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Abstract 
 
Schizophrenia is a chronic psychiatric disorder the cause of which is unknown. It is 

considered to be a neurodevelopmental disorder that results from an interaction of 

genetic and environmental factors. Direct evidence for links between schizophrenia 

and TRP channels is lacking. However, several aspects of the pathophysiology of the 

disorder point to a possible involvement of TRP channels. In this review evidence for 

links between TRP channels and schizophrenia with respect to neurodevelopment, 

dopaminergic and cannabinoid systems, thermoregulation, and sensory processes, is 

discussed. Investigation of these links holds the prospect of a new understanding of 

schizophrenia with resultant therapeutic advances. 
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1. Schizophrenia 

 

Schizophrenia is a chronic, debilitating psychiatric disorder that afflicts people of all 

races and carries a life-time risk of the order of 1%. It causes lifelong disability, 

resulting in major individual and societal cost.  Despite extensive investigation, the 

cause of schizophrenia remains unknown. The complexity of the disorder is reflected 

in the varying symptomatology. Classically, the positive symptoms, which include 

delusions, hallucinations and thought disorder, were considered to constitute the 

major diagnostic criteria of schizophrenia. However, it is now recognized that 

impaired cognition, particularly in visual memory and working memory, and the 

negative symptoms of social withdrawal, poverty of speech and anhedonia, are also 

core symptoms of the disorder [1, 2]. 

 

Typically the overt signs and symptoms of schizophrenia do not manifest until early 

adulthood. It is now generally accepted that it is a neurodevelopmental disorder that 

has its origins in the prenatal or neonatal period, and results from an interaction of 

both genetic and environmental factors. Recently, the concept has arisen that 

schizophrenia might result from aberrations in the neuroplasticity phenomena that 

govern normal brain development and function [3, 4]. Several genes have been 

implicated as susceptibility genes, including neuregulin 1 (NRG1), catechol-O-

methyltransferase (COMT), dysbindin, disrupted in schizophrenia 1 (DISC1), and 

regulator of G-protein signaling (RGS) protein-4 (RGS-4), the strongest evidence 

being for NRG1 [5]. For more detailed information on the neurobiology of 

schizophrenia and susceptibility genes for the disorder the reader is referred to recent 

reviews [6-8].  
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Neuropathological studies on post-mortem human brain have shown that the brains of 

subjects with schizophrenia are reduced in volume compared with those of healthy 

individuals [9-11], the frontal lobe being the more severely affected of all four lobes 

[10]. Furthermore, the brains of subjects with schizophrenia have larger ventricles and 

thinner cortices, particularly in the prefrontal and temporal regions, than those of 

normal subjects [12, 13]. Selemon et al. [14, 15] made the important observation that 

neuronal density was increased in the prefrontal cortex of subjects with schizophrenia. 

This finding led to the ‘reduced neuropil hypothesis’ that the symptoms of 

schizophrenia result from reduced cortical connectivity rather than a reduction in 

neuron numbers [16]. Reduced interneuronal space [17], mean cell spacing 

abnormalities [18], and reduced neuronal size [19], have also been found in the 

neocortex of subjects with schizophrenia. 

 

The dopamine hypothesis of schizophrenia, which dominated the field for many years, 

resulted from the observation that stimulants, such as amphetamine that act via release 

of dopamine, produced psychosis [2, 20], and the discovery of the antipsychotic 

efficacy of dopamine D2 receptor antagonists [21]. The roles of the three major 

dopamine pathways in the central nervous system (CNS), viz. the nigrostriatal 

pathway projecting from the substantia nigra to the caudate putamen associated 

primarily with movement control, the mesolimbic and mesocortical pathways 

projecting from the ventral tegmental area (VTA) to the limbic areas (nucleus 

accumbens and ventral striatum) and cortex, respectively, associated with 

schizophrenia and reward, and the tuberoinfundibular pathway important in the 

inhibition of prolactin secretion, have been extensively investigated over the past 
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three decades [22]. Although the classical dopamine D2 receptor antagonists were 

effective in treating the positive symptoms of schizophrenia, they produced serious 

Parkinsonian–like side effects, presumably due to action on the nigrostriatal pathway 

as well as on the mesolimbic and mesocortical pathways. Furthermore, they were 

relatively ineffective in treating the negative symptoms and cognitive impairment of 

the disorder. The newer atypical antipsychotic drugs have a reduced side effect profile 

and some efficacy in treating the negative symptoms, but are not effective in treating 

the cognitive impairment. Thus there is an ongoing search for more appropriate drug 

targets.  

 

Although the antipsychotic efficacy of D2 receptor antagonists suggested that the 

symptoms of schizophrenia resulted from a functional excess of subcortical dopamine, 

several lines of evidence suggest that there might be a deficit in dopamine in the 

dorsolateral prefrontal cortex in schizophrenia resulting in impairment of working 

memory [23]. Since working memory is dependent on D1 receptor signaling, there has 

been recent increasing interest in the dopamine system and D1 receptors in the human 

cortex [24].  

   

Alterations in markers for several neurotransmitter systems, including the serotonin, 

gamma-aminobutyric acid (GABA), glutamate and cholinergic systems, have been 

found in the brains of subjects with schizophrenia. The lack of efficacy of the D2 

receptor antagonists in treating the negative symptoms and cognitive impairment in 

schizophrenia has led to exploration of the possible roles of these other 

neurotransmitter systems, albeit with the understanding that any new model will need 

to provide an explanation for the involvement of dopamine. The hypoglutamatergic 
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hypothesis of schizophrenia has received considerable attention. This hypothesis arose 

from the observation that administration of N-methyl-D-aspartate (NMDA) 

antagonists, phencyclidine (PCP) and ketamine induced psychotic symptoms and 

cognitive dysfunction in healthy humans [25-27]. This hypothesis has been supported 

by the development of a mutant mouse with greatly reduced levels of the NMDA 

receptor subunit, NR1, which exhibited behaviours considered to be related to 

schizophrenia, including hyperactivity and impaired social behaviours, that were 

ameliorated by antipsychotic drugs [28].  

 

2. Overview of TRP channels 

 

The transient receptor potential (TRP) superfamily of ion channels is present 

throughout the animal kingdom. The members mediate flux of cations across the cell 

membrane resulting in increased intracellular concentrations of Ca2+ and Na+, and 

depolarization of cells. They are widely expressed in mammalian tissues in both 

excitable and nonexcitable cells and play an important role in cell signalling. 

Mammalian TRP channel proteins are characterized by six transmembrane spanning 

domains with a pore domain between the fifth and sixth domain. The TRP domain is a 

homologous block of about 25 intracellular amino acid residues adjacent to the C-

terminal side of S6 that is loosely conserved in several TRP subfamilies [29, 30]. TRP 

channels are subdivided into six subfamilies on the basis of amino acid sequence 

homology: TRPA, TRPC, TRPM, TRPML, TRPP and TRPV [31, 32]. TRP channels 

and their structure-function relationships have been reviewed recently [33]. Data from 

genome sequencing projects suggest that the TRP gene family is now complete [34].  

 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
L.A. Chahl - TRP’s: links to schizophrenia? 8 

A characteristic of TRP channels is polymodal activation. TRP channels are variously 

activated by several exogenous natural products such as capsaicin, as well as  

endogenous chemicals of different structures, including endogenous lipids or lipid 

metabolites (DAG, phosphoinositides, eicosanoids, anandamide), purine nucleotides 

and inorganic ions (Ca2+ and Mg2+). Thus receptors such as G-protein-coupled 

receptors (GPCRs) and receptor tyrosine kinases that activate phospholipase C, can 

modulate TRP channel activity by either hydrolysis of phosphatidylinositol (4,5) 

bisphosphate (PIP2), production of diacylglycerol (DAG), or production of inositol 

(1,4,5) trisphosphate (IP3), with resultant liberation of Ca2+ from intracellular stores 

[35]. TRP channels act as cellular sensors and are directly activated by physical 

stimuli such as changes in ambient temperature and mechanical stimuli [36]. 

Although lacking a conserved series of arginine residues in the S4 domain that form 

the sensor for transmembrane electrical potential in classical voltage gated ion 

channels, TRP channels exhibit voltage–dependent current relaxation following 

depolarization which is modulated by temperature or ligand binding [37].  

 

The TRPC1 channel was the first TRP channel to be identified and cloned [38]. 

Several TRPC channels have since been identified and these may be divided into three 

groups on the basis of sequence and functional similarities, TRPC1/4/5, TRPC3/6/7 

and TRPC2 [30]. The human TRPC2 gene encodes a non-functional truncated protein 

[39]. All TRPC channels are highly expressed in human brain with discrete patterns of 

distribution [40]. The hTRPC1, hTRPC3 and hTRPC5 mRNAs have been found 

widely expressed at similar levels across most brain regions, with hTRPC5 exhibiting 

the most CNS-specific expression with ten-fold higher levels in the CNS than in the 

periphery [40].  
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The thermo-TRP channels are a subset of TRP channels expressed in primary afferent 

neurons and cutaneous tissues that respond to distinct thermal thresholds [41]. The 

thermo-TRP channels include TRPV1-4 channels which are heat activated, and 

TRPM8 and TRPA1 which are cold activated, the channel phenotype being conferred 

by the C-terminal domain [42].  The TRPV subfamily may be divided into two 

groups: TRPV1-4, and TRPV5-6. TRPV1-4 channels are expressed in the nervous 

system and share the property of thermosensitivity [43-45], responding to different 

temperature ranges from moderate to noxious heat. The TRPV1 channel, also known 

as the capsaicin receptor or vanilloid receptor 1, was first identified in sensory 

neurons [43, 46], but is now known to be widely distributed in both the central and 

peripheral nervous systems [47-49].  

 

3. Possible links between TRP channels and schizophrenia 

 

Since schizophrenia results from a disorder of the human nervous system, aspects of 

TRP channel function that might relate to brain development and function are of 

greatest relevance. Currently there is lack of direct evidence linking TRP channels to 

schizophrenia. Nevertheless, several aspects of the disorder suggest that TRP channels 

might play direct or indirect roles in its pathogenesis and symptomatology. In this 

review possible links between TRP channels and schizophrenia in relation to 

neurodevelopment, neurochemical mechanisms, in particular dopaminergic and 

cannabinoid mechanisms, and disorders of thermoregulation and sensation observed 

in subjects with schizophrenia, are discussed.  
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3.1 TRPC channels and neurodevelopment  

The reduced neuropil found in the cortex in schizophrenia has been attributed to 

reduced neuronal dendritic arborization. An important recent development of possible 

relevance to the reduced neuropil found in schizophrenia has been the discovery that 

TRPC channels play key roles in neurite extension and growth cone guidance [50]. 

Homomeric TRPC5 channels are rapidly delivered to the plasma membrane following 

growth factor receptor stimulation [51] and have been shown to control neurite length 

and growth cone morphology of cultured mouse hippocampal neurons by regulating 

Ca2+ influx [50]. The mechanisms governing the inhibitory role of TRPC5 in neuronal 

outgrowth have been proposed to involve a protein complex between neuronal 

calcium sensor-1 (NCS-1) protein and TRPC5 [52]. Ca2+ influx through TRPC3 

channels has been shown to control selectively growth cone guidance [53].  

 

A diversity of TRPC heteromers has also been found in mammalian brain, with 

several novel heteromers present in developing brain. Thus it has been proposed that 

these novel TRPC heteromers might play specific roles in developing brain, 

particularly as voltage-dependent Ca2+ entry channels emerge later than TRPC 

channels during development [54]. The possibility that formation of particular TRPC 

heteromers in developing human brain might predispose to schizophrenia is 

intriguing, and offers a challenge for future investigators. 

 

3.2 TRP channels and synaptic mechanisms 

Microarray studies on human postmortem brain have shown a reduction in transcripts 

encoding proteins involved in the presynaptic release of neurotransmitters in the 

prefrontal cortex in schizophrenia [55, 56]. Furthermore, a study of mRNA from 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
L.A. Chahl - TRP’s: links to schizophrenia? 11 

single stellate entorhinal neurons microdissected from postmortem human brain 

revealed a reduction in mRNAs encoding synaptic vesicle proteins, synaptophysin and 

synaptotagmin I and IV, and synaptic plasma membrane proteins, SNAP 23 and 

SNAP25, whereas an upregulation in mRNA encoding the plasma membrane protein, 

syntaxin, was found [57].  

 

There is increasing evidence that certain TRP channels play critical roles in 

fundamental synaptic mechanisms. A critical functional role of agonist-activated 

TRPC4 channels in the release of GABA from dendrites has been proposed [58]. It 

has also been demonstrated recently that TRPM7 channels are present in the 

membrane of cholinergic synaptic vesicles of sympathetic neurons, form molecular 

complexes with the synaptic vesicle proteins, synapsin I and synaptotagmin I, and 

directly interact with synaptic vesicular snapin. It was concluded that TRPM7 channel 

activity is critical for neurotransmitter release in sympathetic neurons [59].  

 

Research on the role of TRP channels in synaptic mechanisms is still at an early stage 

and it is not possible to predict the role they might play in schizophrenia. 

Nevertheless, recent discoveries of the critical functional roles played by TRP 

channels in fundamental mechanisms of neurotransmitter release, indicate that 

investigation of their possible involvement in the pathogenesis of schizophrenia is 

warranted.  

 

3.3 TRP channels and central dopaminergic mechanisms 

Of particular relevance to schizophrenia are observations that TRPV1 channels play a 

role in dopaminergic mechanisms. Studies in rat and primate brain have shown that 
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TRPV1 channels are widely expressed throughout the neuroaxis, including the cortex, 

hippocampus, basal ganglia, cerebellum and olfactory bulb as well as in the 

mesencephalon and hindbrain [47, 48]. High expression is found in cell bodies and 

dendrites of neurons in the hippocampus and cortex, and also on astrocytes and 

pericytes [60]. However, TRPV1 RNA levels in the CNS are considerably lower than 

in dorsal root ganglia [61]. Studies on the distribution of TRPV1 in human brain have 

been more restricted. However, TRPV1 receptors have been found in the third and 

fifth layers of the human parietal cortex [47]. 

 

Until recently, research on TRPV1 channels was predominantly directed at 

understanding peripheral sensory mechanisms. However, there is growing evidence 

that TRPV1 channels have functional roles in the CNS. Furthermore, a potential 

endogenous ligand for the TRPV1 receptor, N-oleoyldopamine, has been found in 

bovine striatal extracts [62]. 

 

In rat brain slices, activation of TRPV1 channels by capsaicin increased the rate of 

firing of dopamine neurons of the midbrain VTA in a concentration dependent 

manner. The excitation of dopamine neurons involved a glutamatergic mechanism 

since it was blocked by superfusion of ionotropic glutamate antagonists [63]. Further, 

in vivo experiments showed that noxious tail stimulation and microinjection of 

capsaicin into the VTA transiently increased dopamine release in the nucleus 

accumbens. Dopamine release by both in vivo tail stimulation and in vitro application 

of capsaicin were inhibited by the selective TRPV1 receptor antagonist, 

iodoresiniferatoxin, suggesting a novel role for mesencephalic TRPV1 channels and 

the dopamine system following noxious stimulation [63].  
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The finding that many of the dopaminergic cells in the substantia nigra compacta are 

TRPV1-immunopositive [47, 63], suggested that TRPV1 might be involved in the 

control of movement. In support of this suggestion was the observation that systemic 

capsaicin suppresses spontaneous locomotion in rats, an effect which was inhibited by 

the specific TRPV1 antagonist, capsazepine [64]. However, the fact that these drugs 

were given systemically does not allow firm conclusions to be drawn about the sites 

of action of capsaicin in this study.  

 

There is less evidence for a role of other TRP channel subfamily members in 

dopaminergic mechanisms. However, electrophysiological and pharmacological 

evidence has been obtained implicating TRPC channels in metabotropic glutamate 

receptor 1 (mGluR1)-mediated excitatory post-synaptic currents (EPSCs) in rat 

midbrain dopaminergic neurons [65, 66].  

 

The results from studies undertaken so far indicate that TRP channels are likely to 

play an important role in dopaminergic mechanisms in the brain and thus their role in 

schizophrenia could be of major importance.  

 

3.4 TRP channels and cannabinoid mechanisms 

 

The phylogenetically ancient endocannabinoid system is now emerging as an 

important regulator of brain development that provides pivotal cues to modulate the 

fate of neural progenitors [67].   
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The possible role of cannabis in precipitation of schizophrenia has received 

considerable attention in recent years. There is increasing acceptance of an association 

between cannabis use and early onset of the first episode of psychosis in susceptible 

individuals. The reader is referred to recent reviews [68-73].   

 

Although there is recognition of an association between cannabis use and early onset 

of psychosis, the mechanisms involved are not clear. Results from recent 

investigations suggest complex relationships between TRPV1, cannabinoid and 

dopaminergic mechanisms. Heterodimer formation between CB1 and D2 receptors has 

been identified as a mechanism of cross-talk between these two receptor systems [67]. 

It is not known whether direct cross-talk occurs between TRPV1 channels and either 

CB1 or D2 receptors, although indirect influences via second messenger signaling 

systems are highly likely. 

 

The endocannabinoid, anandamide, was initially described as an endogenous agonist 

for cannabinoid CB1 receptors, the predominant cannabinoid receptor in the brain 

[74]. However, anandamide also activates TRPV1 channels at an intracellular site [75] 

and has been proposed to be an endogenous activator of TRPV1 channels.  

 

Electrophysiological studies have shown that endocannabinoids act as retrograde 

signaling molecules to modulate glutamate and GABA mediated regulation of the 

activity in midbrain dopaminergic neurons. Activation of both TRPV1 and CB1 

receptors has been shown to modulate dopamine-mediated locomotion in rats [64]. 

Interestingly, mice with knockout of the dopamine transporter (DAT), a useful animal 

model of the hyperdopaminergic state, exhibit hyperactivity and have markedly 
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reduced anandamide levels in the striatum [76]. Administration of indirect 

endocannabinoids reduced the hyperactivity by action on TRPV1 receptors and not on 

CB1 receptors [76]. 

 

Immunohistochemical studies have shown a striking similarity between the 

distribution of TRPV1 and cannabinoid CB1 receptors in many CNS regions, with 

coexistence occurring in cell bodies in several regions [77]. TRPV1 and cannabinoid 

CB1 receptors coexist in the ventrolateral periaqueductal grey (PAG) neurons of the 

midbrain, and endocannabinoids may affect descending pain pathways by acting at 

either CB1 or TRPV1 receptors [78]. 

 

In light of the anatomical and functional overlap between the TRPV1 and cannabinoid 

receptor systems, it is tempting to suggest, despite the limited evidence available, that 

TRPV1 channels may be implicated in the actions of cannabinoids in precipitating 

psychosis, and that ligands for the TRPV1 channels might provide useful new 

therapeutic strategies.  

 

3.5 TRP channels and thermoregulation 

 

Subjects with schizophrenia commonly show dysregulation of body temperature, with 

abnormal daily body temperature ranges and an impaired ability to compensate for 

heat stress, possibly involving both central and peripheral mechanisms [79-82]. 

Although studies in subjects with schizophrenia are often confounded by neuroleptic 

drug treatment, disorder of thermoregulation has been confirmed in drug-free subjects 

[80].  
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The importance of the preoptic area of the anterior hypothalamus in thermoregulation 

has been recognized for many years. Dopamine agonists induce hypothermia in 

humans and animals and midbrain dopaminergic mechanisms have been shown to 

play an important role in thermoregulation [83]. Moreover, a complex central 

regulatory thermostat mechanism, involving serotoninergic and dopaminergic 

mechanisms, has been described [82].  Evidence for a role of both dopamine D1 and 

D2 receptors in the anteroventral preoptic area has been obtained in rats, dopamine D2 

receptors being mainly involved in the maintenance of body temperature in euthermia 

[84]. 

 

Injection of capsaicin into the preoptic area also causes hypothermia in vivo, and 

capsaicin desensitization induces impaired ability to thermoregulate against heat [85]. 

Whilst the mechanisms are not clear they are likely to be complex involving both 

central and peripheral mechanisms. Studies using whole cell patch-clamp recordings 

from neurons in the medial preoptic nucleus, have shown that capsaicin enhanced the 

frequency of spontaneous glutamatergic excitatory postsynaptic currents and also of 

GABAergic inhibitory postsynaptic currents [86]. Injection of capsaicin into the 

anterior hypothalamus of knockout mice lacking the TRPV1 channel did not produce 

a change in body temperature, providing evidence that capsaicin induces its central 

effects on thermoregulation via action on TRPV1 channels [87]. 

 

Other TRPV channels are also likely to play a role in thermoregulation. Temperature 

sensitive TRPV3 and TRPV4 channels are expressed in dopaminergic neurons of the 
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substantia nigra pars compacta [88]. Indeed, the neuroprotective effect of hypothermia 

has been attributed partly to the closing of TRPV3 and/or TRPV4 channels [89]. 

 

The similarity between the thermoregulatory deficit in animals following capsaicin 

desensitization and that observed in schizophrenia is noteworthy. However, the 

possible interrelationships between TRPV channels, dopamine, thermoregulation and 

schizophrenia remain to be explored. 

 

3.6 TRP channels and sensory processes  

 

Much research on TRP channels is currently focused on their involvement in sensory 

processes, particularly in relation to primary afferent neuron function and nociception. 

Members of the TRPM, TRPA and TRPV channel subfamilies activate sensory 

mechanisms. Nevertheless, it should be noted that understanding of the physiological 

and pathophysiological role of even the most widely researched TRP, TRPV1, is 

limited.  

 

3.6.1 TRPM8 and TRPA1 channels 

 

The TRPM8 channel of the TRPM subfamily (melastatin) is expressed in sensory 

neurons and is activated by cold, menthol and icilin and has been proposed to function 

as a cold thermosensor [90-93]. The TRPA1 channel, distinguished by the presence of 

multiple ankyrin repeats in its N terminus, is also expressed by sensory neurons. 

Although first described as a cold-sensitive, nonselective cation channel [94], studies 

in knockout mice have not supported an essential role for TRPA1 in the detection of 
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noxious cold [95]. TRPA1 is now considered to function as a ligand-gated channel in 

sensory neurons, that is activated by pungent natural compounds including mustard 

oil, garlic and cannabinoids, and by endogenous inflammatory mediators and 

environmental irritants [95], and inhibited by menthol [96].  TRPA1 is also regulated 

by PLC-coupled receptors, and is possibly the molecular mechanism for the 

paradoxical perception of noxious cold as burning pain [97-99]. 

 

3.6.2 TRPV channels 

 

Investigation in the field of TRP channels and sensory mechanisms has been 

dominated by studies on the role of the TRPV subfamily in sensory processes.  

 

In the peripheral nervous system TRPV1 channels are expressed by a class of 

neuropeptide-containing, unmyelinated primary afferent neuron involved in 

nociception, axon reflex flare and neurogenic inflammation [100, 101]. These neurons 

are glutamatergic and contact spinal neurons that co-express tachykinin NK1 receptors 

and ionotropic (NMDA or AMPA) glutamate receptors [102]. The TRPV1 channel is 

considered to play a key role in nociception and thus research has been driven by the 

prospect of development of novel anti-nociceptive or anti-inflammatory agents [103]. 

Since its cloning in 1997 [43], considerable understanding of the amino acids of the 

TRPV1 protein involved in specific functions such as capsaicin action, heat 

activation, proton action, desensitization and modulation by lipids, has been gained.  

 

TRPV1 channels are activated polymodally by chemicals including capsaicin and 

resiniferatoxin, the endocannabinoid, anandamide [104], eicosanoids, 2-
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aminoethoxydiphenyl borate (2-APB) and camphor, as well as by heat, H+ [43, 46, 

105] and polyamines [106]. Activation results in weakly Ca2+-selective, outwardly 

rectifying, cation currents [43]. TRPV1 channels are sensitized by PKA, PKC, 

receptor-activated PLC, extracellular cations and polyamines [106-111]. A novel 

human TRPV1 RNA splice variant, TRPV1b, which forms functional ion channels 

that are activated by noxious temperature but not by capsaicin or protons, has been 

reported, and may contribute to thermal nociception [112]. 

 

Genetic influences on variability of human acute experimental pain sensitivity are 

increasingly being recognized, and some reports indicate that genetic differences in 

TRPV1 channel structure or level of expression might be important. Kim et al. [113] 

reported that female European Americans with the TRPV1 Val (585) Val allele 

showed longer cold withdrawal times. A human case of decreased expression of 

TRPV1 resulting in total loss of sensitivity to capsaicin has been reported [114]. 

TRPV1 channels have been shown to play an important role in pain mediated by 

central sensitization, thus indicating that the role of TRPV1 channels in pain 

mechanisms may involve both peripheral and central components [115]. 

 

Recently a regulatory protein, Fas-associated factor 1 (FAF1), that is coexpressed 

with, and forms an integral component of, the TRPV1 channel complex, has been 

found [116]. Silencing FAF1 by RNA interference augments capsaicin-sensitive 

current in native sensory neurons and it has been proposed that FAF1 modulates the 

sensitivity of TRPV1 channels to noxious stimuli [116].  This finding might explain 

some of the differences that have been found between TRPV1 channels and native 

capsaicin receptors. Growth factors also play a role in the regulation of TRPV1 
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channel function. Neuropeptide release in trigeminal ganglion neurons in vitro by 

capsaicin-induced activation of TRPV1 channels has been shown to be significantly 

increased by chronic treatment with nerve growth factor (NGF) and to a lesser extent 

by glial cell line-derived neurotrophic factor (GDNF) [117]. Although the 

pathophysiological significance of these modulatory mechanisms has not yet been 

explored, their discovery points to a major field of future research.  

 

Activation of TRPV1 channels by vanilloid agonists results in nociception and 

neurogenic inflammation mediated primarily by the neuropeptides, substance P and 

calcitonin gene related peptide (CGRP), released from the peripheral terminals of the 

activated primary afferent neurons [100, 101]. Mice with TRPV1 gene disruption 

exhibit loss of responsiveness to capsaicin, protons, and PKC activation, and deficit in 

neuropeptide release, but little change in nocifensive behaviour induced by heat, 

inflammatory or neuropathic mechanical hyperalgesia [118, 119]. Thus, although 

TRPV1 channels are not responsible for normal nociceptive heat responses, they play 

an essential role in thermal hyperalgesia and neuropeptide release, and thus in 

neurogenic inflammation. 

 

Desensitization of TRPV1 channels by capsaicin has been widely exploited in 

pharmacological investigations into sensory mechanisms. If given to neonatal rats, 

capsaicin produces life-long loss of a high proportion of capsaicin-sensitive primary 

afferent neurons [120], the majority of which are unmyelinated [121]. Desensitization 

is the major mechanism by which capsaicin produces its paradoxical analgesic action. 

Capsaicin-induced desensitization of TRPV1 channels is dependent on extracellular 

Ca2+, and disruption of binding of the Ca2+-binding protein, calmodulin, to the C-
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terminus of the TRPV1 channel prevents desensitization [122].  PKA reduces TRPV1 

desensitization by phosphorylation of Ser 116 [123], whereas phosphorylation of 

TRPV1 at S800 by PKCepsilon increases the sensitivity of desensitized TRPV1 [124]. 

 

3.7  Effect of neonatal capsaicin treatment on rat brain development 

 

The possibility that the somatosensory system might be involved in the pathogenesis 

of schizophrenia was suggested by two observations, firstly, that deficits in pain 

sensation are present in subjects with schizophrenia [125, 126] and their relatives 

[127], and secondly, that vascular responsiveness is altered as shown by reduced flare 

responses to niacin (nicotinic acid) and methylnicotinate in many subjects with the 

disorder and their relatives [128, 129]. The subset of primary afferent neurons 

involved in both pain and flare responses are the small diameter primary afferent 

fibres that are sensitive to the neurotoxic action of capsaicin. These observations 

suggested that capsaicin-sensitive primary afferent neurons might be abnormal in 

schizophrenia.  

 

If a population of primary afferent neurons were abnormal in schizophrenia, the 

question arises as to how such an abnormality could give rise to schizophrenia. 

Studies in developmental neurobiology have shown that neonatal somatosensory 

deprivation such as that induced by whisker trimming in the mouse whisker barrel 

model, results in reduced synaptic density in the barrel cortex [130]. The capsaicin-

sensitive primary afferent neurons are widely distributed throughout the body and it 

might be expected that even a small deficit in input via these neurons throughout 

development could result in reduced synaptic density in several cortical areas and 
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‘reduced neuropil’ such as that seen in the brains of subjects with schizophrenia [15, 

16]. 

 

The possibility that intrinsic somatosensory deprivation affects brain development 

was recently tested in rats treated as neonates with capsaicin to destroy a population 

of TRPV1-expressing primary afferent neurons, on the assumption that this would 

give rise to an intrinsic somatosensory deprivation [131].  At 5-7 weeks the rats 

treated as neonates with capsaicin had increased locomotor activity in a novel 

environment. Although they had normal body weight, the male rats had reduced brain 

weight. The capsaicin treated rats also had reduced hippocampal and coronal cross-

sectional area, reduced cortical thickness and increased neuronal density in several 

cortical areas [131]. These changes are similar to those found in schizophrenia. The 

brain changes were maintained into adulthood (11-12 weeks), indicating that neonatal 

capsaicin treatment produced long-lasting changes in the rat brain (Newson et al. 

unpublished). Furthermore, cutaneous inflammatory responses to methylnicotinate 

were reduced in capsaicin treated rats, showing that the response to methylnicotinate 

had a neurogenic component (Newson et al. unpublished). 

 

The findings of Newson et al. [131] suggest that the neonatal capsaicin treated rat 

might be a useful animal model of schizophrenia. However, the study was based on 

the assumption that the principle site of action of capsaicin was the TRPV1 channel 

on the primary afferent neuron. Although the primary afferent neuron would 

undoubtedly have been a major target of neonatal capsaicin treatment in this study, 

the possibility that capsaicin produced the observed brain changes by actions in the 

CNS must be considered. A neurotoxic action of capsaicin on central TRPV1 
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channels, similar to that observed in the peripheral sensory system, was considered 

unlikely as neonatal capsaicin treatment has been shown not to affect TRPV1 receptor 

mRNA expression in rat brain [47]. However, action on target molecules other than 

TRPV1 channels might have occurred. A difficulty with the use of capsaicin as a tool, 

is its widespread action on membrane proteins other than TRPV1 channels such as 

voltage-dependent sodium channels. Capsaicin and the capsaicin antagonist, 

capsazepine have been shown to regulate these proteins by altering lipid bilayer 

elasticity [132]. 

 

 

Older studies had shown that the neurotoxic effect of capsaicin is not limited to 

somatosensory neurons. Although other neurons in the periphery, such as lower motor 

neurons, were not affected, Perez et al. [133] showed that olfactory afferents were 

sensitive to the neurotoxic effects of neonatal capsaicin treatment, and that body, 

brain and olfactory bulb weights were reduced in capsaicin treated rats. Furthermore, 

a study of the effects of systemic capsaicin on the CNS of 10 day old and adult rats 

showed that many areas not previously known to receive primary afferent input, 

including the interpeduncular nucleus, raphe nuclei, hypothalamic and septal nuclei, 

accumbens shell and olfactory bulb, showed evidence of degenerating terminals [134, 

135]. The long term functional significance of this effect is unknown as several of 

these CNS areas are not responsive to capsaicin in the adult rat [135]. Indeed, some of 

these degenerative effects might have resulted directly or indirectly from degeneration 

of vagal sensory neurons [134].  
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Studies on the effects of capsaicin in adult rats have shown that capsaicin does not 

affect the permeability of the blood-brain barrier [136], and that capsaicin causes 

degeneration of central terminals of primary afferent neurons in the adult CNS only 

when applied centrally [137]. However, in neonatal rats the blood brain barrier is 

more permeable and it is likely that capsaicin would enter the brain and have CNS 

actions. Whether these actions have long-term consequences for brain development 

and function remains to be determined.  

 

Despite the limitations of the study by Newson et al. [131], the simplest explanation 

for the findings is that neonatal capsaicin treatment resulted in somatosensory 

deprivation which affected brain development. Further studies are required to 

determine whether the changes produced in rat brain by neonatal capsaicin treatment 

result from somatosensory deprivation or direct actions of capsaicin within the brain. 

Such information will be required before the neonatal capsaicin treated rat is accepted 

as a useful animal model of schizophrenia.  

 

4. Conclusion 

 

Schizophrenia remains a major challenge to neuroscience and to 

pharmacotherapeutics. The affliction of the unique human higher nervous system has 

resulted in lack of validated animal models [138] and has hindered rational drug 

development. Recognition of the probable polygenic nature of schizophrenia and the 

role of environmental factors has not yet led to greater understanding of the 

fundamental pathophysiology of schizophrenia.  The discovery of neuropathological 

changes in many brain regions and of changes in several neurotransmitter systems has 
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also not clarified the aetiology of the disorder. The number of brain changes that have 

been described makes it tempting to speculate that the cause of schizophrenia is a 

subtle abnormality in a fundamental cellular process, such as TRP channel signaling, 

that results in many consequent neurochemical and epigenetic changes. On current 

evidence it seems unlikely that a single gene disruption in a TRP channel would be 

directly responsible. Nevertheless, the possibility remains that an environmental factor 

might precipitate disruption or silencing of a single gene such as a TRP channel gene, 

hitherto unsuspected of involvement in schizophrenia, with downstream 

neurodevelopmental and neurochemical consequences resulting in the disorder.  

Studies on mice deficient in likely TRP channel candidates such as TRPV1 channels, 

have so far concentrated on the peripheral sensory deficits [139]. Further exploration 

of the effects of TRP channel deficiencies on the brain and behaviour are warranted. 

 

Study of the role of TRP channels is still at an early stage and few firm conclusions 

can be reached about their possible role in a disorder as complex and poorly 

understood as schizophrenia. Nevertheless, the possible links between TRP channels, 

neurodevelopment and the neurochemical and pathophysiological mechanisms 

involved in schizophrenia, are tantalizing, and give rise to the prospect that 

investigation of these links might yield a new understanding of schizophrenia and 

brain mechanisms in general with resultant therapeutic advances.  
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