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Abstract 

 Autosomal Dominant Polycystic Kidney Disease (ADPKD) is a common, genetically 

determined developmental disorder of the kidney that is characterized by cystic 

expansion of renal tubules and is caused by truncating mutations and haplo-insufficiency 

of the PKD1 gene. Several defects in cAMP-mediated proliferation and ion secretion 

have been detected in ADPKD cyst-lining epithelia.  Unlike the ubiquitous PKA, the 

cAMP-dependent CREB-kinase, Protein Kinase X (PRKX) is developmentally regulated, 

tissue restricted and induces renal epithelial cell migration, and tubulogenesis in vitro as 

well as branching morphogenesis of ureteric bud in developing kidneys. The possibility 

of functional interactions between PKD1-encoded polycystin-1 and PRKX was suggested 

by the renal co-distribution of PRKX and polycystin-1 and the binding and 

phosphorylation of the C-terminal of polycystin-1 by PRKX at S4166 in vitro. Early 

consequences of PKD1mutation include increased tubule epithelial cell-matrix adhesion, 

decreased migration, reduced ureteric bud branching and aberrant renal tubule dilation. 

To determine whether PRKX might counteract the adverse effects of PKD1 mutation, 

human ADPKD epithelial cell lines were transfected with constitutively active PRKX 

and shown to rescue characteristic adhesion and migration defects. In addition, the co-

injection of constitutively active PRKX with inhibitory pMyr-EGFP-PKD1 into the 

ureteric buds of mouse embryonic kidneys in organ culture resulted in restoration of 

normal branching morphogenesis without cystic tubular dilations. These results suggest 

that PRKX can restore normal function to PKD1-deficient kidneys and have implications 

for the development of preventative therapy for ADPKD.  
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Introduction 

 Autosomal Dominant Polycystic Kidney Disease (ADPKD) is a leading cause of 

endstage renal failure and affects 500,000 patients in USA 1.    At present, there is no 

proven therapy and 50% of individuals who inherit mutations in the PKD1 gene will 

require hemodialysis or renal transplantation.  PKD1 encodes a membrane protein, 

polycystin-1 2, the intracellular C-terminal domain of which has specific tyrosine and 

serine sites for phosphorylation by c-src, focal adhesion kinase and protein kinase A 

(PKA) as well as an RRSSR consensus sequence for putative S4166 phosphorylation 3 4 21 

39 40. Polycystin-1 is highly expressed in developing kidneys, but significantly less 

expressed in normal adult kidneys 5-7.   Depending on cell differentiation state and 

developmental stage, polycystin-1 has been localized on basal, lateral and apical plasma 

membranes where it forms large multi-protein complexes with cell-matrix focal 

adhesions, cell-cell adhesion complexes and primary cilia, respectively 6 8. Inactivation of 

PKD1 results in increased adhesion of renal epithelia to collagen matrix, decreased 

migration in response to growth factors, stunted branching morphogenesis and cystic 

dilations of the terminal branches and tips of the ureteric bud 9. Direct functional studies 

have shown that inhibition of PKD1-encoded polycystin-1 leads to cystic 

maldevelopment of mouse kidneys and suggests a critical role for normal polycystin-1 in 

the differentiation and controlled morphogenesis of the kidney by regulation of tubular 

diameters 9 10. Functional decline in ADPKD patients is due to progressive renal cystic 

enlargement and typically does not result in endstage renal failure until the 4th-5th decade.  

Since cystic expansion arises early in development where it appears to be initiated in the 
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ureteric bud/collecting tubules, this presents a long window of opportunity to develop 

effective retardation and preventative therapies 11 12.    

 Several abnormalities in response to cAMP have been documented in ADPKD, 

including increased cAMP-dependent proliferation, increased ATP release, and 

alterations in secreted ion and fluid transport 13 14 15 16 17. In addition to the ubiquitously 

expressed PKA, cAMP-mediated responses can be mediated via Protein Kinase X 

(PRKX), a serine/threonine kinase gene on the X chromosome (Xp22.3) 31 32.  Functional 

differences between PRKX and PKA have been reported 18 including a  PRKX-specific 

role in granulocyte/macrophage lineage differentiation 33. Previously we  have shown that 

similarly to PKA, cAMP induces translocation of PRKX to the nucleus of renal epithelial 

cells and activates CRE-promoter elements 3. Unlike PKA, however, PRKX belongs to an 

ancient subfamily containing Dictyostelium KAPC-DICDI, and consists of a single 

catalytic and a single regulatory subunit 3 34 35.   PRKX activation results in the 

stimulation of cell migration and tubulogenesis in renal epithelial cells 3 and Its 

overexpression in embryonic mouse kidneys in organ culture activates ureteric bud 

branching morphogenesis 36, suggesting a role for PRKX in  regulation of tubulogenesis 

during kidney development.   

  The current studies sought to determine whether PRKX was able to interact with 

polycystin-1 in renal epithelia and to evaluate its potential role in the restoration of 

normal renal epithelial function, morphogenesis and tubule diameter control in PKD1-

deficient kidneys. 
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Materials and Methods 

Construction of PRKX Expression Vectors   

   The generation of recombinant peGFP/PRKX, pFLAG/PRKX constructs has been 

described previously 3. A constitutively active peGFP/PRKX.ca construct was engineered 

by point mutagenesis (His 93 changed to Gln and Trp 202 to Arg) as described for PKA 

kinase 27. This construct causes activation of kinase activity and nuclear translocation in 

the absence of added cAMP 20. For ureteric bud microinjection and long-term epithelial 

cell transduction, viral PRKX-expressing constructs were generated using self-

inactivating lentiviral (VVC) vectors 37.  peGFP-PRKX and peGFP/PRKX.ca fusion 

proteins were excised with XhoI and BamHI and ligated with VVC vectors under the 

control of the CMV early promoter, to generate VVC-peGFP/PRKX and VVC-

peGFP/PRKX.ca. as described previously  36.  

 

Construction of PKD-1-CTD Expression Vectors  

    Human PKD1-C-terminal domain (CTD) fusion protein was prepared for E. coli 

expression by PCR of a 0.6kb DNA fragment encoding amino acids 4105-4303 and 

subcloned into pET30 LIC (Novagen) vector which encodes in frame N-terminal His - 

and S-tags, as previously described 4.  For mammalian expression and transfection 

analysis, the previously described pMyrEGFP-PKD1-CTD expression plasmid was used, 

4 29 and for ureteric bud microinjections and long-term expression VVC-Myr-EGFP-

PKD1-CTD was used 3 9.    
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Cell Culture   

   Temperature-sensitive (ts), conditionally immortalized human renal epithelial 

cells derived from microdissected normal human fetal collecting tubule (HFCT), normal 

human adult collecting tubule (NHCT) and ADPKD cyst lining epithelia (with a germline 

mutation truncating the polycystin-1 protein at amino acid 3078) were grown according 

to our standard protocols 19 30.  To attain full differentiation, cells were grown to 70% 

confluence at 330C, and then transferred to the non-permissive temperature of 370C for 5-

10 days prior to use. JAR human choriocarcinoma cells (ATCC) were cultured in RPMI 

1640 (Life Technologies, Inc.) with 10% FBS and MDCK cells were grown in 

Dulbecco’s Modified Eagles Medium (DMEM) plus 10%. FBS. 

 

In Situ Hybridization   

   Deparaffinized, dehydrated kidney sections were treated with proteinase K, 

prehybridized with triethanolamine/acetic anhydride, and hybridized overnight with 

digoxigenin-substituted PRKX-antisense or sense probes. After washing in 0.1 x SSC 

(0.15 M sodium chloride/0.015 M sodium citrate, pH 7.0), sections were incubated in 

anti-digoxigenin antibody/alkaline phosphatase and color developed with Nitro Blue 

Tetrazolium (NBT) reagent (Roche Molecular Biochemicals).  

 

Northern Blot Analysis  

   Total RNA was fractionated on agarose/formaldehyde gels and the integrity of 

RNA monitored with ethidium bromide prior to transfer to GeneScreen membranes using 

25mM sodium phosphate pH6.5. Filters were prehybridized overnight at 42°C in 50% 
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formamide, 0.04% PVP, 0.04% BSA, 0.04% Ficoll, 1% SDS, 0.75M NaCl, 0.075M 

sodium citrate and denatured salmon sperm DNA (100mg/ml). Hybridization with PRKX 

and 14S RNA 32P-labeled cDNA probes was carried out in 0.02% PVP, 0.02% BSA, 

0.02% Ficoll at 42°C for 24 hours followed by 4 washes: 2x SSC, 0.1% SDS, 15 min, 

650C; 1x SSC, 0.1% SDS, 15 min, 650C; 0.5x SSC, 0.1% SDS, 15 min, 650C; 0.1x SSC, 

0.1% SDS, 15 min, 650C.  RNA bands were visualized by autoradiography. 

 

Phosphorylation Studies  

   Polycystin-1 was immunoprecipitated from HFCT cell lysates using a fully 

characterized mono-specific anti- human polycystin-1 C terminal antibody 25 and agarose 

beads, and then incubated for 45min at 37oC with kinase buffer (10mM HEPES, 3mM 

MnCl2, pH7.3) containing affinity purified pFLAG-PRKX fusion protein and 10µCi α-

32P-ATP.  The beads were washed 3 times with kinase buffer and 15ml TBS containing 

50mM EDTA and 4ml of 5x Ramini sample buffer. After heating for 5min at 95oC, 

phosphorylated proteins were resolved by SDS-PAGE 41 followed by autoradiography. In 

addition, His/FLAG/PKD1-CTD  or 4166/4252 truncated mutant fusion proteins made in 

E. coli and purified using a nickel column, were incubated with pFLAG-PRKX fusion 

protein immunoprecipitated from JAR cell lysates using anti-FLAG beads and 

phosphorylation determined using 32γ-ATP  as described above. Studies were conducted 

in the presence or absence of 8-Br-cAMP (100µM) or H89 inhibitor (10µM).   
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Co-immunoprecipitation of PRKX and polycystin-1  

   HFCT cell lysates (800µg) were immunoprecipitated with 10µl anti-PRKX 

antibody (Biocompare) and 25µl A/G beads at room temperature for 2 hours. After 

extensive washing, aliquots were fractionated on 5% SDS/PAGE and immunoblotted 

with anti-PRKX (1:500) and anti-polycystin-1 (1:10,000).  Lysate immunoprecipitated 

with beads only acted as  negative control. 

 

Cell Adhesion Assays  

   ADPKD cells were transfected with peGFP/PRKX or peGFP/PRKX.ca using 

Lipofectamine 2000 (Invitrogen), washed and cultured for 24 hours prior to 

Fluorescence-Activated Cell Sorting (FACS) to isolate GFP positive cells.  2,000 GFP+ 

or control non-transfected cells were plated per well in 96 well tissue culture plates 

precoated with type I collagen.  After 4 hours of attachment, unattached cells were 

removed by aspiration and adherent cells  quantitated by the colorimetric aqueous MTS 

assay (Cell Titer 96TM Aq., Promega). 

 

Modified Boyden Chamber Migration Assays   

   ADPKD cells were transfected with peGFP/PRKX using Lipofectamine 2000 

(Invitrogen), washed and cultured for 24 hours prior to FACS sorting.  GFP+ or control 

untransfected cells were washed with serum-free medium and labeled with fluorescent 

calcein-AM (Molecular Probes).  2,000 labeled cells treated with or without 100µM 8-

Br-cAMP or 10 µM H89 were plated in 0.8ml DMEM+ 1% FBS in triplicate into 24 well 

chambers adapted for the Fluoroblock (Falcon) apparatus. After 4 hours, 5% FBS was 
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added to the lower chamber medium to establish a 1-5% serum gradient and  migration of 

cells from the upper to lower chamber quantitated  at 4-48hr using a microfluorimetric 

plate reader  (HTS 7000, Perkin Elmer Cetus). 

 
Tubulogenesis Assasy in 3-Dimensional Collagen Gels  

   FACS-sorted MDCK cells, with or without transfection of peGFP/PRKX, 

peGFP/PKD1-CTD or peGFP/PKD1.tm (PKD1 truncated mutants) were washed, grown 

for 24 hours, washed three times in serum-free medium and 500 cells plated per well (12-

well format) in collagen type I gels:  1 vol. 10 X MEM, 1 vol sodium bicarbonate (42 

mg/ml), 1/2 vol FBS, 3 vol type I collagen,  4.5 vol  sterile water. After 10 days of culture 

in DMEM + 10% FBS, gels were fixed in ice-cold methanol and stained with rhodamine-

phalloidin for 8 hours prior to examination by fluorescence microscopy.  

 
Mouse Embryonic Kidney Organ Culture and Viral Vector Microinjection   

   Embryonic day (E) 11-12 kidney pairs were dissected from timed pregnant CD-1 

mice (Charles Rivers) using a stereomicroscope (Olympus) with a Scion imaging system.  

Kidneys were cultured on 24mm Transwell Clear membrane inserts for 3-5 days and  

media changed daily 36.  On day zero, 20-200nl (1-4 x 107 TU/ml); VVC-

peGFP/PRKX.ca; VVC-pMyr-EGFP-PKD1-CTD; VVC-peGFP/PRKX.ca plus VVC-

pMyr-EGFP-PKD1-CTD; VVC vector alone; or PBS (sham control) were microinjected 

into the ureteric bud lumen using sterile transfer tips (15 mm internal diameter), a 

micromanipulator and transjector  (Eppendorf) and comparisons made with uninjected 

kidneys. After 3-5 days of organ culture, kidney explants were fixed in ice-cold methanol 
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for 15 min. prior to immunofluorescent staining with anti-calbindin and anti-WT-1 

antibodies as described previously 36.      

 

Microscopy and Morphometric Data Analysis  

   Morphological changes were documented daily using the Olympus/Scion system. 

Immunofluorescence imaging was carried out by laser-scanning confocal microscopy 

(BioRad Radiance, MSSM core facilities) and Image J (NIH), an open domain Java 

image processing system, was used to calculate area and pixel value statistics, to measure 

distances and volumes and to create skeletonized images. 

 

  

Results 

PRKX mRNA and Polycystin-1Preotein Expression in Human Kidneys 

       The developmental regulation of expression and cellular localization of PRKX 

is very similar to that of polycystin-1 in normal fetal, normal adult and ADPKD kidneys 

(Figure 1). Both are highly expressed in fetal kidneys (A and D) and restricted mainly to 

the ureteric bud- derived collecting ducts (gestational ages 12 to 24 weeks, n=10) while 

little is seen in normal adult kidneys (n=10) (B and E). By contrast, PRKX and 

polycystin-1 expression are seen in ADPKD kidneys (n=10) where they are restricted to 

the cyst lining epithelia (C and F). Cell lines derived from micro-dissected normal human 

fetal collecting ducts (HFCT) express high levels of endogenous polycystin-1 7 19.  
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Phosphorylation of Polycystin-1 by PRKX 

    To determine whether polycystin-1 could be a substrate of PRKX, in vitro 

phosphorylation analysis was carried out by incubation of HFCT polycystin-1 

immunoprecipitates with PRKX fusion proteins in the presence of γ32-P-ATP 4 (Figure 

2a).  After establishing that polycystin-1 can be phosphorylated by PRKX (Figure 2a, 

lane 5), mutation analysis was carried out to determine the specific site at which this 

occurs.  Immunoprecipitated pFLAG/PRKX was incubated with wild type or mutated 

PKD1 fusion proteins and kinase activity determined in the presence of the activator, 8-

Br-cAMP or of the inhibitor, H89. Since human polycystin-1 contains two RRSSR 

consensus sequences, sites S4166 and S4252 were selected for point mutation. Of 

interest, the S4252, but not S4166 had previously been shown to be phosphorylated by 

PKA 4 21.  The results (Figure 2b) show that PRKX phosphorylates the wildtype 

polycystin-1 C-terminal (lane 2), that this is enhanced by 8-Br-cAMP (lane 3) and 

inhibited by H89 (lane 4). While truncation of polycystin-1 and removal of the PKA site 

(S4252) had no effect on this activity (lanes 5-7), mutation of the S4166 significantly 

reduced activity (lanes 8-10) implicating polycystin S4166 as the major C-terminal target 

for PRKX phosphorylation.  

 

Association of PRKX with Polycystin-1 

    To further investigate if PRKX interacts with polycystin-1 in vivo, co-

immunoprecipitation studies were carried out on HFCT cells that endogenously express 

both PRKX and polycystin-1 (Figure 3). PRKX was immunopreciptated (lane 3) as a 68 
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kDa protein, the lower band being thought to be a degradation product since it was 

occasionally observed in Western blots using this commercial polycolonal antibody. 

Western immunoblot analysis of the PRKX immunopreciptates using our C-terminal 

domain anti-polycystin-1 antibody 25 showed the presence of polycystin-1 (lane 1, arrow 

>430 kDa).   No polycystin-1 was detected when HFCT lysates were immunoprecipitated 

with beads alone (lane 2).  These results suggest that polycystin-1 is associated with 

PRKX in HFCT. 

 

PRKX Reduces ADPKD Cell Adhesion and Stimulates ADPKD Cell 

Migration 

    We next sought to determine whether PRKX could modify the aberrant functions 

of ADPKD epithelia in vitro. Human ADPKD epithelia are significantly more adherent to 

collagen after 4 hours of attachment than age-matched normal human collecting duct 

cells and are also significantly less migratory in response to a growth factor gradient 9 22.  

Transfection of ADPKD epithelia with wild-type peGFP/PRKX or constitutively active 

peGFP/PRKX.ca resulted in significant decreases in the adhesion of ADPKD cells, 

compared with untransfected cells or ADPKD cells transfected with empty vector (Figure 

4).   In addition, when ADPKD epithelial cells were transfected with wild-type 

peGFP/PRKX migration profiles resembled those of age-matched normal (NHCT) 

epithelia (Figure 5A). This effect was more accentuated in the presence of of 8-Br-cAMP 

(Figure 5B) and inhibited by H89 (Figure 5C).  
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PRKX Abrogates the Effect of an Inhibitory PKD1-CTD Fusion Protein on 

MDCK Cell Branching Morphogenesis 

    The MDCK collagen gel assay is a well established tool to study MDCK cell 

branching morphogenesis. In the culture gel, MDCK cells form cysts consisting of 8-10 

cells by day 7 as shown in the control (Figure 6, A)   We have previously demonstrated 

that transfection of PRKX into MDCK cells induces a tubulogenic response in 3-

dimensional collagen gels, even in the absence of HGF 3 while transduction of the 

inhibitory VVC-pMyr-EGFP-PKD1 inhibits branching morphogenesis in the embryonic 

mouse kidney 9. Figure 6 shows that transfection of pMyr-EGFP-PKD1 fusion protein 

did not induce MDCK cell tubulogenesis even in the presence of HGF (Figure 6, D), 

while co-transfection of pMyr-EGFP-PKD1 plus peGFP/PRKX.ca restored tubulogenesis 

(Figure 6, G). Quantitative analysis showed that peGFP/PRKX.ca co-transfection with 

pMyr-EGFP-PKD1 resulted in 8.0 ± 0.25 (mean ± SEM) branched epithelial structures 

observed per 10 epithelial structures scored (n = 4 sets of observations). Transfection of 

the 4166- or 4252-site mutant of pMyr-EGFP-PKD1, lacking the PRKX major or minor 

phosphorylation site, respectively, also showed inhibitory effects on MDCK 

tubulogenesis (Figure 6, E and F). Co-transfection of the peGFP/PRKX.ca together with 

the 4166- or 4252-site mutant of pMyr-EGFP-PKD1 did not restore tubulogenesis 

(Figure 6, H, I). These results suggested that PRKX can overcome the deficiencies in 

tubulogenesis induced by inhibition of polycystin-1 only when both the PRKX major and 

minor phosphorylation sites in polycystin-1 are present.    
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Microinjection of VVC-peGFP/PRKX.ca Rescues the Inhibitory Effects of 

pMyrEGFP-PKD1-CTD 

    Embryonic mouse kidneys grown in organ culture, recapitulate the epithelial 

morphogenetic events of early kidney development 23 24. Since polycystin-1 and PRKX 

are highly expressed in the ureteric bud, this site was chosen for the microinjection of 

lentiviral (VVC) expression constructs of pMyr-EGFP-PKD1 and/or peGFP/PRKX.ca in 

embryonic day 11.5 mouse kidneys (Figure 7).  After 3 days of subsequent organ culture, 

VVC-pMyr-EGFP-PKD1 transduction alone caused reductions in ureteric bud elongation 

and branching as measured by numbers of branch points and branch tips by comparison 

to empty vector injected paired control kidneys. Glomerular numbers were also 

decreased, while ureteric tubular diameters were increased (Figure 7, upper panel). The 

opposite effects were seen after injection of VVC-peGFP/PRKX.ca alone which led to 

increased ureteric bud elongation and branching, increased glomerular induction and  

decreased tubular diameters (Figure 7, middle panel).  Co-transduction by co-

microinjection of both VVC-pMyr-EGFP-PKD1 and VVC-peGFP/PRKX.ca led to the 

restoration of normal control levels of ureteric bud elongation and branching and 

glomerular induction and significantly reversed the alterations in tubule dilation (Figure 

7, lower panel). These results suggest that activated PRKX can rescue the major 

inhibitory morphogenetic effects of inhibitory PKD1 mutation associated with cystic 

initiation in developing kidneys.  

 

Discussion 
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            In the present study, we demonstrated that PRKX is expressed in the same 

temporo-spatial pattern as the polycystin-1 protein in the ureteric bud epithelial of normal 

developing kidneys 6 7. We also demonstrated that PRKX associates with polycystin-1 in 

human fetal kidney collecting tubule (HFCT) epithelial cells and can phosphorylate the 

polycystin-1 protein. These results suggest that PRKX may interact with polycystin-1 and 

regulate polycystin-1 functions in renal epithelial cells in vivo. During development of 

the metanephric kidney, the ureteric bud undergoes branching morphogenesis that 

involves epithelial cell adhesive interactions with the extracellular matrix, migration, 

branching, elongation and tubule diameter regulation and epithelial differentiation. 

During this process, polycystin-1 shows a punctate basal membrane distribution pattern 

and forms multiprotein complexes with integrins and component proteins of the focal 

adhesion complex including paxillin, talin, tensin, focal adhesion kinase, c-src and 

p130cas 25 26.   Recent studies have demonstrated a direct role for polycystin-1 in the 

regulation of the ordered control of epithelial cell adhesion, migration, elongation, 

branching morphogenesis and volume regulation necessary for normal renal development 

9. PRKX, a cAMP-dependent CREB kinase, also regulates similar properties, stimulating 

renal epithelia cell migration and branching morphogenesis 3. Therefore, we reasoned 

that PRKX might act as a polycystin-1 kinase and modulate its functions through 

phosphorylation of polycystin-1 at its intracellular C terminal domain.  

             Sequence analysis identified 4 tyrosine residues and 2 RRSSR consensus 

sequences as putative target sites for phosphorylation by kinases in of the intracellular 

portion of polycystin-1 and functional analysis has confirmed that S4252 is a 

phosphorylation site for PKA, Y4127 for focal adhesion kinase (FAK) and Y4237 for c-
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src 3 4 21. Our current observation that PRKX phosphorylates polycystin-1  at S4166, 

rather than at S4252 (the only phosphorylation site for PKA) suggests that PRKX and 

PKA could exert distinct effects on polycystin-1. Indeed, our previous studies had 

demonstrated clear functional differences between PRKX and PKA with regard to renal 

epithelial cell function since while PRKX stimulates cell migration, and tubulogenesis 

PKA has no effects on those properties. 3 36 

   Human ADPKD epithelia with mutant PKD1 have increased adhesion and 

reduced migratory capacity and inhibition of PKD1 disrupts ureteric bud branching 

morphogenesis leading to cystic dilation 9. Since over-expression of PRKX had been 

shown to increase branching morphogenesis, we reasoned that it might counteract the 

effects of PKD1 inhibition via modulation of polycystin-1. Using transfection strategies, 

PRKX was shown to significantly decrease the adhesion and increase the migration of 

ADPKD cells, retuning them to the levels seen in normal age-matched control cells. 

PRKX was also shown to stimulate MDCK cell branching morphogenesis and to 

abrogate the effects of an inhibitory pMyr-PKD1-CTD fusion protein on MDCK cell 

branching morphogenesis in 3-dimensional collagen gels. Most importantly, the co-

injection and transduction of PRKX into the ureteric buds of E11.5 mouse embryonic 

kidneys in ex vivo organ culture led to an almost complete rescue of the branching 

morphogenesis and cystic dilation defect elicited by injection of inhibitory pMyr-EGFP-

PKD1. Taken together these results suggest that PRKX can reverse the abnormalities in 

epithelial adhesion, migration and morphogenesis associated with PKD1 inhibition and 

cyst formation in ADPKD. There are several potential mechanisms whereby  PRKX 

might  counteract the effects of PKD1 dysfunction. Firstly, since human ADPKD patients 
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are heterozygous for a single PKD1 mutation and immunoreactive polycystin-1 protein is 

seen in many cyst epithelial cells in human ADPKD kidneys, PRKX may be able to 

counteract the deleterious effects of haplo-insufficiency by interacting with protein 

encoded by the normal allele. Secondly, PRKX might act in a dominant negative fashion 

by competing with aberrant polycystin-1, thus blocking the deleterious effects of the 

mutant protein. A third potential mechanism would be that PRKX interacts with other 

members of the polycystin-1-multiprotein complex to abrogate aberrant function.  

Consistent with this possibility, PRKX contains a proline-rich (WW) binding site and in 

vitro binding assays has been shown capable of strong interactions with PIN-1, BAG-3 

and MAGI-1 shown to  play a role in regulation of cell  proliferation and differentiation. 

Further in vitro and in vivo studies in PKD1 null homozygous and heterozygous mice are 

in progress to address these alternatives.  

  Mutation of PKD1 in ADPKD leads to functional insufficiency associated with   

tubular cystic dilation. Severe inhibition of PKD1 during renal development by injection 

of inactivating pMyr-EGFP-PKD1 viral expression constructs or by PKD1 mutation in 

ADPKD, disrupts and retards ureteric bud branching, reduces total glomerular induction 

and leads to tubular dilations 9. PRKX is the first endogenous protein demonstrated to 

reverse the effects of PKD1 mutation and points to the potential importance of 

phosphorylation of the intracellular C-terminus of polycystin-1 by this kinase in 

mitigating the progressive renal dysfunction seen in this monogenetic disease.  85% of 

ADPKD is caused by mutations in PKD1 and 15% by mutations in PKD2. Recent studies 

suggest that the intracellular C-terminal of the PKD2-encoded polycystin-2 also contains 

putative serine target sites for phosphorylation and that inhibition of PKD2 disrupts renal 
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epithelial tubulogenesis 38. Polycystin-1 and polycystin-2 have been shown to interact in 

vitro and have been proposed to form functional complexes in vivo.  Although it remains 

to be determined whether PRKX can phosphorylate polycystin-2, it is likely that it is 

capable of regulating polycystin-2 function either directly or by virtue of its interactions 

with polycystin-1 in the polycystin1/2 complex. Since over-expression of PRKX has been 

shown to be efficient at restoring normal polycystin function in vitro and ex vivo, this 

presents the possibility that PRKX therapy might be effective with regard to prevention 

and/or retardation of cystic development.  
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Legends 

Figure 1  

a: Northern blot analysis of PRKX mRNA expression in human kidneys.  

Human kidney total RNA (20 µg per lane) was fractionated on agarose/formaldehyde 

gels and  transferred to a nitrocellulose membrane.  The membrane was then 

prehybridized overnight  and probed with 32P-PRKX.  (please see Materials and Methods 

for further detail) 

FK:  normal human fetal kidney, 16 weeks gestation .  

AK: normal human adult kidney.  

PKD:  ADPKD kidney.  

Arrow indicates the 6.4 Kb PRKX mRNA; arrowhead indicates 14S ribosomal RNA 

control. 

b: PRKX and PKD1 mRNA expression in human kidneys.  

In situ hybridization with digoxigenin-substituted antisense PRKX (A-C) or sense PRKX 

(G) or PKD1 (D-F) fragment riboprobes was carried out on human kidney sections and 
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visualized by anti-digoxigenin-alkaline phosphatase immunohistochemistry (please see 

Materials and Methods for full details) 

A and D: Normal human fetal kidney, 12 weeks gestation.  

B and E: Normal human adult kidney. 

C and F:  ADPKD cystic kidney. 

G: PRKX sense probe on ADPKD cystic kidney. 

 

Figure 2 

a: Phosphorylation of Polycystin-1 by PRKX.   

Polycystin-1 immunoprecipitated from human fetal collecting tubule (HFCT) cell lysates 

was incubated with pFLAG/PRKX fusion protein purified by immunoprecipitation with 

anti-FLAG beads. Kinase activity was measured using γ-32P-ATP in the presence of 8-Br-

cAMP (please see Materials and Methods for details).  The arrow indicates 

phosphorylated polycystin-1.  

Lane 1: HFCT cell lysate incubated without pFLAG/PRKX 

Lane 2: HFCT cell lysate incubated with pFLAG/PRKX 

Lane 3: HFCT cell lysate immunoprecipitated by beads alone and incubated without 

pFLAG/PRKX (immunoprecipitation negative control).  

Lane 4: HFCT cell lysate immunoprecipitated by polycystin-1 antibody, incubated 

without pFLAG/PRKX  

Lane 5: HFCT cell lysate immunoprecipitated by polycystin-1 antibody, incubated with 

pFLAG/PRKX 

b: Identification of PRKX phosphorylation site on polycystin-1  
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Upper panel: His/FLAG/PKD1-CTD fusion protein or 4166 or 4252 site mutated fusion 

proteins were made in E. coli and purified using a nickel column. pFLAG/PRKX fusion 

proteins were obtained from JAR cell lysates transfected with pFLAG/PRKX by 

immunoprecipitatation using anit-FLAG beads. In these experiments, the same amounts of 

His/FLAG/PKD-CTD fusion protein or of 4166-,  or 4252-site mutated fusion proteins 

were used to incubate with equal amounts of pFLAG/PRKX fusion protein, respectively. 

Then equal amounts of incubation mixtures were loaded for SDS-PAGE followed by 

autoradiogaphy. Kinase activity was measured using γ-32P-ATP in the presence or absence 

of 8-Br-cAMP (100µM) or H89 (10µM) inhibitor.  

1: Control without PRKX transfection.  

2: pFLAG/PRKX+His/FLAG/PKD-CTD    

3: pFLAG/PRKX+His/FLAG/PKD-CTD+cAMP,    

4: pFLAG/PRKX+His/FLAG/PKD-CTD+cAMP+H89   

5: pFLAG/PRKX+4252 PKD mutant     

6: pFLAG/PRKX+4252 PKD mutant +cAMP 

7: pFLAG/PRKX+4252 PKD mutant+cAMP+H89 

8: pFLAG/PRKX+4166 PKD mutant 

9: pFLAG/PRKX+4166 PKD mutant+cAMP 

10: pFLAG/PRKX+4166 PKD mutant+cAMP+H89. 

Lower panel: Coomassie blue staining of the gel to show equal loading of pFLAG/PRKX 

fusion protein and His/FLAG/PKD-CTD fusion proteins. The molecular weight of 

pFLAG/PRKX is 68 kDa and the molecular weight of His/FLAG/PKD-CTD and its 

mutants are 32 kDa. 
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Figure 3 
 
Co-immunoprecipitation of PRKX and polycystin-1.  

800 µg HFCT cell lysate was immunoprecipitated with 25µl A/G beads alone (negative 

control) or 10µl anti-PRKX antibody plus 25µl A/G beads. Aliquots were fractionated by 

5% SDS/PAGE and then immunoblotted with anti-PRKX (1:500) and anti-polycystin-1 

(1:10,000) antibodies respectively.  

Lane 1: IP with anti-PRKX plus A/G beads, Western immunoblot with anti-polycystin-1 

(arrow indicates plycystin-1 band, >430 kDa)  

Lane 2: IP with A/G beads alone (immunoprecipitate negative control). 

Lane 3: IP with anti-PRKX plus A/G beads; Western immunoblot with anti-PRKX 

(arrow indicates PRKX band, 68 kDa)  

 

Figure 4 

Effects of PRKX on ADPKD cell adhesion.  

NHCT cells and ADPKD cells were transfected without or with peGFP/PRKX or 

peGFP/PRKX.ca using Lipofectamine and then sorted by Fluoresecence-Activated Cell 

Sorting (FACS) to isolate GFP-positive cells.  2,000 GFP+ or control non-transfected 

cells were plated per well in 96 well tissue culture plates precoated with type I collagen. 

Adherent cells were quantitated by the colorimetric aqueous MTS assay after 4 hours of 

attachment  

Lane 1.  NHCT cells without transfection  

Lane 2. ADPKD cells without transfection. 

Lane 3.  ADPKD cells transfected with empty expression vector . 
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Lane 4. ADPKD cells transfected with peGFP/PRKX 

Lane 5.  ADPKD cells transfected with constitutively active peGFP/PRKX.ca.   

* p= <0.01 

 

Figure 5 

Effects of PRKX on ADPKD cell migration.  

NHCT and ADPKD cells were transfected without and with peGFP/PRKX using 

Lipofectamine 2000 and sorted by FACS.  2000 fluorencent calcein-AM labeled GFP+  or 

control untransfected cells were placed in each well of 96 well plates and  treated with or 

without 100µM 8-Br-cAMP or 10 µM H89. Cell migration was quantitated  after 4-48hr 

using a microfluorimetric plate reader (please see Material and Methods for details). 

Values are expressed as mean +/- SEM from 2 independent experiments in triplicate. P 

values were calculated by T test comparisons between ADPKD+V versus 

ADPKD+PRKX. * =P < 0.05  

A. Untreated NHCT (blue line), ADPKD (red line), ADPKD transfected with empty 

vector (ADPKD+V, yellow line) and ADPKD transfected with PRKX (ADPKD+PRKX, 

green line).  

B Treated with 100 µM 8-Br-cAMP  

C Treated with 10 µM H89  

 

Figure 6 

Effects of PKD1 and PRKX on MDCK cell tubulogenesis.  
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MDCK cells, with or without transfection of various PRKX and PKD1 constructs were 

sorted by FACS and 500 GFP positive or negative cells were plated per well  in collagen 

type I gels. After 10 days of culture in DMEM + 10% FBS, gels were fixed  and stained 

for examination by fluorescence microscopy.  

A: MDCK cells without transfection.  

B: Transfected with empty expression vector pEGFP-C3.  

C: Transfected with peGFP/PRKX.  

D: Transfected with pMyr-EGFP-PKD1, treated with 25ng/ml HGF 

E: Transfected with 4252 site mutant (M4252) of pMyr-EGF-PKD1, treated with 25ng/ml 

HGF. 

F: Transfected with 4166 site mutant (M4166) of pMyr-EGF-PKD1, treated with 25ng/ml 

HGF. 

G: Co-transfected with peGFP/PRKX plus pMyr-EGFP-PKD1, treated with 25ng/ml 

HGF.   

H: Co-transfected with peGFP/PRKX plus M4252, treated with 25ng/ml HGF. 

I: Co-transfected with peGFP/PRKX plus M4252, treated with 25ng/ml HGF 

In collagen gel cutures for 7 days. Rhodamine-phalloidin staining.  All cells were pre-

sorted for GFP positivity by FACS prior to use in tubulogenesis assays.  

 

Figure 7  

Upper panel:   

Inhibition of ureteric bud branching mophogenesis and glomerular induction by 

dominant negative PKD1 .  
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Kidney explants were cultured for 3 days and then labeled by anti-WT-1 and anti-

Calbindin for visualization of glomeruli and ureteric bud, respectively and viewed by 

fluorescent confocal microscopy.  Quantitative analysis using IMAGE J software was 

carried out to compare glomerular number, ureteric length, branch points, tips, and outer 

diameters at the first and second branch points (bar graphs).  The values are mean ± SEM  

 Paired E11.5 fetal kidneys were injected on day 0 with: 

A. Empty viral vector (VVC) 

B.  VVC-pMyr-EGFP-PKD1  

n=6 paired kidneys. *=P<0.01. 

Middle panel:  

Stimulation of ureteric bud branching mophogenesis and glomerular induction by 

PRKX.  

The kidney culture, experimental conditions and quantitative analysis are the same as 

described in the Upper panel.  Paired E11.5 fetal kidneys were injected with 

C. Empty viral vector (VVC) 

D. VVC-peGFP/PRKX  

n=6 paired kidneys. *= P<0.01. 

Lower panel:  

Rescue of PKD1 dominant negative effects on ureteric bud branching 

morphogenesis and glomerular  induction  by PRKX  

The kidney culture, experimental conditions and quantitative analysis are the same as 

described in the Upper panel. Paired E11.5 fetal kidneys were injected with 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 31

 E. Empty viral vector (VVC) 

F. VVC-pMyr-EGFP-PKD1 plus VVC-peGFP/PRKX.ca   

n=6 paired kidneys. *=P<0.01, **P<0.05. 
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