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Summary 

The  sirtuins  are  a  family  of  enzymes  which  control  diverse  and  vital 

cellular  functions,  including  metabolism  and  aging.  Manipulations  of  sirtuin 

activities cause  activation of anti-apoptotic, anti-inflammatory,  anti-stress 

responses,  and  the modulation of aggregation of proteins involved in 

neurodegenerative   disorders.   Recently,   sirtuins   were   found   to   be   disease 

modifiers   in  various   models   of  neurodegeneration.  However,   almost  in   all 

instances,  the exact  mechanisms  of neuroprotection remain elusive. 

Nevertheless,  the  manipulation  of  sirtuin  activities  is  appealing  as  a  novel 

therapeutic strategy for the treatment of currently fatal human disorders such as 

Alzheimer’s  and  Parkinson’s  diseases.  Here,  we  review  current  data  which 

support  putative  therapeutic  roles  of  sirtuin  in  aging  and  in  neurodegenerative 

diseases and the feasibility of the development of sirtuin-based therapies. 
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Introduction 
 

Despite the significant progress in understanding the molecular basis of 

neurodegeneration, the lack of known useful molecular targets for effective 

therapeutic intervention has slowed down the drug discovery processes. Since 

the discovery of sirtuin functions in metabolism and aging, these activities were 

implicated as disease-modifiers and as potential therapeutic targets for 

developing treatments for neurodegenerative disorders. 

 

 
 

Sirtuins 
 

The yeast silent information regulator factor 2 (Sir2), a NAD+-dependent 

class III histone deacetylase (HDAC), was the first sirtuin described [1, 2]. The 

yeast SIR complex (Sir2, Sir3 and Sir4) plays a key role in heterochromatic gene 

silencing through regulation of histone deacetylation at ribosomal DNA (rDNA) 

loci, telomeres, and mating-type loci [3, 4]. In S. cerevisiae, Sir2 extends the 

replicative lifespan through suppression of formation of extrachromosomal 

ribosomal DNA circles (ERCs) in the nucleoli [5]. 

The Sir2 gene is evolutionary conserved from prokaryotes to humans. In 
 
C. elegans, the duplication of sir-2.1 gene (Sir2 ortholog) increases the lifespan 

 
up to 50%. This process is dependent on the daf-16 transcription factor, the 

member of forkhead box subgroup `O´ (FOXO) family, which is the downstream 

target of the insulin/IGF-1 signalling pathway [6]. An extra copy of the Sir2 gene 

in D. melanogaster (dSir2) increases the longevity of females and males by 29% 
 
and 18% respectively [7]. 
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The Sir2 function is often mentioned in connection to a condition called 

calorie restriction (CR).  CR is a reduction in calorie intake compared to normal (ad 

libitum) consumption. The link between the role of sirtuins, CR and longevity 

was first shown in S. cerevisiae. In yeast, reduction in glucose levels in the media 
 
(CR condition for yeast cells) leads to increased replicative lifespan [8]. The 

lifespan extension was not observed in yeast lacking the Sir2 gene [8]. 

Currently, CR-mediated lifespan extension has been demonstrated in 
 
other organisms such as fruit flies (D. melanogaster) [9], nematodes (C. elegans) 

 
[10], spiders (Frontinella pyramitela) [11] and rodents [12]. 

 
There are seven members of the sirtuin family (Sir2 homologues) in 

mammals (SIRT1 - SIRT7) (Table) [4, 13]. The sirtuins act as NAD+-dependent 

protein deacetylases on a variety of targets, including histones, transcription 

factors and apoptotic modulators [14, 15]. The sirtuins also have mono-ADP- 

ribosyl transferase activity, which is the main enzymatic activity of SIRT4 and 

SIRT6 [16, 17]. 

SIRT1, the nuclear protein which has the highest sequence similarity to 

the yeast Sir2p [18], is the best understood mammalian sirtuin in terms of its 

endogenous function and activity. SIRT1 has been linked to the control of 

metabolic processes in adipose tissue, liver and muscle through the regulation of 

the nuclear receptor peroxisome-proliferator activated receptor-γ (PPARγ) and its 

transcriptional co-activator PPARγ coactivator-1α (PGC- 1α) [19, 20]. Other non- 

histone substrates of SIRT1 are the tumor suppressor p53, the FOXO family of 
 
transcription factors and NF-κB transcription factor, which are involved in 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

5   

regulation of cell survival, proliferation and stress response [21-23]. SIRT1 could 

also regulate the cell survival by deacetylating the DNA repair factor Ku70, an 

inhibitor of Bax-mediated apoptosis [24, 25]. Studies on SIRT1 knockout mice 

and SIRT1 expression in embryos indicate its role in mammalian development 
 
[26-28]. 

 
The understanding of the biological roles of sirtuins was greatly advanced 

after discovery of resveratrol, a natural polyphenol present in red grapes and red 

wine. The potential health benefits of red wine, namely the cardioprotective 

effects, have been attributed to this compound. Resveratrol exhibits strong 

antioxidant activity [29, 30] and has been shown to have anti-carcinogenic and 

anti-inflammatory effects [31-33]. Remarkably, it was found that resveratrol 

activates the yeast Sir2 and its mammalian homologue SIRT1 [34]. 

In mice, resveratrol protects against diet-induced obesity and insulin 

resistance and significantly increases their aerobic capacity [35]. It was 

suggested that the effects of resveratrol are mediated by the induction of SIRT1 
 
and the consequent decrease in PGC-1α acetylation which results in an increase 

 
of its activity. 

 
Other three members of the sirtuin family which have been linked to 

metabolic regulation are the mitochondrial proteins SIRT3, SIRT4 and SIRT5 

[36]. These three proteins proteins were found localized in different 

compartments of the mitochondria, indicating unique function(s) of each enzyme 

isoform in this organelle [37]. 
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In mice, SIRT3 expression is induced in brown adipose tissue upon cold 

exposure, consequently activating the expression of mitochondrial genes such as 

those encoding for uncoupling protein 1 (UCP1), PGC-1α, cytochrome c oxidase 

subunits II and IV, and ATP synthetase [38]. CR also induces expression of 

SIRT3 in mice, both in white and brown adipose tissue. Furthermore, SIRT3 

decreases mitochondrial membrane potential and the production of reactive 

oxygen species while increasing cellular respiration [38]. Recent studies also 

revealed that SIRT3 deacetylates and activates acetyl-CoA synthetase 2 

(AceCS2) in mitochondria, both in vitro and in vivo, thus modulating directly the 

activity of a metabolic enzyme [39]. 

SIRT4 does not possess detectable deacetylase activity in vitro; however, 
 
it has mono-ADP-ribosyl transferase activity [16]. Recently, SIRT4 has been 

shown to ADP-ribosylate and downregulate mitochondrial glutamate 

dehydrogenase (GDH) in pancreatic β-cells, thereby downregulating insulin 

secretion in response to amino acids [16]. 

SIRT4 and SIRT5 more closely resembled prokaryotic sirtuin sequences, 

suggesting their ancient, evolutionary conserved function(s) in bacterial cells and 

mitochondria of higher organisms [40]. In comparison with SIRT3, SIRT5 

possesses weak deacetylase activity in vitro, but since the protein substrates are 

currently unknown it is hard to pinpoint the exact function(s) of the protein. When 

SIRT3 and SIRT5 were co-expressed, the localization of SIRT3 changed from 

the mitochondria to the nucleus [37]. This intriguing observation might suggest 
 
SIRT5-dependent regulation of SIRT3 nuclear translocation, and a novel role for 
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SIRT3 in the nucleus. 
 

 
 

Together with SIRT1, SIRT6 and SIRT7 are nuclear proteins [36]. 
 

However, their subnuclear localization differs and while SIRT7 is concentrated in the 

nucleoli, SIRT6 is excluded from the nucleoli and is highly associated with the 

heterochromatic regions [36]. SIRT6-deficient cells display defective base 

excision repair (BER, one of the DNA repair systems) and elevated levels of 

spontaneous genomic instability [41]. Moreover, SIRT6 deficiency in mice leads 
 
to aging-like degenerative processes (acute loss of subcutaneous fat, 

lordokyphosis, osteopenia, lymphopenia and metabolic defects) [41]. SIRT7 

interacts with RNA polymerase I and histones and positively regulates the 

transcription and expression of ribosomal RNA genes [42]. It has been suggested 

that SIRT7 may regulate rRNA synthesis and ribosome production in response to 

changes in NAD+/NADH ratio [43]. 

SIRT2 is a predominantly cytoplasmic tubulin-deacetylase protein [36]. 
 
During G2/M transition and mitosis, SIRT2 is localized in nucleus, where it 

interacts with and deacetylates histone H4, which leads to the formation of 

condensed chromatin [44]. Increased SIRT2 activity significantly delays cell cycle 

progression through mitosis, suggesting a SIRT2 function as a mitotic checkpoint 

protein [45]. Moreover, SIRT2 prevents chromosomal instability as well as 

formation of hyperploid cells in the early metaphase [46]. 
 

Currently, the role of sirtuins in the regulation of mammalian lifespan is not 

clear. However, taking into account that the sirtuins are an evolutionary 

conserved family of proteins, it is fair to assume that, similarly to their role in 
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yeast and invertebrates, the sirtuins also play a role in the modulation of aging- 

related processes in higher organisms. 

Diverse biological functions of sirtuin family members pave the ground for 

further investigations of the therapeutic potential of these molecules for currently 

untreatable neurodegenerative diseases. 

 

 
 

Neurodegenerative diseases 
 

Over the past decades, numerous studies have demonstrated that the 

pathogenesis of neurodegenerative diseases includes broad changes and 

recruitment of multiple biochemical pathways. These common biochemical and 

cellular processes include protein misfolding, oligomerization and aggregation, 

proteolysis, post-translational modifications, mitochondrial dysfunction, abnormal 

energy metabolism, activation of stress, inflammation and pro-apoptotic 

responses, and others (Fig.1). Environmental factors affect probability of disease 

on-set and progression. 

Aging has been known as major risk factor for variety neurodegenerative 

disorders. However, while aging has been being recognized as a strong disease 

modifier,   until   discovery   of   sirtuins,   this   pathway   was   not   amenable   for 

therapeutic manipulation to intervene with neurodegeneration. 

 

 
 

Alzheimer’s disease 

Alzheimer’s  disease  (AD)  is  one  of  the  most  devastating  age-related 

neurodegenerative diseases. The symptoms of this disorder can vary greatly but 
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the  individuals  affected  present  progressive  cognitive  decline  and  behavioral 

changes. The increased life expectancy of human beings has made AD one of 

the predominant medical problems for elderly people. The vast majority of cases 

are  idiopathic,  but  a  small  fraction  of  cases  are  associated  with  autosomal 

dominant  mutations  in  the  amyloid-precursor  protein  (APP)  gene,  presenilin-1 

(PSEN1) and presenilin-2 (PSEN2) [47, 48]. 

The  histopathological  hallmarks of AD  are the  presence of  intraneuronal 

neurofibrillary  tangles  and  the  accumulation of  extracellular  amyloid  plaques  in 

the   brains   of   affected   individuals.   Neurofibrillary   tangles   are   filamentous 

inclusions composed of hyperphosphorylated forms of the microtubule- 

associated  protein  tau  [49].  The  main  component  of  amyloid  plaques  is  the 

amyloid  β-peptide  (Aβ)  that  results  from  the  proteolytic  cleavage  of  amyloid- 

precursor  protein  (APP)  by  the  sequential  action  of  β-  and  γ-secretase.  The 

widely accepted β-amyloid hypothesis suggests that Aβ is the major etiological 

agent  of  AD  pathology  and,  therefore,  broad  therapeutic  strategies  have  been 

focused on the inhibition of neurotoxic Aβ production and aggregation [50]. 

There is growing evidence for a link between SIRT1 and Alzheimer´s 

disease [51-53]. SIRT1 protects against Aβ-induced neurotoxicity by inhibiting 

NF-κB signaling in microglia [54]. It was recently reported that an increase of 

SIRT1 deacetylase activity could be a mechanism by which CR modulated AD- 

type amyloid neuropathology in Tg2576 mice [53]. Overexpression of SIRT1 or 

pharmacological activation of SIRT1 by NAD+ promotes α-secretase activity and 

attenuates the generation of Aβ peptides in embryonic Tg2576 mouse neurons in 
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vitro. This mechanism involves the regulation of serine/threonine Rho kinase 

ROCK1, known for its role in the inhibition of the non-amyloidogenic α-secretase 

processing of APP [53]. 

Likewise, CR treated monkeys have significantly reduced content of Aβ in 

the temporal cortex, compared to normally fed monkeys. The Aβ content 

reversely correlates with SIRT1 concentration in the same brain area [55]. 
 

Since the discovery of the cholesterol-carrying apolipoprotein E as major 

risk factors for AD there has been a mounting interest in the role of this lipid as a 

possible pathogenic agent [56]. Recently SIRT1 was identified a as a potential 

modulator of cellular cholesterol biosynthesis, thus implicating another sirtuin 

neuroprotective mechanism [57]. 

In a recent report SIRT1 was found to be upregulated in mouse models for 

AD and amyothrophic lateral sclerosis (ALS), a devastating human motor neuron 

disorder [52]. In cell-based models of AD tauopathy and ALS, both activation of 

SIRT1 and resveratrol promote neuronal survival. In the inducible transgenic 

mouse model of AD tauopathy, resveratrol reduces neurodegeneration in the 

hippocampus, and prevents learning impairment, which correlates with 

decreased acetylation of the known SIRT1 substrates PGC-1α and p53. Lastly, 

injection of SIRT1-expressing lentivirus in the hippocampus of transgenic mice 

conferred significant protection against neurodegeneration. Collectively these 

data strongly suggest strong therapeutic benefits of SIRT1 activation for 

tauopathies and, possibly, ALS. 
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Parkinson’s disease 
 

Parkinson’s   disease   (PD)   is   one   of   the   most   common   progressive 

neurodegenerative disorders, affecting about 2% of people over 65 years old and 

4-5% of people over 85. PD is characterized by a loss of dopaminergic neurons 
 
in  the  substantia  nigra,  which  is  accompanied  by  muscle  rigidity,  bradykinesia, 

resting tremor and postural instability. While the underlying causes for neuronal 

cell  loss  are  unknown,  in  some  PD  cases  concentric  hyaline  cytoplasmic 

inclusions  called  Lewy  bodies  (LB)  can  be  seen  via  histological  analysis.  LBs 

contain  the  protein  α-synuclein  (α-syn),  as well  as  proteasomal  and  lysosomal 

subunits and molecular chaperones [58, 59]. 

While  misfolding,  oligomerization  and  aggregation  of  α-syn  have  been 

 
implicated   in   PD   pathology,   the   exact   mechanisms   of   neurodegeneration 

remained  elusive.  It  has  been  recently  shown  that  SIRT2  inhibition  prevented 

α−syn  cytoxicity  and  modulated  its  aggregation  in  cultured  cells;  ameliorated 

 
mutant  α−syn  neurotoxicty  in  rat  primary  dopamine-positive  neurons;  rescued 

degeneration of dopaminergic neurons from α−syn toxicity in a Drosophila animal 

PD  model  [60].  The  results  suggested  that  modulation  of  α−syn  aggregation 

pathway could be one of the sirtuin neuroprotective mechanisms. 

Studies  of  the  neuroprotecitve  effect  of  resveratrol  on  dopaminergic 

neurons  in  organotypic  midbrain  slice  culture  showed  that  resveratrol,  together 

with  another  sirtuin-activating  compound,  quercetin,  prevented  the  decrease  of 

dopaminergic neurons induced by a dopaminergic neurotoxin 1-methyl-4-phenyl 

pyridinum  (MPP+)  [61].  The  authors  suggested  the  involvement  of  antioxidant 
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properties of resveratrol in its neuroprotective effect rather than SIRT1 activation 
 
in  this  model,  since  other  sirtuin  inhibitors  like  sirtinol  or  nicotinamide  did  not 

attenuate  the  protective  resveratrol  effects.  However,  resveratrol  as  well  as 

sirtuin  activator  NAD  inhibited  dopaminergic  neurotoxicity  of  a  DNA  alkylating 

agent, N-methyl-N´-nitro-N-nitrosoguanidine (MNNG) [61]. It is unclear whether it 

is   the   antioxidant   or   sirtuin-activating   activity   (or   both)   that   underlies   the 

neuroprotective effect of resveratrol. 

 

 
 

Huntington’s disease 
 

Huntington’s disease (HD) is an autosomal dominant neurodegenerative 

disorder, typically affecting mid-life individuals [62]. Slow progressive HD is fully 

penetrable, and characterized by personality changes, cognitive decline, 

abnormal motor movements, and ultimate patient death. There is a loss of 
 
specific neuronal types in several regions in HD brain, particularly in the striatal 

region of the basal ganglia, where medium spiny neurons are the most affected 

[63]. HD is caused by the mutant expansion of CAG-repeats encoding 

polyglutamines (polyQ) within the huntingtin (htt) protein [64]. This polyQ 

expansion leads to the misfolding of mutant htt and the formation of mutant htt- 

containing protein aggregates in both neuronal and glial cells in brains of HD 

patients and mouse transgenic models of HD [65]. Despite the great strides in 

understanding the molecular underpinnings of HD, no therapeutics are currently 

available that prevent progression of this devastating disease. 
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The role of resveratrol and SIRT1 in neuroprotection has also been 

studied in models of HD. The mutant huntingtin protein causes neuronal 

degeneration and neuronal death [66]; however the mechanisms remain elusive. 
 
In a C. elegans model of HD, treatment with resveratrol protected neurons 

overexpressing a huntingtin fragment from huntingtin-mediated cytotoxicity in a 

daf-16-dependent manner [67]. Moreover, resveratrol also rescued neurons from 

polyglutamine-specific cell death in a HdhQ111 knock-in mouse model [67]. 

Several mechanisms have been uncovered that are likely to contribute to 

the selective neurodegeneration observed in the disease. These include protein 

aggregation, transcriptional dysregulation, oxidative stress, perturbations in the 

kynurenine pathway, impaired energy metabolism, defective vesicle trafficking in 

axons, and impairment of ubiquitination and proteasomal function [68]. 
 

Neuroprotective mechanisms, underlying efficacy of SIRT1 activation and 

resveratrol treatment in HD models, are currently under investigation. Of the 

multiple molecular defects that trigger neuronal dysfunction and ultimately cause 

cell-death, transcriptional dysregulation may be the major pathophysiological 

mechanism, perturbing many cellular functions and leading to a cascade of 

secondary pathological effects [69]. There is strong evidence that transcriptional 

dysfunction, caused by altered nucleosomal dynamics, is a contributing factor HD 

and, to lesser extent, in AD, PD, and other neurodegenerative diseases. It is also 

strongly implicated in other neurological disorders such as Rubinstein-Taybi, 

Rett's syndromes, fragile X syndrome, and Friedreich's ataxia [70-73]. SIRT1 is 
 
involved in the regulation of transcriptional silencing as well as in the 
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deacetylation of both histone and growing number of non-histone substrates. 

Some of these non-histone substrates include NF-κB and its subunit RelA/p65, 

TAFI68, histone acetyltransferase p300, p300/CBP-associated factor (PCAF), 

MyoD, p53, Ku70, and others [14]. Global transcriptional repression in HD is 

mediated by aberrant interactions of mutant huntingtin with components of basal 

transcriptional machinery (TBP, SP1) and histone acetyl transferases (CBP, 

p300), while protein interactions with specific transcriptional factors (p53, NF-κB) 

 
are involved in pathological dysregulation of selective pathways [69]. Therefore, it 

 
is highly plausible, that the basis for efficacy of SIRT1 activation in HD models is 

the restoration of transcriptional dysregulation by modulation of the activity of 

transcription factors and chromatin remodeling. While the amelioration of global 

transcriptional repression by SIRT1 activation remains to be elucidated, SIRT1- 

dependent modulation of specific pathways, relevant to pathophysiological 

changes in HD, appears as a likely basis of observed neuroprotection. 
 

This notion is supported by recent studies, revealing a critical role for 
 
PGC-1α in HD [74]. Mutant huntingtin causes disruption of mitochondrial function 

 
by inhibiting the expression of PGC-1α in a mouse model of HD [75]. In another 

study it was reported that expression of PGC-1α target genes was reduced in HD 

patients and in the striatum of HD transgenic mice [76]. Since the activity of 

PGC-1α can be regulated by SIRT1, it is conceivable that up-regulation of this 

pathway underlies SIRT1 neuroprotection in HD models. 

The undisputable efficacy of resveratrol in HD models, however, has to be 
 
evaluated cautiously. The resveratrol molecule is subject to rapid oxidation in the 
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cell and, as a consequence, may play a little role in activating sirtuins in the brain 
 
[77]. It is indeed possible that the therapeutic effects of resveratrol in HD may be 

the result of its well-known antioxidant properties [61, 78-80]. The 

neuroprotoective effects of anti-oxidants, minocycline, coenzyme Q10, and 

others have been shown in various models of neurodegeneration, including in 

HD models [69]. 

 

 
 

Wallerian Neurodegeneration 
 

Axon degeneration is an active process that occurs in neurodegenerative 

diseases and peripheral neuropathies. In a mutant mouse strain called slow 

Wallerian degeneration (Wlds) the anterograde degeneration of transected axons 

is markedly delayed because of a mutation resulting in overexpression of a 
 

chimeric protein (Wlds) composed of the ubiquitin assembly protein Ufd2a and 
 
the nicotinamide adenine dinucleotide (NAD) biosynthetic enzyme Nmnat1 [81]. It 

was suggested that the activity of Nmnat1 alone (independent on Ufd2a) 

provides the axon-protective activity of the Wlds  protein and that it is mediated by 
 
NAD production [82]. Resveratrol- or NAD-pretreated neurons exhibit a decrease 

 
in axonal degradation after axon transection. Furthermore, SIRT1 knock-down or 

treatment with sirtinol blocked NAD-dependent axonal protection. 

Therefore SIRT1 was proposed as the downstream effector in the 

Nmnat/NAD axonal protection activity. However, other groups suggested that 

other, SIRT1-non-dependent mechanism lay below the Nmnat/NAD 

neuroprotective effect. In another study it was reported that the degeneration of 
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transected axonal segments could be prevented by NAD exogenous local 

application 24h before axon transection. Furthermore, similar protective effects of 

NAD could be observed in axons exposed to NAD directly at the time of 

transection or even until 5h after transection [83]. This suggests that the NAD- 

dependent axon protection may be mediated primarily by its effect on local 

bioenergetics than through NAD-induced transcription and other nuclear events. 

In addition, neither the SIRT1 inhibitor sirtinol, nor resveratrol affected the 

protective effects of NAD in the same assay [83]. 

The role of SIRT2 in Wallerian degeneration has been studied as well. In a 

recent study, the authors focused on the hypothesis that suppression of 

microtubule depolymerization delays axonal degeneration, taking into account 

that Wlds  phenotype shows a substantial resistance to microtubule 

depolymerizing drugs [84-86]. The basal level of microtubule acetylation 

(stabilization) is increased in cultured cerebellar granule cells from Wlds mice. 

SIRT2 overexpression abolished microtubule hyperacetylation and resistance to 

axonal degeneration in these cells. Furthermore, SIRT2 knock-down enhanced 

microtubule acetylation and resistance to axonal degeneration in wild-type 

cerebellar granule cells [84]. 

 

 
 

Future Perspectives 

A variety of pathological mechanisms are evidently associated with human 

neurodegenerative disorders, with no particular mechanism emerging as a major 

contributor. Apparently the outcomes of any effective neuroprotective strategy, 
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targeting specific disease components, will remain uncertain until validation in 

human subjects.  Despite recent exciting data, the feasibility of development 

sirtuin-based therapy for human neurodegenerative diseases has yet to be 

demonstrated in animal models, and then in human trials. 

At this stage, genetic and pharmacological manipulations in rodent 

disease models are crucial for target validation of sirtuin activities. While the 

former approach could be obscured by functional redundancy of HDAC family 

members, assessing the efficacy of highly potent and selective sirtuin ligands in 

rodent disease models appears as a key step of therapeutic development. 

Several formidable features are associated with chemical development of sirtuin 

ligands, including non-specific toxicity, cellular impermeability, poor PK 

properties, and brain-permeability. There are apparent liabilities associated with 

resveratrol structure, such as the low bioavailability in mammals, low solubility, 

and sensitivity to light and oxidation, which limit the use of this molecule in animal 

studies [87]. The discovery of synthetic SIRT1 agonists is an important step for 

the development of next generation of potent, selective, bioavailable, and brain- 

permeable SIRT1 activators [88]. Similarly, the discovery and development of 

therapeutic-grade activators and inhibitors against other sirtuin isoforms will be 

necessary to assess the therapeutic potential of these targets in rodent models of 

neurodegenerative diseases. The identification of efficacious molecules in animal 

models will expedite the development of lead-candidates for human clinical trials. 

A major concern in the development of novel therapies is their safety for 
 
human subjects. One of the potential downsides associated with SIRT1 
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activation is the over consumption of NAD+, an important bio-energetic molecule 
 
in the cell. Energy depletion has also been suggested to play a major role in 

neuronal cell death in the neurodegenerative diseases [89]. The function of 

several enzymes that play important roles in the cellular responses to stress 

require NAD+ for their activity including poly ADP-ribose polymerases (PARPs) 

and some histone deacetylases [4, 90]. By consuming NAD+, PARP1 may render 
 
neurons vulnerable to excitotoxicity and to cell-death [91-93]. SIRT1 activity also 

consumes NAD+ and, as such, has the potential to deplete cellular energy. 

SIRT1 activity may be beneficial or detrimental depending upon the magnitude of 

SIRT1 activity and the cellular energy state. Indeed, it was reported that elevated 

SIRT1 levels increased the vulnerability of cardiac myocytes to age-dependent 

apoptosis, whereas lower levels of SIRT1 overexpression were protective, 

possibly by inducing a mild adaptive stress response [94]. However, the 'dark 

side' of SIRT1 activation, pertinent to the energy depletion, is likely to be less 

harmful for neurons than PARP1 activation. This notion rests on the fact that 

SIRT1 uses NAD+ as a co-factor for its enzymatic activity and that PARP1, 

activated in response to oxidative stress and DNA damage, utilizes and cleaves 
 

a large fraction of NAD+ molecules while it generates poly ADP-ribose polymers 

on histones and other protein substrates. Nevertheless, the potential negative 

effects of SIRT1 activation, including conditions of oxidative stress, have to be 

thoroughly investigated in rodent models. Interestingly, recent findings showed 

that nicotinamide riboside elevates NAD+ and increases Sir2 function, thus 

potentially providing an alternative therapeutic pathway for SIRT1 activation 
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which is harmless for the energy state of the cell [95]. Thus, sirtuins hold a great 

potential as therapeutic targets in neurodegeneration. 
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Table legend 
 
Table 1. Summary of functions, cellular localization, and enzymatic substrates of 

currently known sirtuin family members (SIRT1-SIRT7). 

 

 
 

Figure legend 

Fig. 1.  Sirtuin modulators and their effects on experimental models of 

neurodegenerative diseases. Multiple neuroprotective mechanisms targeted by 

the modulation of sirtuin activities are shown. 
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