inclusions positive for both synphilin-1 and α-synuclein 

[103, 105].  SIAH-mediated ubiquitination has been shown to target synphilin-1 

for  degradation  by  the  UPS  [104],  though  phosphorylation  of  synphilin-1  on 

serine 556 by GSK3β prevents SIAH-mediated ubiquitination and the subsequent 

degradation of  synphilin-1 [106].   Prevention of  this phosphorylation by either 

GSK3β inhibition  or  mutation  of  the  phospho-residue  (S556A)  promotes  the 

formation  of  synphilin-positive  ubiquitinated  inclusions  that  colocalize  with 

increased  expression  of  the  UPS  reporter,  GFPµ,  which  may  indicate  that 

phosphorylation  determines  inhibitory  potential  of  synphilin-1  on  proteasome 

activity [106].  However, the effect of synphilin-1 phosphorylation or ubiquitination 

on ability to bind and interact with α-synuclein could be a confounding variable in 

these studies, in particular with the discovery that α-synuclein is also a substrate 

for SIAH [101, 102].     

Although Anderson and colleagues state  that  truncated  α-synuclein  does not 

appear to be highly enriched in LBs in comparison to pSer129 α-synuclein [92], 

earlier studies report that approximately 15% of α-synuclein in LBs is truncated 
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[34, 107, 108].  Based on these earlier findings, as well as the demonstration that 

truncated human  α-synuclein (amino acid residues 1-120) fibrillizes faster than 

either wild-type or mutant protein [84, 90, 109], a mouse model was generated 

expressing truncated human α-synuclein (1-120) on a synuclein null background 

[88].  Surprisingly,  synuclein-positive inclusions were detected in dopaminergic 

neurons in the substantia nigra and olfactory bulb,  and decrements in striatal 

dopamine levels  correlated  with  motor  impairment  [88].   The susceptibility  of 

dopaminergic neurons to synuclein toxicity could be explained by the observation 

that dopamine has been shown to inhibit α-synuclein fibrillization in vitro, leading 

to  the  proposal  that  either  dopamine  or  its  metabolites  kinetically  stabilize 

oligomeric α-synuclein intermediates [89, 110-113].  This hypothesis is supported 

by  a  significantly  higher  α-synuclein  oligomer  to  monomer  ratio  in  the  SN 

compared  to  cortical  tissue  of  symptomatic  A53T  mice  [114].   In  addition, 

Mazzulli and associates demonstrate that increasing catechol levels in SH-SY5Y 

cells that overexpress mutant A53T  α-synuclein by cotransfecting with tyrosine 

hydroxylase  prevents  the  formation  of  insoluble  α-synuclein  aggregates  and 

increases  the  concentration  of  soluble  oligomers  [114].   As  the  amino  acid 

residues  125-129  in  the  C-terminus  of  α-synuclein  have  been  shown  to  be 

required for catechol-mediated inhibition of synuclein aggregation [89, 115], it is 

interesting that a mouse model overexpressing truncated wild-type  α-synuclein 

(1-120), which lacks the catechol-interaction site, develops insoluble synuclein 

aggregates in dopaminergic neurons [88].     
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Alternatively, a decrease in degradation of the α-synuclein protein could serve as 

the  basis  for  pathogenic  overexpression.   To  characterize  the  degradative 

pathway for α-synuclein, Bennett and colleagues demonstrate that both wild-type 

and mutant  A53T  α-synuclein  are  substrates  of  the  proteasome in  SH-SY5Y 

neuroblastoma cells  [116].   However,  Ancolio  and associates were  unable to 

observe  proteasome-mediated  degradation  of  either  wild-type  or  mutant 

synuclein in HEK293 cells,  though an effect  of calpain inhibition on synuclein 

expression  was  also  not  detected  [117],  despite  the  fact  that  a  number  of 

investigators have observed calpain-mediated cleavage of α-synuclein [83, 118, 

119].   Given  the  natively  unfolded structure  of  α-synuclein,  it  has  now been 

shown that wild-type  α-synuclein can be degraded by a ubiquitin-independent 

proteasome  pathway  [21,  120,  121].   On  the  other  hand,  A53T  α-synuclein 

exhibits a 50% longer half-life compared to wild-type, suggesting mutant A53T α-

synuclein is not degraded as efficiently by the proteasome [116].  In addition, the 

metal-catalyzed oxidation of  α-synuclein enhanced the formation of oligomeric 

and protofibrillar forms, simultaneously preventing mature fibril formation [120]. 

Although  monomeric  α-synuclein  was  degraded  in  a  proteasome-dependent 

manner,  the  degradation  of  oxidized  oligomeric  α-synuclein  was  completely 

prevented [120]. 

Given  that  α-synuclein  adopts  an  α-helical  conformation  upon  binding  to 

membranes, and further that natively unfolded α-synuclein has been reported to 

be  a  substrate  for  the  proteasome  [21,  120,  121],  Liu  and  colleagues 

18



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

demonstrate  that  only  unbound,  cytosolic  α-synuclein  is  a  substrate  for  the 

proteasome, while membrane-bound,  α-helical  α-synuclein is not degraded by 

the proteasome [122].  This suggests that loss of vesicular or membrane-binding 

ability due to mutation [123] or oxidative damage [81, 124] would enhance 20S-

mediated  cleavage  of  α-synuclein,  increasing  the  generation  of  truncated 

fragments.  In vitro, proteasome-mediated cleavage of α-synuclein yielded three 

predominant fragments, including 1-119, 1-110, and 1-83, which all  adopted a 

random  coil  conformation  indistinguishable  from  the  full-length  protein  [122]. 

Cotransfection of full-length and truncated variants of  α-synuclein in SH-SY5Y 

cells increased cell vulnerability to oxidative stress, and induced aggregation of 

full-length  protein,  with  A53T  mutants  aggregating  more  rapidly  than  parallel 

combinations of wild-type protein [122].  Thus Liu and associates speculate that 

proteolytic activity of the proteasome produces highly amyloidogenic α-synuclein 

fragments  via  partial  degradation  of  cytosolic  protein,  which  induces  the 

aggregation of  full-length  α-synuclein  [122].   These hybrid  aggregates further 

impair proteasome activity, exacerbating the accumulation of truncated and full-

length α-synuclein deposits, creating a vicious cycle of cytotoxicity.   

5.1.2. Evaluation of α-synuclein-mediated UPS impairment  

A direct inhibitory effect of synuclein on UPS activity has been reported, though 

the  effects  of  overexpression,  mutation,  aggregation,  and  posttranslational 

modifications  of  the  synuclein  protein  on  proteasome  function  are  still  under 
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debate  due  to  conflicting  reports,  most  likely  resultant  from  methodological 

differences  in  sample  preparation  and  analysis.   Tanaka  and  colleagues 

demonstrated an impairment in proteasome activity in dopaminergic PC12 cells 

following  the  overexpression  of  wild-type  α-synuclein,  with  an  even  greater 

inhibitory effect observed following overexpression of mutant A30P  α-synuclein 

[125].  In contrast, Martin-Clemente and associates failed to detect an alteration 

in  proteasome activity  in  stably  transfected  PC12 cells  with  EYFP-tagged  α-

synuclein constructs, including wild-type, as well as the PD-linked mutants A30P 

and A53T [126].  However, the authors fail to demonstrate a significant increase 

in  exogenous  synuclein  expression  over  basal  levels,  and  instead  report 

significant overexpression of synuclein based on EYFP immunoreactivity, which 

is not a valid comparison [126].   

An inhibitory effect on proteolytic activity mediated by overexpressed wild-type α-

synuclein  has  since  been  replicated  in  dopaminergic  N27  cells  and  MG63 

(osteosarcoma) cells [127, 128], but not in CHO (ovarian) cells [129], which may 

indicate  that  effects  of  α-synuclein  are  cell-type  specific.   In  support  of  this, 

Petrucelli  and  associates  observed  proteasomal  impairment  following  the 

overexpression of mutant A53T and A30P α-synuclein, but not wild-type, in M17 

neuroblastoma  cells  [130].   In  addition,  Chen  and  colleagues  observed  an 

inhibition  of  proteasome-mediated  degradation of  short-lived  proteins  in  yeast 

cells  overexpressing  wild-type  α-synuclein,  with  an  even  greater  impairment 

exhibited by cells expressing mutant A30P  α-synuclein [131].   Although there 
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was no change in proteolytic  activity of  immunoprecipitated 20S proteasomes 

from  cells  overexpressing  either  wild-type  or  A30P  α-synuclein,  proteasome 

subunit  composition  and  interaction  with  regulatory  proteins  was  significantly 

altered by both wild-type and A30P  α-synuclein overexpression [131].  These 

results may indicate that α-synuclein does not directly inhibit the active/catalytic 

site of the proteasome, but instead exerts an inhibitory effect through modulation 

of proteasome activity.  A recent report from the Sudhof laboratory supports this 

hypothesis, demonstrating a dramatic alteration in the expression of proteasomal 

subunits  in  spinal  cord  from  symptomatic  A30P  α-synuclein  mice  [132]. 

However, there was significant neuronal loss and gliosis observed in the spinal 

cord  from  symptomatic  A30P  mice,  and  as  biochemical  assessment  of 

proteasome subunit  expression does not differentiate between cell  types,  it  is 

most likely that neuronal loss coupled with the significant increase in activated 

glia accounts for the changes in proteasomal subunit expression.  In addition, a 

recent report by Emmanouilidou and coworkers detected a significant impairment 

in proteasome activity in the cortex of A53T α-synuclein mice, though expression 

of proteasomal subunits remained unchanged [133].   

The  effect  of  α-synuclein  aggregation  on  proteasome  activity  has  also  been 

evaluated, with groups consistently reporting a greater proteasomal impairment 

in the presence of aggregated compared to monomeric  α-synuclein [134-136]. 

Although both monomeric and aggregated α-synuclein have been shown to bind 

the  S6’/TBP1  (Tat  binding  protein  1)  subunit  of  the  19S/PA700  proteasome 
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complex [135, 137], only aggregated α-synuclein inhibits ubiquitin-dependent and 

independent 26S proteasomal activity [135].  Zhang and colleagues have also 

demonstrated  that  α-synuclein  protofibrils  inhibit  the  ubiquitin-independent 

degradation of unstructured proteins by the 26S proteasome, though monomers 

and  dimers  have  no  effect  on  the  proteolysis  of  these  substrates  [136].   In 

contrast,  ubiquitin-dependent  26S  proteasome  activity  is  slightly  inhibited  by 

monomeric  and  dimeric  α-synuclein,  while  protofibrillar  α-synuclein  potently 

inhibits  the  degradation  of  polyubiquitinated  proteins.   Given  that  α-synuclein 

protofibrils bind the 19S/PA700 regulatory complex of the 26S proteasome, as 

well as p21 (an unstructured proteasomal substrate) and K48-linked polyubiquitin 

chains, it is proposed that α-synuclein protofibrils inhibit 26S proteasome activity 

by interfering with  substrate  translocation into  the proteasome core,  achieved 

through  direct  interactions  with  the  proteasome,  as  well  as  through  the 

sequestration of proteasomal substrates [133, 136].

Given  that,  α-synuclein,  Aβ,  polyglutamine  proteins,  prion  protein,  and  other 

amyloidogenic  proteins  adopt  a  similar  structure  upon  oligomerization,  it  is 

hypothesized that these proteins also share similar pathogenic effects [138].  In 

agreement with this, impaired proteasomal function is observed in parallel with 

the first appearance of soluble Aβ oligomers in the triple transgenic mouse model 

of AD (3x Tg-AD), while proteasome activity is restored at a time point  when 

soluble  Aβ oligomers  are  converted  into  insoluble  aggregates  [139].   This 

suggests that soluble oligomeric Aβ species, and not the monomeric or fibrillar 
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form of Aβ, inhibits proteasomal activity [139].  UPS impairment has also been 

observed in  cell  culture  and animal  models overexpressing  mutant  huntingtin 

protein [129, 140-144], and consistent with data proposing a protective effect of 

aggregation due to sequestration of toxic species, treatment with a compound 

that  increases  inclusion  formation  prevents  huntingtin-mediated  proteasome 

inhibition [129].  In addition, the abnormal prion conformer (PrPsc) inhibits the 26S 

proteasome in vitro, while either preincubation with an oligomer antibody or heat 

denaturation  of  PrPsc alleviated  this  inhibitory  effect,  indicating  a  specific 

conformation  of  an  oligomeric  PrPsc intermediate  mediates  the  proteasomal 

inhibitory effect [145].  Proteasome activity was also significantly decreased in 

cells exposed to prion-infected mouse brain homogenates, as well as in brain 

regions exhibiting significant prion neuropathology in mice infected with  PrPsc, 

establishing  a  solid  link  between  UPS  impairment  and  neurodegeneration 

associated with prion infection [145].

Based upon the above findings, as well as the lack of direct in vivo evidence of a 

link  between  α-synuclein  pathology and  UPS dysfunction,  our  laboratory  has 

generated a transgenic mouse model expressing the proteasomal reporter GFPµ 

[140].   In  vitro,  expression  of  GFPµ is  dose-dependently  increased  in  the 

presence of the proteasome inhibitor MG132, illustrating the sensitivity of GFPµ 

to  perturbations  in  proteasomal  function  [130].   In  addition,  cotransfection  of 

GFPµ and mutant A53T or A30P α-synuclein leads to an upregulation of GFPµ, 

demonstrating the inhibitory effects of mutant α-synuclein on UPS activity [130]. 
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Thus we are crossing GFPµ transgenic mice with mutant A53T α-synuclein mice 

[146],  which will  allow us to monitor effects of  α-synuclein pathology on UPS 

function in vivo by evaluating bigenic mice at various time points.  This model will 

also allow us to determine selective vulnerability of specific cell populations to 

synuclein-mediated  perturbations  in  proteasome activity.   Ultimately,  following 

the initial characterization of GFPµ x A53T mice, it is anticipated this model can 

be utilized to develop novel therapeutic approaches to preclude inhibitory effects 

of α-synuclein on UPS function.       

5.2. Parkin

Mutations  in  the  E3  ubiquitin  ligase  parkin  cause  early  onset  PD  with  an 

autosomal recessive inheritance pattern [147, 148].  Although various mutations 

in  the  parkin  gene  have  been  linked  to  PD,  including  missense,  nonsense, 

frameshift point mutations, exon deletions and duplications, to date there is no 

noticeable variation in clinical manifestation between the different mutations [148, 

149].  Neurodegenerative changes are also relatively similar in sporadic PD and 

early onset PD caused by parkin mutations, with both types exhibiting neuronal 

loss and gliosis that is primarily restricted to the brainstem.  However, LBs are 

not typically observed in patients with parkin-linked PD, though the significance 

of this observation is still under speculation [150-153].  
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Despite the lack of LB formation, PD patients with parkin mutations do show an 

accumulation  of  parkin  substrates  [154-156],  which  would  suggest  that  α-

synuclein  is  not  a substrate  for  parkin.   However,  α-synuclein  and parkin  do 

colocalize  in  LBs  [41].   In  addition,  under  basal  conditions,  parkin  and  α-

synuclein  have  been  shown  to  associate  and  colocalize  to  the  cytosol  and 

neuritic  processes  [157,  158].   Inhibition  of  proteasome  activity  in  cells 

coexpressing  α-synuclein  and  parkin  led  to  a  decrease  in  parkin  solubility 

accompanied by the formation of  inclusions positive  for  both  α-synuclein  and 

parkin,  while  knockdown  of  α-synuclein  increased  parkin  solubility  under 

conditions of proteasomal impairment [158].   Given that proteasome inhibition 

also  increases  parkin  expression  [158],  and  that  autoubiquitination  of  parkin 

promotes its degradation by the proteasome [159-162],  it  is  possible that  the 

level of expression and/or ubiquitination of parkin may regulate its association 

with  α-synuclein.   These alterations in parkin expression and/or ubiquitination 

may be further  exacerbated by the accumulation of  α-synuclein,  which  could 

contribute to the pathogenesis of PD by promoting a decrease in parkin solubility 

and in turn, compromising neural function.  Mutations in  α-synuclein have also 

been shown to more efficiently stimulate parkin aggregation in  c.elegans [163] 

and neuroblastoma cells [158].  Thus it is hypothesized that mutations associated 

with  familial  parkinsonism in  combination  with  exposure  to  cellular  stressors, 

including  proteolytic  or  oxidative  stress,  might  facilitate  the  pathological 

interactions between α-synuclein and parkin.
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The effects of PD-linked mutations in parkin also appear to universally result from 

alterations  in  parkin  solubility  and  intracellular  localization,  possibly  due  to 

misfolding  of  the  mutant  protein  [54,  164,  165].   Wang  and  colleagues 

demonstrate  that  exposure  to  PD-linked  environmental  toxins,  as  well  as 

oxidative or proteolytic stressors, promotes the depletion of soluble, functional 

parkin,  which  correlates  with  reduced proteasomal  activity  and increased cell 

death [54].  In addition, Chung and associates observed S-nitrosylated parkin in 

both mice exposed to MPTP and human postmortem brain tissue from PD and 

diffuse LBD patients, which was negatively correlated with parkin function [166]. 

Given that parkin has also been shown to become increasingly more insoluble 

with age [167], and that risk for PD increases with age, it would appear that loss 

of functional parkin is a major, pathogenic mechanism.  In particular taking into 

consideration that parkin has been shown to exert a significant neuroprotective 

effect against various toxic insults, including manganese-induced cell death,  α-

synuclein toxicity, proteasomal dysfunction, Pael-R and P38/JTv-1 accumulation, 

kainate-induced  excitotoxicity,  mitochondrial-dependent  apoptosis,  MPP+/ 

rotenone-induced  cell  death,  ER  stress,  and  dopamine-mediated  toxicity  [54, 

130, 154, 155, 168-175].

In Drosophila, deletion of the parkin gene leads to the progressive degeneration 

of  dopaminergic  neurons  in  the  central  nervous  system  (CNS),  a  phenotype 

which is exacerbated by loss of glutathione-S-transferase [176], a gene which is 

actually upregulated by the PD-linked gene DJ-1 in response to oxidative stress 
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[177].  Confirming the specificity of this effect, the neurodegenerative phenotype 

in  parkin  mutants  was  suppressed  by  overexpression  of  glutathione-S-

transferase  [176],  which  suggests  that  loss  of  functional  parkin  increases 

sensitivity to oxidative stress.  However, given that  Drosophila do not express 

endogenous α-synuclein or Pael-R, it may not be possible to fully appreciate the 

consequences of alterations in parkin function in this model.

The selective vulnerability of dopaminergic neurons in PD could potentially be 

explained by the demonstration that dopamine can covalently modify parkin  in  

vitro, decreasing parkin solubility and E3 ligase activity [178].  In support of these 

in  vitro results,  LaVoie  and  colleagues  also  observed  a  decrease  in  parkin 

solubility in PD patients, as well as the presence of catechol-modified parkin in 

the  SN  [178].   In  addition,  embryonic  dopaminergic  neurons  are  particularly 

sensitive to deprivation of the growth factors GDNF or BDNF, activating a novel, 

apoptotic  pathway  in  their  absence  [179].   Cell  death  was  shown  to  be 

independent  of  mitochondria,  though caspase activation was still  required, as 

treatment with a caspase inhibitor, and more specifically inhibition of caspase 8, 

prevented cell death mediated by GDNF/BDNF withdrawal.  Yu and coworkers 

were also able to suppress cell death induced by GDNF/BDNF deprivation by 

inhibiting Fas or FADD (Fas-associated protein with death domain), which is an 

adaptor required for Fas-mediated activation of caspase 8, thus implicating the 

death  receptor  pathway  in  this  phenomenon  [179].   Intriguingly,  Kahns  and 

associates  demonstrate  that  while  caspases  1,  3,  and  8  cleave  parkin,  both 
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caspase 1 and 8 directly cleave parkin without requiring activation of the effector 

caspase 3,  suggesting that  death receptor  activation  and inflammatory stress 

promote the cleavage and inactivation of parkin [180].  Thus given the suspected 

link between depletion of neurotrophic factors and PD pathogenesis [181-183], in 

addition to the detection of cleaved parkin fragments in LBs isolated from the SN 

of PD patients [41, 184], it is possible that caspase 8-mediated cleavage and 

resultant inactivation of parkin may play a pathogenic role in PD progression, and 

additionally establishes a potential mechanism for the selective vulnerability of 

dopaminergic neurons in PD (Figure 1).     

5.3. DJ-1

Mutations  in  DJ-1,  an  antioxidant,  redox-sensitive  molecular  chaperone [185-

188], are linked to rare forms of autosomal recessive, early-onset PD [189, 190]. 

PD-linked  mutations  in  DJ-1  include  missense,  truncation,  and  splice  site 

mutations, as well as large deletions, suggesting that loss of DJ-1 function leads 

to neurodegeneration [190-192].  Of particular relevance to PD neuropathology, 

DJ-1 inhibits the oligomerization and toxicity of mutant A53T α-synuclein, while a 

decrease in DJ-1 expression facilitates the aggregation of α-synuclein [177, 193]. 

Knockdown  or  deletion  of  DJ-1  also  increases  susceptibility  to  proteasome 

inhibition in vitro [194, 195].  Through the modulation of glutamate cysteine ligase 

expression, the rate-limiting enzyme in glutathione synthesis, wild-type DJ-1, but 

not  the  PD-linked mutant  L166P,  is  protective  against  oxidative  stress,  while 
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blocking glutathione synthesis abolishes the protective effect of DJ-1 [177].  Loss 

of DJ-1 function is further implicated in PD pathogenesis by the observation that 

glutathione levels are decreased in the SN in early stages of PD [196], as well as 

the  demonstration  that  depletion  of  glutathione  leads  to  an  age-related 

neurodegeneration of the nigrostriatal pathway by oxidation-dependent inhibition 

of mitochondrial complex I [197-200].

Recently,  a  surprising link between expression levels  of  proteasome subunits 

and  DJ-1  was  identified.   In  nontransgenic  mice,  treatment  with  antioxidants 

enhances  the  expression  of  20S  and  19S  proteasome  subunits,  as  well  as 

proteasome  activity  [201].   However,  no  induction  of  proteasome  activity  or 

expression of proteasome subunits is observed in mice lacking the transcription 

factor  Nrf2  (nuclear  factor  erythroid  2-related  factor).   Further,  activity  of  the 

promoter regulating expression of the 20S β5 subunit, PSMB5, is increased with 

either overexpression of Nrf2 or exposure to antioxidants [201].  Given that Nrf2 

is a component of the transcription complex that binds to the cis-acting element 

ARE (antioxidant response element), which regulates the expression of proteins 

that  are  protective  against  oxidative  stress  (e.g.  glutathione  S-transferases, 

glutamyl  cysteine  ligase,  and NADPH quinone oxidoreductase)  [202-205],  the 

proximal promoter of PSMB5 was evaluated and an ARE subsequently identified 

[201].  Under normal conditions, Nrf2 is sequestered in the cytosol by the actin-

binding protein Keap1 [206].  Exposure to antioxidants causes the dissociation of 

Nrf2 from Keap1, allowing for the nuclear translocation of Nrf2 and transcription 

29



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

of ARE genes.  Amazingly,  DJ-1 actually binds and stabilizes Nrf2, preventing 

the  interaction  with  Keap1  and  decreasing  ubiquitination  and  subsequent 

proteasome-dependent degradation of Nrf2 [207, 208].  In the absence of DJ-1, 

Nrf2 is unstable and rapidly degraded, leading to a decrease in transcription of 

ARE genes [207].  

These findings could explain the dopaminergic cell loss and motor dysfunction 

observed in DJ-1 deficient mice upon exposure to the PD-associated herbicide 

paraquat [209].  Following treatment with paraquat, Yang and coworkers report a 

decrease in Nrf2, as well as the 19S ATPase Rpt6 and 20S β5 subunits in the 

ventral midbrain of DJ-1 knockout mice, while no pathological abnormalities were 

detected in wild-type mice treated with paraquat [209].  In addition, proteasome 

activity in the ventral  midbrain was decreased by 30% in DJ-1 deficient mice 

treated with  paraquat when compared to the saline-treated group,  which  was 

accompanied by an increase in protein ubiquitination.  Thus DJ-1 appears to be 

crucial for the survival of dopaminergic neurons, in particular under conditions of 

cellular stress.  

5.4. LRRK2 (Leucine-rich repeat kinase 2

LRRK2,  which  is  detected  in  both  LBs  and  granular  α-synuclein  deposits 

believed  to  represent  LB  precursors  [210,  211],  was  originally  linked  to  the 

PARK8 locus in a large Japanese family [212].  This linkage was subsequently 
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questioned by the discovery Family SK, carriers of the most common LRRK2 

mutation  (G2019S)  [213],  which  clinically  present  with  a  slowly  progressive 

parkinsonism, though no LBs or synuclein pathology was observed in any brain 

region evaluated upon autopsy [214].  Further adding to the complexity, a recent 

case history details a patient carrying the G2019S LRRK2 mutation with a history 

of  slowly-progressive  PD,  though  histological  assessment  revealed  nigral 

degeneration  in  the  absence  of  both  α-synuclein  and  tau  pathology  [215]. 

However,  numerous  Marinesco  bodies,  which  are  spherical  eosinophilic 

ubiquitin-positive intranuclear inclusions, were observed in both the SN and locus 

coeruleus [215].  Given that proteasome inhibition in vitro can lead to aberrations 

in ubiquitin immunoreactivity reminiscent of Marinesco body formation [216], it is 

possible  that  mutations  in  LRRK2  may  disrupt  UPS  function,  though  an 

explanation for the pleomorphic pathology associated with LRRK2 mutations is 

still unknown.

A more direct link between LRRK2 and the UPS was established by Smith and 

associates in their discovery of an interaction between LRRK2 and parkin, but 

not  DJ-1,  α-synuclein,  or  tau,  consistent  with  observations  by  Rajput  and 

coworkers  [214,  217].   Interestingly,  overexpression  of  LRRK2  led  to  the 

formation of inclusions in a small fraction of cells, which was exacerbated by the 

coexpression  of  parkin  [217].   Although  LRRK2  mutants  displayed  a  similar 

cellular localization, ability to associate with parkin, and tendency to aggregate in 

comparison to the wild-type protein, all  mutants evaluated (R1441C, Y1699C, 
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G2019S) increased cell death, which could not be prevented by the coexpression 

of  parkin  [217].   As LRRK2 activity  increases the autoubiquitination of  parkin 

[217], thus promoting the proteasome-mediated degradation of parkin [159-162], 

and mutations in LRRK2 are predicted to increase kinase activity [218, 219], it is 

possible  that  toxicity  attributed  to  LRRK2  mutations  could  result  from  the 

abnormal modulation of parkin levels and/or activity.  In addition, both wild-type 

and mutant LRRK2 were recently shown to interact with heat shock protein 90 

(hsp90),  and  dissociation  of  the  LRRK2-hsp90  complex  promotes  the  UPS-

mediated  degradation  of  LRRK2  [219,  220],  suggesting  that  proteasome 

dysfunction could also lead to an increase in LRRK2 expression.         

5.5. PINK1 (PTEN-induced putative kinase 1)

PINK1,  a  highly  conserved  kinase  that  is  localized  to  the  inner  and  outer 

mitochondrial membranes [221-224], has been identified as the gene locus for 

PARK6-linked  PD,  which  is  characterized  by  an  earlier  age  of  onset  than 

sporadic  PD  [224].   The  most  common  PD-associated  mutation  in  PINK1 

(C1366T)  decreases  mRNA  transcript  levels  by  80-90%  [225],  while  the 

mutations G309D, L437P, G386A and G409V have all  been shown to reduce 

kinase activity in vitro [226, 227].  These findings implicate a loss of function or 

deficiency of the PINK1 protein in PD pathogenesis, leading to the development 

and evaluation of PINK1 knockout models.  Intriguingly, knockout of the PINK1 

gene in Drosophila led to defects in mitochondrial morphology and degeneration 
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of  dopaminergic  neurons,  a  phenotype  which  was  rescued  by  parkin 

overexpression [228, 229].  As deletion of the parkin gene produced a similar 

phenotype [230, 231] that could not likewise be reversed by overexpression of 

PINK1 [228, 229], and deletion of both the parkin and PINK1 genes does not 

lead to an exacerbated phenotype, it is believed that PINK1 is upstream of parkin 

in a signaling cascade that regulates mitochondrial function and integrity [228, 

229].  

The effects of PINK1 deficiency on mitochondrial function and morphology have 

since been replicated in both human and mouse-derived dopaminergic neurons 

[232].   The  deletion  of  PINK1  also  leads  to  an  increased  activation  of  the 

mitochondrial cell-death pathway, as well as an elevation of ROS levels [232]. 

Conversely,  the  overexpression  of  PINK1  is  protective  against  proteasomal 

inhibition and staurosporine-induced apoptosis,  decreasing both cytochrome c 

release and caspase 3 activation [233, 234].  The overexpression of PINK1 has 

also  been  shown  to  prevent  abnormal  depolarization  of  the  mitochondrial 

membrane in response to UPS dysfunction [235, 236].  The link between PINK1 

and  the  UPS  has  been  further  established  by  Muqit  and  colleagues, 

demonstrating an enhanced cleavage and recruitment of PINK1 to aggresomes 

under  conditions  of  proteasomal  impairment,  with  both  wild-type  and  mutant 

PINK1 displaying a similar tendency to aggregate [222].  As PINK1 is detected in 

approximately 5-10% of LBs in PD [221], the finding that PINK1 colocalizes with 

parkin,  synphilin-1,  and  α-synuclein  in  aggresomes  in  the  presence  of  the 
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proteasomal  inhibitor  MG132 provides additional  support  for  a  central  role  of 

UPS dysfunction in LB formation [222].  

6.  Conclusion

Thus it is becoming increasingly clear that genetic links to PD either promote 

UPS dysfunction,  or  interfere with  the normal  compensatory response(s)  that 

occur to minimize toxicity from proteasomal impairment.  However, although this 

review evaluates the existing data from the viewpoint that a decrement in UPS 

function is central to the pathogenesis of PD, it is possible that UPS function itself 

is actually modulated in response to a central impairment in an alternate system, 

such  as  the  mitochondrial  or  lysosomal/autophagic  pathway.   Further 

confounding  this  issue,  UPS  impairment  compounded  by  an  inefficient 

upregulation of autophagy or mitochondrial protein quality control mechanisms 

may  ultimately  yield  a  similar  phenotype  to  that  observed  by  lysosomal  or 

mitochondrial dysfunction exacerbated by proteasomal inhibition.  Clarification of 

this issue will assist in the identification of specific targets that can be modulated, 

as it may be possible to rescue neuronal function through the augmentation of 

parallel  and  intersecting  pathways,  ultimately  enhancing  the  repertoire  of 

therapeutic agents available to treat PD and other neurodegenerative conditions 

characterized by abnormal protein aggregation.
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Figure 1.  A putative mechanism by which the UPS acts downstream of 
BDNF/TrkB signaling to ultimately regulate α-synuclein aggregation.  According 
to this hypothetical model, synuclein-mediated inhibition of the UPS interferes 
with stimulatory effects of BDNF on synaptic activity, as well as the inhibitory 
influence of BDNF signaling on parkin cleavage and inactivation by the 
Fas/FADD death receptor pathway.    
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