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ABSTRACT

Cognitive  dysfunction  and dementia  have recently  been proven to  be common (and 

underrecognized) complications of Diabetes Mellitus (DM). In fact, several studies have 

evidenced  that  phenotypes  associated  with  obesity  and/or  alterations  on  insulin 

homeostasis  are  at  increased  risk  for  developing  cognitive  decline  and  dementia, 

including  not  only  vascular  dementia,  but  also  Alzheimer’s  Disease  (AD).  These 

phenotypes include prediabetes, diabetes, and the metabolic syndrome. Both types 1 and 

2  Diabetes  are  also  important  risk  factors  for  decreased  performance  in  several 

neuropsychological functions. Chronic Hyperglycemia and hyperinsulinemia primarily 

stimulates the formation of Advanced Glucose Endproducts (AGEs), which leads to an 

overproduction  of  Reactive  Oxygen  Species  (ROS).  Protein  glycation  and increased 

oxidative stress are the two main mechanisms involved in biological aging, both being 

also probably related to the etiopathogeny of AD. AD patients were found to have lower 

than normal cerebrospinal fluid levels of insulin. Besides its traditional glucoregulatory 

importance,  insulin  has  significant  neurothropic  properties  in  the  brain.  How  can 

clinical  hyperinsulinism be  a  risk  factor  for  AD whereas  lab  experiments  evidence 

insulin to be an important neurothrophic factor? These two apparent paradoxal findings 

may be reconciliated by evoking the concept of insulin resistance. Whereas insulin is 

clearly neurothrophic at moderate concentrations, too much insulin in the brain may be 

associated with reduced amyloid-β (Aβ) clearance due to competition for their common 

and main depurative mechanism – the Insulin-Degrading Enzyme (IDE). Since IDE is 

much more selective for insulin than for Aβ, brain hyperinsulinism may deprive Aβ of 

its  main  clearance  mechanism.  Hyperglycemia  and  hyperinsulinemia  seems  to 

accelerate  brain  aging  also  by  inducing  tau  hyperphosphorylation  and  amyloid 

oligomerization,  as well  as by leading to widespread brain microangiopathy.  In fact, 
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diabetes subjects are more prone to develop extense and earlier-than-usual leukoaraiosis 

(White  Matter  High-Intensity  Lesions  -  WMHL).  WMHL  are  usually  present  at 

different degrees in brain scans of elderly people. People with more advanced WMHL 

are at  increased  risk for  executive  dysfunction,  cognitive  impairment  and dementia. 

Clinical  phenotypes associated with insulin resistance possibly represent true clinical 

models for brain and systemic aging. 

Key words: diabetes, insulin, ‘brain aging’, cognition, dementia.
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1. Introduction

Diabetes  Mellitus (DM) is  one  of  the  most  important  and  prevalent  chronic 

diseases. It currently affects 250 million people worldwide, with 6 million new cases 

reported each year [1]. This prevalence rises with age from 12% in people aged 65 to 70 

to 15% in people over age 80 [2]. DM is a systemic disease that can damage any organ 

in the body  [3]. Complications include pathologic changes involving both small  and 

large vessels, cranial and peripheral nerves, skin, and eyes. These organic lesions may 

lead to hypertension,  renal failure, vision loss, autonomic and peripheral neuropathy, 

peripheral  vascular  disease,  myocardial  infarction  and  cerebrovascular  disease, 

including stroke [3].

In recent years, significantly more interest has been dedicated to the effect of 

diabetes on the brain. Along with cerebrovascular disease, diabetes is implicated in the 

development  of  other  neurological  co-morbidities.  Less  addressed  and  not  as  well 

recognized complications of DM are cognitive dysfunction and dementia. Like diabetes, 

cognitive dysfunction represents another  serious problem and is  rising in prevalence 

worldwide, especially among the elderly [4].  Diabetes mellitus has been implicated as 

risk factor for dementia not only of vascular type but also to Alzheimer’s Disease (AD) 

[5] Patients  with  type  1  Diabetes  Mellitus (T1DM)  and  type  2  Diabetes  Mellitus 

(T2DM)  have  been  found  to  present  cognitive  deficits,  associated  with  reduced 

performance on multiple domains of cognitive function. Cognitive impairment due to 

diabetes mainly occur at two main periods: during the first 5–7 years of life when brain 

systems is in development; and the period when the brain undergoes neurodegenerative 

changes due to aging (older than 65 years) [6]. 

Anatomic brain alterations have been identified in patients with both T1DM and 

T2DM [7-13]. These include generalized brain atrophy and greater high-intensity lesion 
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volumes, predominantly in the subcortical regions [13]. Patients with diabetes mellitus  

are  more  likely  to  present  earlier  and  more  extense  leukoaraiosis  (White  Matter 

Hyperintense Lesions (WMHLs) [14]. Leukoaraiosis is a feature usually found in brain 

scans performed in subjects  over 80 years-old [15].  The nature of these  WMHLs is 

uncertain, but investigators have hypothesized that they could represent demyelination, 

increased water content or gliosis  [16]. Magnetic Resonance Imaging (MRI) has also 

demonstrated  that  subjects  with  T2DM  have  hippocampal  and  amygdala  atrophy 

relative to control subjects [17]. The hippocampus and amygdala are responsible for 

such  functions  as  memory  and  behavior  and,  coincidentally,  are  also  found  to  be 

atrophied in AD [17]. In addition, post-mortem studies of brains of  DM patients with 

dementia often reveal the coexistence of both brain microvascular lesions and extense 

amyloid plaque burden, a characteristic of AD. This phenomenon suggests that diabetes 

is a risk factor for both vascular dementia (VD) and AD [18].

Many studies suggest that the risk of cognitive decline and neurodegeneration is 

increased  not  only  in  DM,  but  also  in  patients  with  pre-diabetes  and  Metabolic 

Syndrome (MetS)  [19]. Individuals with pre-diabetes are defined as those presenting 

impaired fasting glucose and/or impaired glucose tolerance [20], what increase their risk 

of developing frank DM. Those subjects  already present insulin resistance (IR) as a 

pathophysiological mechanism that is often associated with MetS. [19,20]. Metabolic 

Syndrome, in turn,  is a cluster of interrelated cardiometabolic risk factors including 

visceral  obesity,  dyslipidemia  (elevated  triglycerides  and/or  low  HDL-cholesterol), 

hypertension, dysglycemia (pre-diabetes or diabetes) [21] Subjects with the MetS often 

also present a proinflammatory/prothrombotic state. MetS has already been associated 

with silent strokes, cognitive impairment, vascular dementia, Alzheimer’s disease and 

the ‘Frontal-Subcortical (geriatric) Syndrome’ (FSCS). [see 22 for a review].
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The  exact  pathophysiology  of  cognitive  dysfunction  and  cerebral  lesions  in 

diabetes  mellitus is  not  completely  understood,  but  it  is  likely  that  hyperglycemia, 

vascular  disease,  hypoglycemia,  and  insulin  resistance  play  significant  roles  [23]. 

Diabetes mellitus may  accelerate  the  brain  aging  process, as  it  accelerates  cerebral 

atrophy [24], thus reducing cognitive reserve and the threshold for the development of 

AD  symptoms.  In  addition,  DM  may  interfere  with  cerebral  amyloid  and  tau 

metabolism [25]. Alterations in insulin and glucose homoeostasis in the periphery may 

affect  brain  insulin  and  its  receptor  functions  [25],  promoting  increasing 

oligomerization of β-amyloid, and inducing tau hyperphosphorylation  [25,26]. Insulin 

resistance  seems  also  to  accelerate  biological  aging  by  fostering  the  formation  of 

Advanced Glycation End-products (AGE) and, consequently,  ROS (Reactive Oxygen 

Species)  [27]. The relation between insulin and the metabolism of amyloid-β peptide 

(Aβ) and tau in particular  has been receiving increasing attention over the past  few 

years [25,26].

2. Global and Specific Subtypes of Cognitive Dysfunction in:

2.1. Type 1 Diabetes 

Neuropsychological studies have shown that patients with T1DM perform worse 

than patients  without T1DM on several  cognitive functions.  Although the degree of 

magnitude  is  variable,  this  worse  performance  in  cognitive  functions  is  already 

noticeable during childhood [28]. These cognitive functions include specific deficits of 

intelligence,  attention,  processing  speed,  memory,  and  executive  skills  [29-38]. 

Cognitive deficits were mainly identified in information processing speed [29,30] and 

psychomotor abilities.  The progression and accumulation of these specific deficits can 
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lead  to  global  deficits  and  dementia  in  diabetic  patients  [31,32].  The  cognitive 

performance of diabetic patients is summarized in table 1 and the neurocognitive tests 

utilized on these studies are shown on table 2.

In addition, other deficits were also identified such as those involving motor speed 

[33,34,35]  and  strength [35],  vocabulary  [36,37], general  intelligence  [36,39], 

visuoconstructional  praxis  [36], attention  [39],  memory  [32],  and executive function 

[32,38]. A recent meta-analysis analyzed 33 studies of cognitive function in adults with 

T1DM and found significant reductions in overall cognition, both fluid and crystallized 

intelligence,  speed  of  information  processing,  psychomotor  efficiency,  visual  and 

sustained  attention,  mental  flexibility,  and  visual  perception,  when  compared  with 

controls  [40]. There was no significant difference in motor speed, memory,  selective 

attention, and language. Lowered cognitive performance in diabetic patients appeared to 

be  associated  with  the  presence  of  microvascular  complications,  but  not  with  the 

occurrence of severe hypoglycemic episodes or with poor metabolic control [40].

Many  longitudinal  studies  have  found  lower  intelligence  quotient  (IQ)  scores, 

reduced mental efficiency, and worse school performance in children with T1DM [37, 

38,  41,42]. Nevertheless  there  are  many factors  that  can influence  on the  cognitive 

performance of these patients. The age of onset of diabetes mellitus and the quality of 

glycemic control are possibly the two most important ones. In a population of children 

with T1DM evaluated 6 years after disease onset, those who developed T1DM at less 

than 4 years of age had impaired executive skills, attention, and processing speed when 

compared with those who were diagnosed after 4 years of age  [38].  The ‘early-onset 

effect’  has  been  attributed  to  the  adverse  effects  of  metabolic  disturbances  on  the 

developing brain and appears to persist through adulthood [43]. 
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Adequate glycemic control also appears to be importantly associated with cognitive 

performance  in  patients  with  T1DM.  Psychomotor  abilities,  motor  speed  [30,  44], 

attention,  memory,  verbal  IQ  scores  [45-47],  and  academic  achievements  [46]  are 

improved with better glycemic control [47]. On the Diabetes Control and Complications 

Trial  (DCCT) patients  with T1DM with mean serum glycated  hemoglobin  (HbA1c) 

lower  than  7.4%  performed  significantly  better  on  tests  of  motor  speed  and 

psychomotor  efficiency  than  those  subjects  which  mean  HbAlc  greater  than  8.8% 

during  the  18-year  follow-up  [44].  In  addition,  patients  with  acute  hyperglycemia 

perform worse  on  tests  of  cognitive  function,  showing increased  number  of  mental 

subtraction  errors,  loss  of  inhibition  and  focus,  impaired  speed  of  information 

processing, decreased attention, and impaired working memory [48,49]. Conversely, no 

association between multiple severe episodes of hypoglycemia and impaired cognitive 

function in patients with T1DM was found in the DCCT [44].

In a metanalysis, the presence of other diabetic complications was associated with 

poorer cognitive function in most  studies involving T1DM patients  [40].  Deficits  in 

fluid intelligence, information processing speed, attention, and concentration have been 

associated  with  the  presence  of  retinopathy  [50].  Whereas  complications  like 

retinopathy  and  nephropathy  usually  require  years  of  diabetes  before  becoming 

clinically apparent, the onset of cognitive impairment has been found to occur earlier in 

the course of disease among T1DM patients [36]. Among children with T1DM, deficits 

in  cognitive  function  have been  detected  as  early  as  2  years  after  diagnosis.  In  the 

follow-up, these children experienced less increase in general intelligence, vocabulary, 

block design, processing speed, and learning in general  [36].  Proliferative retinopathy, 

macrovascular complications,  hypertension,  and duration of diabetes  were associated 

with poorer performance on tests measuring psychomotor speed and visuoconstructional 
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ability  [30,31,39].  In  another  study,  the  occurrence  of  distal  symmetrical 

polyneuropathy was related to worse cognitive function on most domains, except for 

memory [30].

2.2. Type 2 Diabetes 

Patients with T2DM have also been found to have specific and global cognitive 

deficits  characterized  by  decreases  in  psychomotor  speed  [51,52],  complex  motor 

functioning [52], executive functions [52-54], memory skills [53-55], processing speed 

[55],,immediate  and delayed  recall  [56],  verbal  fluency  [52,  57],  attention  [58] and 

visuospatial abilities  [59]. Another neurocognitive dysfunction frequently observed in 

patients with T2DM is (vascular) depression, which is twice more common in these 

patients than among controls  [60]. Besides sharing a common neurovascular pathogen 

with cognitive dysfunction, depression is also a cause of cognitive dysfunction by itself, 

since  it  may  severely  impairs  attention  [53,60,61].  A  comparison  in  the  cognitive 

performance  between  T1DM and  T2DM is  summarized  in  table  1  and  the 

neurocognitive tests utilized on these studies are shown on table 2.

Cross-sectional studies evaluating cognition in T2DM patients demonstrate that 

immediate  noncontextual,  verbal  memory,  processing  speed,  and  brief  cognitive 

screening measures are much worse in diabetic patients than among controls  [62]. Six 

out  of  11  population  studies  demonstrate  that  T2DM patients  are  more  likely  than 

controls to show poor performance on brief cognitive screening measures. All the other 

measures were less likely to show significant differences between well-treated type 2 

diabetic  patients  and  controls. Taken  together,  the  results  of  well-controlled  cross-
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sectional  populational  studies  demonstrate  that  findings  across  all  evaluated 

neuropsychological measures are inconsistent [62].

Longitudinal  studies,  however,  almost  universally  reveal  a  higher  risk  of 

dementia or significant cognitive decline in diabetic populations  [9,63]. Studies with 

cognitive screening instruments or batteries of more comprehensive neuropsychological 

tests show that the rate of cognitive decline due to aging is increased 1·5-fold to 2·0-fold 

in individuals with T2DM  [64],  albeit a study of cognitive function in the oldest old 

(age at study entry 85 years) did not find any significant association between T2DM and 

accelerated cognitive decline [65,66]. This particularity among the oldest-old population 

may  be  a  form  of  ‘survivor  effect’,  in  which  T2DM  people  with  more  advanced 

vascular burden already died from myocardial infarction, stroke, or even dementia or 

obesity-associated neoplasms [65]. Besides, as most westerners start to lose weight after 

middle age is over, many people above 80 might actually improve their T2DM control 

by  losing  weight.  Alternatively,  people  with  neoplasms  or  dementia  may  start  to 

importantly  lose  weight  even  before  the  diagnosis  of  such  conditions  [65].  This 

phenomenon, however, is not to be confused with the fact that mild-moderate caloric 

restriction  (30%)  through  life  extends  lifespan  in  invertebrates  and  vertebrates, 

including primates and, probably, humans [67]. Among the main mechanisms by which 

caloric  restriction extends lifespan seems to be the facts  that  it  (1) increases  insulin 

sensitivity  and (2)  decreases  the formation  of  AGEs and (3)  ROS,  resulting  in  less 

oxidative stress [67]. 

The  risk  of  Alzheimer’s  disease  (relative  risk  [RR]  1·5–2·0)  and  vascular 

dementia  (RR 2·0–2·5) is  increased in T2DM  [66].  If  we assume the prevalence  of 

T2DM to be about 15% in people older than 60 years, a RR of 1·5–2·0 translates into a 

diabetes  attributable  risk  for  dementia  of  7–13%  [6].  This  increased  risk  remains 
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significant  even after  adjusting  for  the  presence  of  other  vascular  risk  factors  [68]. 

Alzheimer’s disease is by far the most common cause of dementia among people with 

T2DM. In fact, among all incident cases of dementia occurring in people with T2DM, 

Alzheimer’s disease is the diagnosis in about 82.5% [20] to 91% of the situations [19]. 

As  stated  above,  the  enhanced  risk  for  developing  AD  in  diabetic  patients 

remains strong even when vascular factors are controlled for, suggesting an importance 

of non-vascular mechanisms for AD pathogenesis [69]. Several factors might contribute 

to the increased AD risk in  diabetes  mellitus, including  defects  in  insulin signaling, 

accumulation  of  pathological  Aβ,  and  hyperphosphorylated  Tau  [70]. Some  studies 

have shown that the association between  diabetes mellitus and  Alzheimer’s disease is 

particularly strong among Apolipoprotein E epsilon-4 allele (APOEε4) carriers. Indeed, 

individuals  with  T2DM  who  possess  the  APOEε4  allele  have  twice  the  risk  of 

developing  Alzheimer’s  disease,  as  compared  with  non-diabetics  subjects  with  the 

APOEε4 allele  [70]. Brain pathology from T2DM patients frequently includes heavy 

deposition of β-amyloid and Neurofibrilary Tangles (NFTs)  [69]. Moreover, amyloid 

deposition is  markedly increased in individuals  with both diabetes  and the  APOEε4 

genotype [70,71].

Glycemic  control  appears  to  play  an  important  role  in  preserving  cognitive 

performance among patients  with T2DM  [72].  In patients  with T2DM, studies have 

demonstrated  an  inverse  relationship  between  serum  HbAlc  and  working  memory 

[53,54],  executive  functioning  [53],  learning  [52],  and  complex  psychomotor 

performance  [52,73]. This finding supports the hypothesis that an inadequate glucose 

control is associated with worsening cognitive function. Another important finding is 

the association between both the duration and severity of T2DM at one side, and the 

degree of central (brain) and peripheral nervous system involvement, as demonstrated 
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by decreased cognitive function and peripheral neuropathy, respectively.  [51, 54, 58]. 

Insulin-dependent  T2DM subjects  had a higher  risk of major cognitive decline than 

those  with  an  adequate  metabolic  control  only  with  oral  hypoglycemiants 

[74].Conversely,  repetitive  episodes  of  moderate  to  severe  hypoglycemia  have  been 

implicated as one possible etiology for long-term cognitive dysfunction in T2DM [73], 

even though the strongest evidence for memory disturbances is for the short period in 

which the subject is hypoglicemic [75,76]. 

3. Neuroimaging in Diabetes

Several studies on the  cerebral structure of patients with T1DM and T2DM have 

evidenced cortical and subcortical atrophy, besides increased  leukoaraiosis  (WMHLs), 

which were associated with impaired cognitive performance even after controlling for 

cardiovascular  risk  factors  such  as  hypertension  [14,15,77]. A  strong  interaction 

between diabetes and hypertension was observed, such that when the two conditions are 

present together, they result in a multiplicative greater risk for cortical brain atrophy 

[78].  A  study  involving  elderly  subjects  have  also  found  that  hippocampus  and 

amygdala atrophy were  more pronounced in persons with T2DM  [79]. Interestingly, 

after  further  adjustment  for  classical  vascular  risk morbidity,  these  results  remained 

statistically  significant. However,  a  similar  study  in  subjects  with  T1DM  failed  to 

identify significant reductions in hippocampal and amygdala volumes, although these 

subjects  did  present  mild  ventricular  enlargement  and slight  global  cerebral  atrophy 

[80]. 
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Population-based  studies  indicate  that  diabetes  is  a  risk  factor  for  silent  and 

symptomatic  brain  infarcts  seen  with  MRI  [81,82].  The  presence  of  microvascular 

complications  is  associated  with  both  reduced  cognitive  performance  [50] and 

accelerated cognitive decline  [31].  In patients with T2DM, WMHLs and subcortical/ 

periventricular  atrophy  have  been  associated  with  reduced  performance  on  tests  of 

attention, executive function, information processing speed, and memory [15,83].

Diabetes  severity  and  glycemic  control  may  influence  the  degree  of  brain’s 

lesion involvement. Some studies which have included elderly people in poor glycemic 

control  found  impairments  in  psychomotor  efficiency  and  memory  associated  with 

WMHLs and subcortical brain atrophy [15]. Among well-controlled T2DM of less than 

10 years duration, deficits  on hippocampal-based memory performance and selective 

MRI atrophy of the hippocampus were found in comparison with age-matched controls. 

[84].  Among  these  well-controlled  individuals,  HbA1c  serum levels  were  inversely 

related  to  head-size adjusted hippocampal  volumes.  Higher  HbA1c levels  were also 

correlated with lower gray matter density in important areas for language, memory, and 

attention [85]. Higher HbA1c levels were also associated with reductions of gray matter 

in the right cuneus and precuneus regions, and reductions of white matter in the right 

posterior  parietal  region  [86].  In  addition,  the  occurrence  of  hypoglycemia  in  both 

T1DM and T2DM groups was correlated  with increased cerebral  atrophy in several 

cerebral regions, more specifically in certain areas of the frontal and temporal lobes, 

besides the thalamus [85,86,87].

Some other studies have been shown that the presence of peripheral  diabetic 

complications is more associated with lesions of certain specific cerebral areas [83,86]. 

For example, T1DM patients with proliferative retinopathy had decreased gray matter 

density  in  the  right  inferior  gyrus  and  right  occipital  lobe.  They  also  presented 
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significantly smaller white matter volume compared with those patients with diabetes 

but  no  retinopathy  [86].  The  occurrence  of  small,  punctate,  white-matter  lesions  is 

higher in patients with retinopathy than in those without it [50].

4. Pre-diabetes and the Metabolic Syndrome (MetS)

Healthy individuals are able to maintain their plasma glucose levels constantly 

around 4–5mM and, when blood glucose rises following meals, the insulin secreted by 

the pancreas also rises to maintain normal glycemia [1]. Insulin regulates the uptake of 

glucose by the tissues and it storage as glucogen. The major sites of insulin action are 

the liver, fat tissue, skeletal muscle and the brain, in special some regions with a high 

demand for glucose [1]. When sensitivity to insulin is reduced on these tissues, this is 

termed  Insulin  Resistance  (IR).  The  occurrence  of  IR  combined  with  a  pancreatic 

insufficiency to provide enough and prompt insulin secretion to maintain euglycemia is 

termed  T2DM.  The  term  ‘pre-diabetes’  is  employed  when,  in  the  presence  of  IR, 

enough insulin  is  still  produced to  prevent  overt  diabetes,  but  it  results  in  impaired 

fasting glucose and/or impaired glucose tolerance [1,19,20].

In pre-diabetes, body tissues are exposed to abnormally high levels of insulin for 

extended periods, what may persist for many years/decades. Hyperinsulinemia seems to 

be  implied  in  neurodegeneration  and cognitive  decline  [19,20].  The  hypothesis  that 

diminished glucoregulatory control is related to decrements in cognitive performance is 

supported  by  studies  which  evaluated  neuropsychological  performance  among  pre-

diabetic adults  [20]. Impaired glucose tolerance and hyperinsulinemia were associated 

with reduced Mini Mental State Examination (MMSE) scores [87] and have also been 

linked to increased risk for mild cognitive impairment (MCI). Subjects with MCI are at 
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increased risk for dementia. [20,88]. Interestingly, some studies have demonstrated that 

patients  with impaired glucose tolerance may have the same pattern and severity of 

cognitive  deficits  as  patients  with  T2DM  [89].  In  another  study,  reduced  glucose 

tolerance  was  associated  with  decreased  general  cognitive  performance,  memory 

deficits, and hippocampal atrophy on the MRI [90]. Multiple investigations on patients 

with impaired glucose tolerance have shown them to have lower MMSE and long-term 

memory  scores  [91],  impaired  verbal  fluency  [57],  increased  risk  for  Alzheimer’s 

disease [92], and increased odds for vascular dementia  [93],  as compared with control 

subjects. However, not all studies found that patients with pre-diabetes perform worse 

than normoglycemic individuals [58,94-96]. 

Impaired  glucose  tolerance is  one component  of  MetS,  together  with central 

obesity,  hypertension,  hypertriglyceridemia  and  reduced  HDL-cholesterol.  Each 

component of the MetS has been shown to be an independent risk factor for stroke, but 

hyperglycemia might be more important than the other components in the pathogenesis 

of both peripheral and central neuropathy  [97].  Our group has recently evaluated  422 

community-dwelling  elderly  (≥60)  in  Brazil,  in  order  to  investigate  the  association 

between  cognitive  impairment  and  the  Frontal-Subcortical  (Geriatric)  Syndrome 

(FSCS), at one side, and MetS in the other side.  FSCS, which is caused by ischemic 

disruption of the frontal-subcortical network,  was defined as the presence of at least one 

frontal release sign (grasping, palmomental, snout, or glabellar) plus the coexistence of 

≥3  the  following  criteria:  (1)  cognitive  impairment,  (2)  late-onset  depression,  (3) 

neuromotor  dysfunction,  and  (4)  urgency  incontinence. We  found  that  MetS  was 

significantly associated with FSCS (OR = 5.9; CI: 1.5–23.4) and cognitive impairment 

(OR = 2.2; CI: 1.1–4.6) among stroke-free subjects [22].
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Obesity is associated with a significant reduction in insulin sensitivity, as insulin 

sensitivity inversely correlates with Body Mass Index (BMI) [98]. With the worldwide 

rapidly increasing prevalence of obesity, there is a corresponding increasing prevalence 

of  insulin  resistance  and  pre-diabetes  [98,99].  Fifty  percent  of  adults  have  central 

obesity and the occurrence of central obesity in midlife increases the risk of dementia 

independent  of  diabetes  and  cardiovascular  comorbidities  [100].  Generalized  brain 

atrophy and regional alterations in gray matter volume occur in obese male subjects, 

suggesting that subjects with a high BMI are at greater risk for cognitive decline [101].

5. Pathophysiologic Mechanisms 

Mechanisms  underlying  the  development  of  nervous  system  lesions  and 

cognitive dysfunction in patients with disturbances in the insulin homeostasis have not 

been completely elucidated. There are supporting evidence from many hypotheses in 

explain the pathophysiology of neurodegeneration associated with diabetes, prediabetes, 

and MetS [98, 99]. The main hypotheses pointing to the potential implied mechanisms 

involves hyperglycemia, hypoglycemia, (micro)vascular disease, insulin resistance, and 

hyperinsulinism,  all  which  are  well-represented  by the  concept  of  MetS (Figure  1). 

Besides, the MetS construct includes central obesity, hypertension, and dyslipidemia, all 

of  which  are  related  to  hyperinsulinism  [98].  The  above three  other  components  of 

MetS are not necessarily present in (pre)diabetes  [98, 99], but are also important risk 

factors for cognitive dysfunction [22]. The possibly involved mechanisms relating these 

other MetS components to cognitive dysfunction are not fully discussed in this review, 

but are also cited in Figure 1. 
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Many cognitive  dysfunctions  associated  with  metabolic  syndrome  may  have 

their  common  pathophysiologic  mechanism unified  by  invoking  the  concept  of  the 

FSCS (22; see item 4, penultimate paragraph).

5.1. Hyperglycemia

Glucose  is  the  main  energy  substrate  of  the  human  brain;  however  the 

occurrence of chronic hyperglycemia can be deleterious for the brain [102]. The brain, 

which constitutes only 2% of the human body weight, utilizes almost 25% of total body 

glucose [102]. The glucose metabolism is used not only for energy substrate but also the 

breakdown  of  glucose  provides  important  compounds  for  neurons,  including 

neurotransmitters  such  as  acetylcholine  and  glutamate  [103].  Several  studies  have 

shown  that  hyperglycemia  has  toxic  effects  and  can  lead  to  slowly  progressive 

functional and structural abnormalities in the brain [10]. Chronic hyperglycemia could, 

thus, be one of the determinants of cognitive decline in people with abnormal glucose 

metabolism [104,105].

The deleterious effects of hyperglycemia are mediated through an increased flux 

of glucose through the polyol and hexosamine pathways, disturbances of intracellular 

second messenger pathways, an imbalance in the generation and scavengers of ROS, 

and by AGEs [106]. Besides being directly implied in aging (last two processes), these 

phenomena also contributes to microvascular changes, what leads to microinfarcts and 

generalized  brain  atrophy/WMHL,  which,  in  turn,  result  in  cognitive  decline  and 

dementia  [10,107,108].  Three  mechanisms  that  mediate  the  toxic  effects  of 

hyperglycemia/hyperinsulinemia  are  responsible  for  the  aging  process  of  the  brain, 

namely: (1) accumulation of AGEs; (2) increasing formation of ROS, with consequent 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

increased oxidative stress; and (3) microvascular pathology  [23,108,109]. Thus, these 

effects on cognition and brain structure might be responsible for the “accelerated brain 

aging” that occurs in subjects with diabetes [23,110].

The finding  of  accelerated  brain  aging  in  DM is  confirmed  by experimental 

models in rats [111]. Alterations include neuroanatomical and neurochemical changes, 

impairments  in  stress  reactivity  and hypothalamic–pituitary–adrenal  axis  activity,  as 

well as deficits in insulin signaling and neuroplasticity. Some studies have shown that 

RAGEs, galectin-3 (a proatherogenic molecule), and the polyol pathway activation were 

all  increased  in  diabetic  rat  brains,  whereas  activity  of  the  glycolytic  enzyme 

glyceradehyde-3-phosphate  dehydrogenase  was  decreased,  indicating  elevated 

superoxide  levels  [112].  Neuronal  apoptosis  and  suppression  of  cell 

proliferation/neurogenesis are observed in the hippocampus of diabetic rodents. Nuclear 

factor B transcription factors, a proinflammatory gene marker up-regulated by AGEs, 

and S-100 protein, a marker for brain injury that can bind to RAGEs, were both up-

regulated in the hippocampus of diabetic rats [113-116]. These data suggest that insulin 

resistance,  hyperinsulinism  and  hyperglycemia,  causing  accumulation  of  AGEs  and 

ROS,  may  trigger  a  cascade  of  events  that  leads  to neural  aging  and  hippocampal 

atrophy, which may represent the initial neuronal damage in diabetes mellitus [117]. 

 In  addition,  neurochemical  changes  have  also  been  observed  and  may 

contribute to cognitive dysfunction. Insulin resistance impairs long-term potentiation, a 

fundamental  mechanism  for  memory  consolidation  [118].  Other,  neurotransmitter 

functions  which  are  altered  in  diabetes  mellitus include  decreased  acetylcholine 

production  [119],  decreased  serotonin  turnover,  decreased  dopamine  activity,  and 

increased norepinephrine [120,121]. 
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5.2. Hypoglycemia

A common and feared side effect of diabetes treatment is hypoglycemia.  The 

risk  of  hypoglycemia  is  a  barrier  to  achieving  and  maintaining  optimal  glycemic 

control. It is widely recognized that prolonged and severe hypoglycemia may leads to 

permanently brain damage, besides its  immediate  effects  on the brain which acutely 

affects cognition, mood, and conscious level [122,123,124]. What remains controversial 

is if repeated minor episodes of hypoglycemia may contribute to cognitive dysfunction 

[125]. Hypoglycemia also exerts profound effects on various constituents of the blood 

and the vasculature. Although the effects are transient and unlikely to exert any long-

term consequences  on  a  healthy  circulation,  the  potentially  deleterious  effects  on  a 

damaged vasculature should be considered. Recurrent exposure to hypoglycemia may 

exert  an  important  adverse  effect  when  the  vasculature  has  already  become 

compromised by macro- and microangiopathy [126].

In  the  presence  of  hypoglycemia,  several  responses  occur  within  the  brain, 

including activation of the central sympathetic nervous system, promoting physiological 

changes manifested as autonomic symptoms such as sweating, tremor, a pounding heart, 

hunger, and anxiety [127,128]. Cognitive dysfunction is experienced subjectively in the 

form of neuroglycopenic symptoms, including difficulty in concentrating, drowsiness, 

and incoordination [128]. Perception of these symptoms warns the patient, who prompt 

action is required to treat the hypoglycemia and restore blood glucose to normal levels. 

Most cognitive modalities are impaired when blood glucose falls below 2.8 mMol/L. 

Tests that require mental speed and that are complex or demand a high level of attention 

are affected most, while tests of simple motor function and reaction time are relatively 

preserved [129].
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Recurrent  severe  hypoglycemia  may  occasionally  cause  sub-clinical  cerebral 

injury or permanent  cognitive  impairment  [130,131].  In these cases,  human autopsy 

studies have shown laminar, multifocal or diffuse necrosis and gliosis of the cerebral 

cortex  and  chromatolysis  of  ganglion  cells  [132].  The  regions  more  vulnerable  to 

hypoglycemia include the cortex, basal ganglia, and hippocampus  [123]. In addition, 

there is a possible relationship between early nocturnal hypoglycemia during sleep (a 

time  in  which  consolidation  of  memories  occurs),  and  cognitive  dysfunction  [133]. 

Conversely,  most  studies  have  not  shown  neurocognitive  deficits  associated  with 

nocturnal hypoglycemia induced later during the sleeping period [134,135].

5.3. Vascular disease

Diabetic patients have an increased risk of developing cerebrovascular disease, 

and many have established micro- and macrovascular complications of varying severity. 

Cerebrovascular disease related to diabetes mellitus is more pronounced in the older age 

group.  [63].  It  is  now well  recognized  from studies  using  both  animal  and  human 

models  that  atherogenesis  contains  a  significant  inflammatory  component,  which 

contributes  to  its  progression  and  to  the  subsequent  emergence  of  thrombotic 

complications  [136].  This  has shifted the focus  of research from an examination  of 

traditional cardiovascular risk factors to the investigation of processes that involve the 

vasculature at a molecular level. These molecular processes preferentially affects cells 

that  are directly implicated in atherogenesis,  such as endothelial  cells,  macrophages, 

monocytes, platelets and smooth muscle cells [136]. 

Diabetes mellitus is an important risk factor for stroke and is also one of the 

most consistent predictors for recurrent stroke or for stroke after a Transient Ischemic 

Attach [137,138]. This diabetes-related increased risk for recurrent stroke ranges from 
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2.1 to 5.6 times the risk of nondiabetic patients [139,140], and is independent of glucose 

control during the interstroke period  [141]. Diabetes  and impaired glucose tolerance 

have  been  associated  with  increased  Carotid  Intima-Media  Thickness  (CIMT) 

[142,143].  Diabetic patients who have a stroke have significantly greater CIMT than 

both  diabetic  subjects  without  stroke  and  nondiabetic  patients  [144,145].  Carotid 

Intima-Media  Thickness  is  directly  related  to  the  duration  of  diabetes  and  glucose 

control, as evidenced by the Insulin Resistance Atherosclerosis Study [146]. 

Some  studies  have  demonstrated  the  existence  of  a  basal  chronic  systemic 

inflammatory state associated with endothelial dysfunction, platelet hyperactivity, and 

microvascular complications of retinopathy and nephropathy in diabetic patients [147-

149]. In the EURODIAB prospective complications study, inflammatory markers like 

C-reactive protein, interleukin-6 and tumor necrosis factor-α were found to be strongly 

and independently associated with vascular disease in people with T1DM [150]. Even in 

the absence of vascular complications,  surrogate markers of endothelial  dysfunction, 

including C-reactive protein, vonWillebrand factor and vascular cell adhesion molecule-

1 are elevated in T2DM patients  [151,152].  Moreover,  plasma concentrations of the 

anti-inflammatory  cytokine  interleukin-10  are  lower  in  people  with  type  2  diabetes 

[153].

Macrovascular and microvascular disease both cause significant morbidity and 

mortality  in  people  with  Diabetes  mellitus.  Thickening  of  capillary  basement 

membranes, the hallmark of diabetic microangiopathy, has been found in the brains of 

patients  with  diabetes  [154]. These  patients  have  a  2-  to  6-fold  increased  risk  for 

thrombotic  stroke.  Vascular  disease  has  long  been  hypothesized  to  contribute  to 

abnormalities in cognition. [122]. Macrovascular disease is not only more common, but 

is more aggressive and widespread in people with diabetes than in non-diabetic subjects 
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[155]. While this vascular outcome occurs both in T1DM and T2DM, its magnitude and 

severity  is  significantly  greater  in  T2DM  due  to  the  co-existence  of  multiple 

cardiovascular  risk  factors,  including  hypertension  and  dyslipidaemia.  Conversely, 

autopsy studies of patients with long-standing T1DM have shown important changes 

possibly  related  to  microvascular  disease,  including  diffuse  brain  degeneration, 

pseudocalcinosis, demyelination of cranial  nerves and spinal cord, and nerve fibrosis 

[156,157]. 

Patients  with  DM  have  also  been  found  to  have  decreased  global  rates  of 

cerebral  blood  flow,  which  is  correlated  with  disease  duration. The  association  of 

ischemia  and hyperglycemia  may  be  more  detrimental  to  the  brain.  Even modestly 

elevated blood glucose levels during a cerebrovascular event may contribute to greater 

infarcted  areas  [158].  Two  possible  mechanisms  to  explain  the  synergism between 

hyperglycemia  and ischemia are  lactate  and glutamate accumulation.  Hyperglycemia 

provides more substrate for lactate to form, worsening cellular acidosis, and providing 

accumulation of glutamate, which is also a strong neurotoxic neurotransmitor at very 

high concentrations [122,159,160]. 

Diabetes  mellitus is  associated  with  a  hypercoagulability  state  which  is 

characterized  by increased  concentrations  in  anti-fibrinolytic  and  other  procoagulant 

factors,  as  well  as  by  alterations  in  Nitric  Oxide  (NO)  metabolism.  This 

hypercoagulability  is  associated  with  enhanced  risk  for  thrombotic  vascular  events 

[161-163].  Plasminogen  activator  inhibitor-1  and  antithrombin  III,  which  inhibit 

fibrinolysis, as well as the tissue plasminogen activator antigen, a marker of impaired 

fibrinolysis, were consistently found to be elevated in IR phenotypes [164-166]. Some 

studies have further suggested that procoagulant factors, such as factor VII, factor VIII, 

and the von-Willebrand factor also rise with the degree of insulin resistance [161,167]. 
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Another important mechanism of diabetes hypercoagulability is platelet hyperreactivity. 

Studies  in  diabetic  patients  have  found an  increased  status  for  platelet  aggregation, 

which is explained by increased platelet response to ADP and elevation of thromboxane 

A2 concentrations [168,169]. This enhanced response to ADP may be mediated by the 

upregulation of GPIIb-III receptors and by the failure of insulin-induced inhibition of 

platelet aggregation that occurs in DM [170,171]. Patients with (pre)diabetes have also 

decreased endothelium-dependent vasodilatation; a consequence of either decreased NO 

production or impaired NO metabolism [172-174]. 

5.4. Insulin resistance, tau hyperphosphorylation, and the amyloid cascade 

Besides being  a modulator of food intake and energy homoeostasis, insulin is, 

also an important  neurothropic factor  [176-181]. It  modulates brain activity, above all 

for such high glucose demanding functions such as memory. AD patients were found to 

have lower than normal CSF levels of insulin [181]. How can clinical hyperinsulinism 

be a risk factor for AD whereas lab experiments evidence insulin to be an important 

neurothrophic factor? These two apparent paradoxal findings may be reconciliated by 

evoking the concept of insulin resistance. Whereas insulin is clearly neurothrophic at 

moderate concentrations, too much insulin in the brain may be associated with reduced 

amyloid-β (Aβ) clearance due to competition for both principal depurative mechanisms 

– the Insulin-Degrading Enzyme (IDE)  [178]. Since IDE is much more selective for 

insulin  than  for  Aβ,  brain  hyperinsulinism  may  deprive  Aβ  of  its  main  clearance 

mechanism [178].

Insulin crosses the blood–brain barrier, and might even be produced locally in 

the brain, exerting its  effects  on cells  by binding to a  specific  cell  surface receptor 
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[180,181]. Insulin receptors are distributed throughout the brain, being abundant in the 

hippocampus  and  the  cortex  [182].  Binding  of  insulin  to  its  receptor  activates  the 

intrinsic tyrosine kinase activity of the cytoplasmic domain of the insulin receptor. This 

leads  to  autophosphorylation  of tyrosine  residues,  what  initiates  several  intracellular 

signaling cascades [183-185]. In the brain, insulin influences the release and reuptake of 

neurotransmitters, and also appears to improve learning and memory [186]. The initial 

components of the insulin receptor signaling cascade in the brain are largely similar to 

those  of  the  periphery  [186,187].  The  downstream targets  of  the  cascade  are  quite 

different,  however,  probably  involving  neuronal  glutamate  receptors,  among  others 

[186].

Insulin  receptor-mediated  signal  transduction  controls  the  activity  of  several 

enzymes  in  a  cascade-like  manner.  Phosphatidylinositol  3-kinase  (PI3K)  is  insulin-

regulated and activates protein kinase B (PKB, also known as Akt)  [188,189]. PIP3 

recruits  PKB, to the plasma membrane,  where it  is phosphorylated and activated by 

specific  protein  kinases  [190].  PKB  has  many  important  cellular  targets  including 

glycogen synthase kinase 3 (GSK3). Phosphorylation of the N-terminal region of GSK3 

by  PKB  causes  inactivation  of  GSK3,  reducing  the  phosphorylation  of  glycogen 

synthase (GS). Dephosphorylated GS is the active form of the enzyme. The active GS 

increases the rate of conversion of glucose 6-phosphate to glycogen. This pathway links 

the insulin receptor at the cell surface with enzymes of glycogen metabolism within the 

cell  [191]. In this way,  GSK3 generally opposes the actions of insulin. Thus, GSK3 

inhibits  glycogen  synthesis,  glucose  uptake,  and  also  alters  the  expression of  genes 

regulated by insulin [192].

Glycogen synthase kinase 3  is highly expressed in all eukaryotes cells and is 

involved in a number of physiological processes ranging from glycogen metabolism to 
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gene transcription [193]. There are two isoforms of the enzyme that are ubiquitously 

expressed  in  mammals:  GSK3α  and  GSK3β  [193,194,195]. There  is  evidence  that 

GSK3 plays a central role in AD, and that its deregulation accounts for many of the 

pathological hallmarks of the disease in both sporadic and familial AD cases, leading to 

formulation  of  the  ‘GSK3 hypothesis  of  AD’[196].  Glycogen  synthase  kinase  3 is 

implicated in the hyperphosphorylation of tau, increased production of β-amyloid and in 

inflammatory  responses.  Glycogen  synthase  kinase  3 also  reduces  acetylcholine 

synthesis  and is a key mediator  of apoptosis. These findings are in accordance with 

alterations  present  in  AD,  including  cholinergic  deficit,  memory  impairment  and 

neuronal loss [197,198].

There is increasing evidence linking insulin resistance to cognitive decline and 

dementia  in  diabetes  [24,199].  There  are  alterations  in  cerebral  insulin  receptor 

signaling, leading to a cerebral insulin resistant state. Alterations in brain’s insulin and 

its  receptor  may  disrupt  glucose  homoeostasis  and  affect  amyloid  metabolism.  The 

formation of AGEs and ROS may play an important role in translating insulin resistance 

into  amyloid  deposition  and  tau  phosphorylation  [25,26].  Indeed,  cerebral  insulin 

resistance  has  been  implicated  in  accumulation  of  amyloid-β-peptide  (Aβ)  and  tau 

protein, which are the main components of senile plaques and neurofibrillary tangles 

(NFTs), respectively. These two neuropatholical features are the pathological hallmark 

of Alzheimer’s disease  [25,175]. One hypothesis to explain the above relationships is 

that GSK3 activity might be enhanced in patients with insulin resistance, representing a 

possible link between insulin resistance and Alzheimer’s disease [200,201]. 

Several studies point to an intriguing relationship between diabetes mellitus and 

Alzheimer’s disease. Patients with AD have lower Cerebrospinal fluid insulin levels and 

reduced insulin-mediated glucose disposal when compared to healthy control subjects 
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[202,203].  While there is very little insulin mRNA in the brain, recent ultra-sensitive 

PCR data show that insulin message can be detected in postmortem human brain, being 

reduced  in  AD brains.  This  finding  leaded  the  authors  to  suggest  that  Alzheimer’s 

disease could  be  a  ‘‘type  III  diabetes’’  due  to  a  marked  reduction  in  CNS insulin 

concentrations  [181,204].  In  addition,  knockout  of  the  insulin  receptor  gene  is  not 

sufficient to cause cognitive deficits or neurodegeneration even though some regions 

show enhanced GSK3β activity.  [205].  The observation that activation of the insulin 

receptor was impaired in brain autopsy samples of AD patients, has given rise to the 

notion that Alzheimer’s disease could be qualified as “an insulin resistant brain state” 

[206].

Another important link between insuin resistance and the amyloid cascade may 

be  related  to  the  IDE.  Insulin  degrading  enzyme  is a  metalloprotease  enzyme 

responsible  for insulin  degradation  and is  also the main enzyme responsible  for Aβ 

degradation  [178].  Insulin degrading enzyme is secreted to the extracellular space by 

microglial  cells  in  the  brain,  where  it  degrades  Aβ peptide,  leading  to  reduced  Aβ 

peptide  concentration  in  the brain,  thus  reducing  aggregation  and plaque  formation. 

[207]. Insulin degrading enzyme levels have been reported to be decreased in the brains 

of  AD  patients  [208,209],  especially  in  the  hippocampus  [210].  It  has  also  been 

hypothesized that hyperinsulinaemia in people with pre-diabetes and T2DM effectively 

sequesters IDE, reducing Aβ peptide  degradation.  This would increase levels  of Aβ 

peptide,  and promote many of the pathological  features  associated with Alzheimer’s 

disease. Supporting this model, the affinity for the binding of insulin to IDE is much 

greater than the one for the Aβ peptide [211]. 

In  patients  with  Alzheimer’s  disease,  IDE expression  in  the  hippocampus  is 

substantially  reduced,  relative  to  controls,  in  particular  among  patients  with  the 
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APOEε4.  This  latter  observation  could  explain  the  potential  interaction  between 

diabetes and the APOEε4 genotype in multiplying the risk of dementia [209]. Curiously, 

although  the  presence  of  the  APOEε4  is  associated  with  an  increased  incidence  of 

Alzheimer’s  disease  [212],  it  seems that  insulin  resistance  is  only a  significant  risk 

factor for AD in those patients without APOEε4 [90,202]. Subjects with AD without the 

APOEε4  had also improved memory scores in the setting of hyperinsulinemia, which 

was not the case for people with at least one APOEε4 allele [213,214]. However, in the 

Honolulu-Asia Aging Study, those subjects with both T2DM and the  APOEε4  allele 

had an additive increased risk of dementia and Alzheimer’s pathology [8]. In despite of 

this  apparent  contradiction,  it  seems  that  IR,  T2DM and  APOEε4  are distinct  risk 

factors for the development of Alzheimer’s disease, a hypothesis that is supported by 

the fact that those with diabetes had a lower prevalence of the APOEε4 [215]. 

6. (Pre)Diabetes and non-age-related psychiatric diseases.

The relationship between pre-diabetes/diabetes mellitus and some non-age-related 

psychiatric diseases go beyond the scope of this review. We could not, however, let 

unmentioned that patients with mental illnesses such as schizophrenia, schizoaffective, 

and bipolar disorders have an increased prevalence of metabolic syndrome and diabetes  

mellitus – as compared with the general population [216]. 

The high prevalence of metabolic syndrome in schizophrenic patients has assumed 

greater significance since the increasing use of second-generation antipsychotics. These 

drugs have been associated with substantial weight gain, a major risk factor for glucose 

metabolism abnormalities  [217]. Conversely, several studies  [218,219,220] have been 
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suggesting  that  schizophrenia  is  associated  with  abnormal  glucose  metabolism 

independently of antipsychotic use. In addition, some studies have suggested that first-

degree relatives of schizophrenic patients are at increased risk of diabetes [221]. These 

findings suggest schizophrenia might also be associated with abnormalities in glucose 

metabolism, regardless of the use of antipsychotics [222].

7. Conclusions

The present  review reinforces  the  view that  diabetes  is  strongly associated  with 

multiple  alterations  in  the  proper  functioning  of  the  brain.  T1DM  and  T2DM.  An 

important  and  common  complication  of  both  T1DM  and  T2DM  is  cognitive 

dysfunction.  As  expected,  however,  the  specific  alterations  in  cognitive  abilities 

between the two types of diabetes do not completely overlap. In patients with T1DM, 

specific  and  global  deficits  evolving  speed  of  information  processing,  psychomotor 

efficiency,  attention,  mental  flexibility,  and  visual  perception  seem  to  be  present, 

whereas  in  patients  with  T2DM,  an  increase  in  memory  deficits,  a  reduction  in 

psychomotor  speed,  and a  reduced frontal  lobe/executive  function  have been found. 

Differences in methodology across studies, including inadequate sample sizes, difficulty 

in identifying valid control groups and differing test sensitivities, may account for the 

variability  in  these  findings  between  the  two  main  types  of  DM.  Alternatively, 

hyperinsulinemia and comorbidities (MetS components) in T2DM, but not in T1DM, 

might be contributing to some of these differences.
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It is also important to consider the age of onset of the diabetes, the glycemic control 

status, and the presence of diabetic complications. The impact of diabetes on cognitive 

functions seems to be greater in older people with worse glycemic control and long 

duration of the disease. 

Neuroimaging studies also highlighted several structural cerebral changes that occur 

in association with DM. Many populational studies have shown that DM is a risk factor 

for  (silent)  cerebral  infarcts  and  is  associated  with  a  slight  degree  of  cortical  and 

subcortical  atrophy.  Most MRI studies revealed an association between DM and the 

occurrence of lacunar infarcts and WMHLs. In line with observations from studies of 

cognitive function in DM, findings from populational studies also indicate that poorer 

glycemic control is associated with accelerated cerebral atrophy. The degree of cortical 

atrophy encountered in DM subjects suggests that diabetes may also have global, non-

vascular effects on the brain. Alternatively, small-vessel disease may contribute for this 

generalized brain atrophy frequently found in DM individuals. Several molecular and 

biochemical experiments in cellular and animal lab models also supports the hypothesis 

that mechanisms other than vascular disease are involved in the increased risk of AD in 

DM.

Many studies have revealed that people with pre-diabetes also are at increased risk 

for developing adverse anatomical  and functional  brain  changes.  As a  consequence, 

mild cognitive decline may develop even before of the installation of frank diabetes. 

Neuropsychological profile of individuals with impaired glucose tolerance appears to 

mimic  what  is  typically  observed  in  individuals  with  age-associated  memory 

impairment.  However,  not  all  studies  found  that  patients  with  pre-diabetes  perform 

worse  than  normoglycemic  individuals.  Given  that  cognitive  impairment  is  not 

invariably found in older diabetic patients, it is necessary to understand the factors that 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

lead  to  cognitive  impairment  and  the  other  ones  that  protect  from  DM-associated 

neurodegeneration.

The underlying neuropathologic changes associated with DM have been described 

to  be very similar  to  the  ones  usually  associated  with  ‘pure’  aging.  In  fact,  DM is 

probably strongly associated with an accelerated biological aging. Central neurological 

complications  associated  with  DM  include  an  increased  risk  for  dementia  of  both 

vascular and Alzheimer’s type. However, there are few detailed epidemiological studies 

considering specific vascular risk factors vis-à-vis the risk in developing Alzheimer’s, 

Vascular, or mixed-type dementia. Studies involving large population-based cohorts of 

elderly people with pre-diabetes and DM, accessing the progress of (pre)diabetes, MetS, 

vascular disease, and cognition are necessary. Accelerated brain aging and disturbances 

of insulin metabolism in the brain may be additional factors that link DM to AD. This 

hypothesis should be tested in prospective studies that include measures of amyloid and 

tau-protein metabolism.

8. Perspectives

The  establishment  of  a  close  relationship  between  insulin  resistance  and 

Alzheimer’s disease could open a large vein for the development of novel preventive 

and therapeutic  interventions  for these conditions.  One possible future direction that 

might arise in studying the molecular changes that occur in the brain in the presence of 

insulin  resistance is  the elucidation  of the pathophysiology of the AD. Besides,  the 

discovery of the most  important  link(s)  between DM and AD would be of extreme 

importance.  Assuming  that  insulin  resistance  is  the  main  mechanism  involved  in 
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neurodegeneration, studies utilizing available drugs to improve insulin sensitivity, such 

as metformin and the thiazolidinediones [223]. However, there is as yet no evidence that 

they can decrease the risk of cognitive decline besides and beyond their hypoglycemiant 

effect  [223].  New methods like the application of intranasal insulin, which is able to 

quickly pass through the blood-brain barrier, are also promising  [224], but results are 

still  conflicting  [225]. Therefore, more research is need before intranasal insulin and 

insulin  sensitivity  enhancers  can  be  considered  useful  in  preventing  and  treating 

cognitive dysfunction, be it in the presence or not of disturbances in the blood glucose 

homeostasis. 
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Table 1. Summary of cognitive functions found to be affected in Type 1 (T1DM) and 
Type 2 Diabetes Mellitus (T2DM).

Cognitive Functions T1DM T2DM

Verbal Memory ↓ ↓*

Nonverbal Memory ↓ ↓*

Attention ↓* ↓

Visuospatial Performance ↓* _

Processing Speed ↓* ↓*

Executive Function ↓* ↓*

Psychomotor efficiency ↓* _

General intelligence ↓ _

↓: decreased; − does not seem to be affected or evidence lacking. Note: domains marked 
by asterisks have particularly strong supporting data (see refs. 23 and 62).



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

Table 2. Main types of cognitive tests utilized in the specific assessment of the diverse 
cognitive subfunctions cited in table 1.

Cognitive Functions Assessment

Verbal Memory Paragraph recall/Contextual  tasks  (immediate;  delayed); 
Word  List  Recall/Noncontextual  tasks;  (immediate; 
delayed); Verbal recognition.

Nonverbal Memory Figural reproductions (immediate; delayed).

Attention Arithmetic  performance  (e.g.,  serial  subtraction  tasks); 
Digit Span subtest of the WAIS-R (Wechsler, 1981) and 
WAIS-III (Wechsler, 1997); Block Span (E. Kaplan et al., 
1991).

Visuospatial Performance Measures  requiring  construction  and  organization  of 
objects or designs.

Processing Speed Reaction time measures; Digit Symbol Coding subtest  of 
the WAIS-R; Trails A (Spreen & Strauss, 1991); Stroop 
tasks (color or word naming) (Spreen & Strauss, 1991).

Executive Function Letter  and  category  fluency  measures;  Abstract 
conceptualization  measures;  Measures  of  verbal  and 
nonverbal  reasoning  abilities;  Working  memory  tasks; 
Wisconsin Card Sorting (Berg, 1948); Trails B (Spreen & 
Strauss,  1991);  Stroop  (Interference  trial);  (Spreen  & 
Strauss, 1991).

Psychomotor efficiency Grooved Pegboard task; Response Inhibition task.

General intelligence Verbal IQ score; Vocabulary and Block Design tasks.

See references 23 and 62 for details about the performance of diabetic subjects in each 
test, as compared to controls.
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Figure  1.  Key  components  of  the  Metabolic  Syndrome  (MetS)  and  their  possible 

pathophysiological links with cognitive decline.

All  MetS  components  may  contribute  for  atherosclerosis  (see  ref.  226).  Obesity, 

especially  central  obesity  is  a  key  component  for  the  development  of  the  other 

constituents of the syndrome. Aging is associated with increased insulin resistance, and 

may aggravate the severity/control of most components of the MetS. Hypoglycemia is 

not represented here (see text). Many cognitive dysfunctions associated with metabolic 

syndrome may have their common pathophysiologic mechanism unified by invoking 

the concept of the ‘Frontal-Subcortical Geriatric Syndrome’ (ref. 22; see text, item 4, 

penultimate paragraph).


