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Abstract 

Presence of neuritic plaques and neurofibrillary tangles in the brain are two 

neuropathological hallmarks of Alzheimer’s disease (AD), although the molecular basis 

of their coexistence remains elusive. The neurofibrillary tangles are composed of 

microtubule binding protein Tau, whereas neuritic plaques consist of amyloid-β  peptides 

derived from amyloid precursor protein (APP). Recently, the peptidyl-prolyl cis/trans 

isomerase Pin1 has been identified to regulate the function of certain proteins after 

phosphorylation and to play an important role in cell cycle regulation and cancer 

development. New data indicate that Pin1 also regulates the function and processing of 

Tau and APP, respectively, and is important for protecting against age-dependent 

neurodegeneration. Furthermore, Pin1 is the only gene known so far that, when deleted in 

mice, can cause both tau and Aβ-related pathologies in an age-dependent manner, 

resembling many aspects of human Alzheimer’s disease. Moreover, in the human AD 

brain Pin1 is downregulated or inhibited by oxidative modifications and/or genetic 

changes.  These results suggest that Pin1 deregulation may provide a link between 

formation of tangles and plaques in AD. 
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Pin1 in cell cycle regulation and cancer  

Transition through the cell cycle in eukaryotic cells is regulated by highly orchestrated 

and intertwined processes of protein synthesis, degradation and post-translational 

modification.  For its rapid activating/inhibiting effect, phosphorylation of regulatory 

molecules by cell cycle kinases plays a key role among the post-translational processes. 

Several families of the cell cycle kinases can be distinguished, the most prominent being 

cyclin dependent kinase  (cdk), Polo , aurora  and never in mitosis A (NIMA) families 

(for review see [1]). Activation of the protein kinases during the cell cycle triggers 

phosphorylation cascades that drive transition from one phase of the cell cycle to another. 

For example, activation of the cyclin-dependant kinase Cdc2 during the G2/M transition 

leads to phosphorylation of a large number of proteins on Ser/Thr-Pro motifs, which has 

been shown  in some cases to regulate mitotic events [2-4]. 

With the discovery of Pin1, another level of cell cycle regulation has been 

uncovered [5]. Pin1 has been originally identified as a binding partner and suppressor of 

the mitotic kinase NIMA [5]. It contains two functional domains, an N-terminal WW 

domain and a C-terminal peptidyl-prolyl cis/trans isomerase (PPIase) domain [5-7]. The 

WW domain is a phosphorylation-specific protein interaction module that directs Pin1 to 

its substrates – proteins phosphorylated at a certain serine or threonine residue followed 

by proline (pSer/Thr-Pro motif) [7-9]. Upon this binding, the PPIase domain catalyzes 

conformational change of the Pin1 substrates by isomerizing specific pSer/Thr-Pro bonds 

[6, 10]. The specific binding to and isomerization of pSer/Thr-Pro motifs distinguishes 

Pin1 from the other known PPIase families such as cyclophilins and FK506-binding 

proteins. To date, Pin1-type PPIases are the only known pSer/Thr-Pro-specific 
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isomerases [5, 7, 8]. The isomerization of pSer/Thr-Pro motifs represents an important 

regulatory mechanism since several protein kinases (e.g. CDK2, MAPK) and 

phosphatases (e.g. PP2A) are conformation specific, recognizing only trans Ser/Thr-Pro 

isomers [10-12]. Furthermore, phosphorylation slows the already protracted 

isomerization reaction of Ser/Thr-Pro bonds [8, 13], and renders the phosphopeptide 

bond resistant to the catalytic action of cyclophilin, FKBP or parvulin  [8, 14]. Thus, 

conformation of a Ser/Thr-Pro motif can have a profound effect on phosphorylation 

signaling.   

Due to a large number of Pin1 substrates, Pin1 is involved in multiple cellular 

processes. The discovery of Pin1’s regulatory function in the cell cycle and signaling has 

been followed by its important function in DNA damage responses, transcription, 

splicing, and germ cell development [5, 6, 9, 10, 15-32]. The involvement of Pin1 in the 

regulation of the cell cycle, cell signaling and responses to DNA damage suggests that its 

deregulation might contribute to some medical conditions in humans. Indeed, Pin1 is 

overexpressed in many tumors and its overexpression correlates with poor clinical 

outcome [20, 33-35]. Furthermore, Pin1 is an E2F target gene that is critical for 

activation of multiple upstream oncogenic pathways [20, 21, 27, 33, 36, 37] and also for 

coordination of some downstream cell cycle events such as centrosome duplication [38]. 

Moreover, Pin1 overexpression results in centrosome amplification and tumorigenesis in 

vitro and in vivo [38]. In contrast, Pin1 knockout in mice prevents certain oncogenes 

from inducing tumors [39] and Pin1 knockout in cancer cells suppresses cell growth in 

vitro and tumor growth in vivo [40].  These and other results indicate that Pin1 plays a 

major role in cancer development and is an attractive anticancer target [41, 42]. 
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Pin1 in Alzheimer’s Disease 

Many phospho-proteins recognized by Pin1 are recognized also by a phospho-specific 

monoclonal antibody mitotic phospho-protein monoclonal-2 (MPM-2), which strongly 

reacts with mitotic protein extracts [43] and with neurofibrillary tangles (NFTs), neuritic 

processes, and neurons in the brains of Alzheimer disease (AD) patients [44-46]. Re-

appearance of the MPM-2 epitopes in the AD brains is concomitant with aberrant 

expression of some kinases, e.g. Cdc2 - a mitotic kinase prosphorylating Ser/Thr-Pro 

motif during the G2/M phase of the cell cycle but absent in the healthy brain [45]. 

Consequently, while in the healthy brains Pin1 is expressed mainly in the neuronal 

soluble fraction [5, 20, 32, 47, 48], in the brains of AD patients it co-localizes and co-

purifies with NFTs resulting in depletion of soluble Pin1 [47-50]. Moreover, Pin1-/- mice 

develop progressive age-dependent neuropathy characterized by Tau hyper-

phosphorylation, Tau filament formation, amyloid precursor protein (APP) 

amyloidogenesis, intracellular Aβ42 accumulation and neuronal degeneration [51, 52]. 

Pin1 inhibition in the brain, therefore, may be an important factor in development of 

neurodegenerative disorders and AD, in particular. In the following section we will focus 

on the role of Pin1 in Tau- and APP-related pathologies.  

 

Pin1 and tauopathies 

Tauopathies are a heterogeneous group of diseases characterized by the presence of 

NFTs, a pathological structure composed of hyper-phosphorylated microtubule-
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associated protein Tau organized in dense arrays of paired helical filaments (PHFs). 

NFTs have been discovered in AD, frontotemporal dementia parkinsonism linked to 

chromosome 17 (FTDP-17), progressive supranuclear palsy (PSP) Pick disease and 

cortico-basal degeneration (for review see [53]). Even though the presence of hyper-

phosphorylated Tau is clearly pathological, it has been a matter of debate whether it 

causes the diseases or whether it is a consequence of a common pathologic process. The 

fact that Tau mutations have been found in patients suffering from FTDP-17 indicates 

that at least in some cases mutant Tau can trigger a disease [54-56]. Several mouse 

models have been created mimicking pathologic features of human tauopathies. 

Overexpression of human wild-type Tau or especially  Tau FDTP-17 mutants  causes 

progressive and age-dependent formation of NFTs  in mice [57-59]. Transgenic mice 

overexpressing a different version of human Tau (namely the smallest isoform, four 

repeats of microtubule domain isoform, Pro301Leu mutant, Arg406Trp mutant, or 

Val337Met mutant) all exhibit hyper-phosphorylation of Tau [57-63], although different 

mutations or splice variants of Tau have demonstrated different levels and patterns of 

neuronal loss or axonal degeneration in brain and spinal cords [57-63].  

Tangle formation in AD appears to be preceded by increased phosphorylation of 

Tau and other proteins on serine or threonine residues followed by proline (pSer/Thr-

Pro). Even though the exact role of hyper-phosphorylation for development of 

tauopathies has not been clearly defined, analysis of transgenic mouse models 

overexpressing p25 activator of CDK5 kinase has shown that an increased 

phosphorylation can induce tauopathy in mice [64]. Importantly, hyper-phosphorylated 

Tau can activate mitotic signaling pathways [65], as demonstrated in Drosophila. Since 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 7

re-entry into the cell cycle is toxic for neurons, and activation of CDKs and other mitotic 

proteins has been correlated with neurodegeneration in AD proteins (reviewed by [66]), 

hyper-phosphorylated Tau activating mitotic signaling could in some cases lead to 

neuronal cell death independent of NFT formation. Hyper-phosphorylation of Tau may 

trigger multiple cellular responses.  These include cell cycle re-entry and deposition of 

NFTs since there are many phosphorylation sites on Tau protein which may interact with 

various signaling molecules contributing separately or in combination to neuronal 

toxicity. Notably, among the phosphorylation sites in Tau there are 15 pSer/Thr-Pro 

motifs [67], i.e. putative Pin1 binding sites. 

Pin1 binds to Tau in a phosphorylation-dependent manner specifically to its 

pThr231 residue [48, 68]. Interestingly, the levels of Tau-P-T231 have been shown to 

correlate with the progression of the AD [69, 70]. Upon its binding to pThr231 Pin1 

catalyzes cis/trans isomerization of pSer/Thr–Pro, thereby inducing conformational 

changes in Tau. Such conformational changes can directly restore the ability of 

phosphorylated Tau to bind microtubules and promote microtubule assembly [71] and/or 

facilitate Tau dephosphorylation by its phosphatase PP2A, as PP2A activity is 

conformation-specific [10]. Hamdane et al. recently showed that Pin1 level was strongly 

increased during neuronal differentiation and tightly correlated with Tau 

dephosphorylation at Thr231 [72]. In their cellular model, Pin1 facilitated Tau 

dephosphorylation of Thr231 specifically, whereas other phosphorylation sites were not 

affected by Pin1 [72]. To investigate whether Pin1 could function similarly in Tau 

overexpressing animal models, would be of a great interest. 
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When Pin1 protein was analyzed in human brain using immunohistochemical 

staining, its expression in normal brain was relatively higher in hippocampal CA3, CA2 

and CA4 regions and in presubiculum and lower in hippocampal CA1 region and 

subiculum [51]. In the parietal cortex, expression of Pin1 is relatively higher in layer IIIb-

c neurons and lower in layer V neurons [51]. In the AD brain, Pin1 expression in the 

hippocampus and parietal cortex is relatively high in tangle-sparing subregions, but low 

in the tangle-rich subregions. [51]. Furthermore, even within the tangle-prone CA1 region 

and subiculum of the hippocampus, Pin1 expression in most tangle-bearing neurons is 

still relatively lower than that in tangle-fee neurons [51]. Thus, Pin1 expression level is 

inversely correlated with the neuronal vulnerability to degeneration in normal brain and 

with actual neurofibrillary degeneration in AD brain.  

The significance of the differential Pin1 expression is further demonstrated by 

analyzing neuronal phenotypes of Pin1 knockout mice. Pin1 knockout mice develop 

normally but they suffer from progressive retinal degeneration with the onset at around 

4–6 months [21]. Aged Pin1-/-  mice, but not their wild-type littermates, show progressive 

age-dependent motor and behavioral deficits, which includes abnormal limb-clasping 

reflexes, hunched postures, and reduced mobility [51]. These deficits have also been 

reported in Tau transgenic mice studies [58, 73]. The phenotype seems to be caused by 

neuronal loss as the number of neurons is significantly decreased in the parietal cortex 

and spinal cords of old (over 1 year), but not young Pin1-/-  mice. Correspondingly, Tau 

hyperphosphorylation has been observed in aged Pin1-/-  mice [51]. The various 

phosphorylated forms of Tau in Pin1-/-  mice were also detected by a range of phospho-

specific or Alzheimer-conformation-specific antibodies, such as AT180 and TG3 [51]. In 
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aged Pin1-/-  mice, immunohistochemical staining of the hippocampus, cortex and spinal 

cord with specific pTau antibodies showed pathological localization of Tau in soma and 

dendrites of neurons [51]. The hyper-phosphorylation of Tau eventually leads to Tau 

aggregation and Tau filament formation in Pin1-/- mice [51]. Additionally, NFT-like Tau 

filaments decorated by AT180 gold label can be isolated from sarkosyl insoluble 

fractions of Pin1-/- mice  [51]. The entorhinal cortex and hippocampus, two brain regions 

which show prominent degeneration in AD, were  strongly immunopositive for stains that 

label NFTs including Gallyas and thioflavin-S in Pin1-/- mice [51]. 

Together with the in vitro data, analysis of Pin1-/- mice demonstrates that Pin1 

regulates the function of Tau both in vivo and in vitro likely through catalysis of its 

conformational change. Importantly, Tau hyperphosphorylation and NFT formation can 

be induced by Aß challenge and/or PS1 mutation [74-78]. Thus, Pin1 functioning in APP 

processing could also contribute to the development of Tau phenotypes in Pin1-/- mice. 

 

Pin1 and APP processing and Aβ production 

APP is a transmembrane protein consisting of a large extracellular and short 

transmembrane and intracellular domains. It can be processed by two alternative 

pathways: non-amyloidogenic, which involves cleavage by α-secretase, or 

amyloidogenic, which involves cleavage by β- and γ-secretases and leads to production 

of plaque forming β-amyloid peptides (Aβ) (for review see [79]). Several factors can 

influence APP processing and shift it towards amyloid/non-amyloid pathway. Recently, 

phosphorylation of APP has been found to be one of those factors [52, 80, 81].  
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To date only four phosphorylation sites have been confirmed at the intracellular 

domain of APP: S655, T654, T668, and Y682 [82-86]. Even though APP has not been 

identified as an MPM-2 epitope, it does contain a pThr-Pro motif (T668) which has been 

shown to be phosphorylated during mitosis by CDC2 [83, 87], in neurons by CDK5 [88] 

and in vitro by GSK-3β  [89] and which is located at the consensus Pin1 binding sequence 

[8, 9]. In addition, APP has been found to undergo a conformational change following 

phosphorylation of T668 [90] making it a promising candidate for a Pin1 substrate. 

Indeed, we have shown that Pin1 interacts with APP isolated from mitotic cells and that 

the interaction is phosphorylation dependent [52]. Furthermore, direct NMR 

measurement demonstrated that Pin1 catalyzes the cis/trans isomerization of pThr668-

Pro [52], since it accelerates both kcis to trans
cat and ktrans to cis

cat
 by over 1000 fold over the 

typical uncatalyzed isomerization rates for pThr-Pro peptides [13]. The catalyzed cis to 

trans rate is 10-fold faster than the catalyzed trans to cis rate [52]. Change of the 

conformation of pThr668-Pro may represent an important regulatory mechanism since it 

may influence the interaction between APP and its binding partners such as Fe65. The 

binding of Fe65 to APP has been shown to be prosphorylation-dependent through pT668 

residue of APP and influence production of Aβ [91]. Thus, Pin1 may have a direct impact 

on this regulatory process.  

Pin1 subcellular localization is driven by the presence of its substrates [6, 31, 92, 

93]. Processing of APP, an integral membrane protein, is influenced by APP subcellular 

localization and occurs through non-amyloidogenic α-secretases mainly at the plasma 

membrane and amyloidogenic β-secretases at endosomes and other subsequent structures 

[94-98]. Recently, it has been shown that Pin1 co-localizes with APP primarily in 
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vesicles localized at the plasma membrane and in AP-2 coated clathrin-coated vesicles, 

but not at endosomes [52].  This suggests that Pin1 may influence APP intracellular 

localization, affecting its processing and Aβ  production. This hypothesis has been 

corroborated by additional data. In the cell culture experiments, overexpression of Pin1 

has been shown to reduce Αβ  secretion, and its effect was particularly pronounced in the 

mitotic cells where Thr668 phosphorylation was increased [52].  

Sequential proteolysis of APP by β- and γ-secretases generates mainly 40- and 

42-residue Aβ  peptides (Aβ40 and Aβ42). While Aβ40 is a major secreted product, Aβ42 

is more toxic and is the major contributor to the plaque formation in AD brains [96-98]. 

Familial AD-linked (FAD) mutations in the APP or presenilin genes selectively increase 

Aβ42 levels in humans and mice [99-102]. Pin1 ablation seems not to have a significant 

effect on soluble Aβ40 or Aβ42 levels, but we found a significant increase of insoluble 

Aβ42 in Pin1-/- brains over Pin1+/+ littermates [52]. Additionally, Pin1 ablation causes 

prominent localization of Aβ42 to multivesicular bodies (MVB) [52], as in human AD 

and APP-Tg2576 mice before β-amyloid plaque pathology [103]. Thus, although it is not 

clear yet whether and how Aβ42 at MVB contributes to plaque formation, the data 

suggest that Pin1 may be involved in Aβ-related pathology.  

Strong support for a direct role of Pin1 in APP processing came from analysis of a 

classic mouse AD model: APP-Tg2576 mice overexpressing the human APP 

KM670/671NL (Swedish) mutant [76]. APP processing is initiated by either non-

amyloidogenic α- or amyloidogenic β-secretases, which cleave the extracellular/lumenal 

domain, generating soluble NH2-terminal fragments, αAPPs or βAPPs, and a membrane-

anchored 83-residue or 99/89-residue COOH-terminal fragments (αCTFs or βCTFs), 
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respectively [94-98]. In APP-Tg2576 mouse brains, Pin1 deletion leads to a significant 

increase of soluble total APPs and βAPPs, but to a decrease of αAPPs in an age-

dependent manner [52]. More importantly, these age-dependent effects are also 

accompanied by the age-dependent increase in insoluble Αβ42 [52]. Thus, Pin1 depletion 

seems to favor the amyloidogenic versus non-amyloidogenic processing of APP. 

 

The view of Pin1 as an important factor contributing to development of AD has 

been supported by several studies. Recently, a new genetic locus associated with late-

onset AD has been identified on chromosome 19p13.2 where the Pin1 gene is located 

[104].  Furthermore, the Pin1 promoter polymorphisms at -842 bp and -667 bp have been 

found to be associated with reduced Pin1 levels and increased risk for late-onset AD in 

Italian cohorts [105], although apparently not in French cohorts [106]. Moreover, 

proteomic approaches have confirmed downregulation of Pin1 in AD neurons, and also 

uncovered that Pin1 is inhibited by oxidation in AD hippocampus even in patients with 

mild cognitive impairment [107, 108].  Finally, our findings of the opposite effects of 

Pin1 on the pathogenesis of cancer versus on AD suggest an interesting inverse 

relationship between these two major age-dependent diseases, which is also supported by 

an epidemiological study [109]. Roe et al. have found that the risk of developing cancer 

decreased among participants with Alzheimer type dementia versus non-demented 

participants and that the risk of developing Alzheimer type dementia may be lower for 

participants with a history of cancer [109]. Together these results indicate that Pin1 

inhibition may be an important contributing factor to the development of AD. 
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A model of the role of Pin1 in the healthy and Alzheimer’s 

neurons 

 The above results suggest a model of the function of Pin1 in the healthy and AD 

neurons (Fig. 1): In the healthy neurons (Fig. 1A), Pin1 binds to Tau and APP after their 

phosphorylation at Thr231 or Thr668, respectively (which drastically slows down their 

cis to trans isomerization) and greatly accelerates their cis to trans isomerization rates, 

thereby inducing conformational changes. This might facilitate dephosphorylation of 

Tau, and promote the non-amyloidogenic pathway and reduce Aβ  production 

(presumably through affecting APP intracellular localization and its interactions with 

specific binding partners). However, under pathological conditions (Fig. 1B), Pin1 

function may be absent as in Pin1-/- mice or inhibited as seen in AD (due to down-

regulation, oxidation of and/or genetic changes in Pin1, or relatively due to excess APP 

phosphorylation caused by upstream regulators including over-activation of JNKs, Cdks 

and/or GSKs). In these cases, isomerization rate of pThr231-Pro of Tau and pT668-Pro of 

APP may be reduced, which may lead to accumulation of phosphorylated Tau and 

promote the amyloidogenic pathway of APP. Increased levels of phosphorylated Tau may 

lead to tangle formation as well as trigger pathological re-entry into the cell cycle and cell 

death of the affected neurons, as demonstrated in the Drosophila model [65], while 

increased Aβ  production might enhance the plaque pathology. 

 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 14

Conclusions 

Neurofibrillary tangles and senile plaques are two neuron-pathological hallmarks of AD, 

but the molecular basis of their coexistence remains elusive. Recent results indicate that 

the peptidyl-prolyl cis/trans isomerase Pin1 acts on both Tau and APP to regulate their 

dephosphorylation, processing and biological function [51, 52]. Furthermore, loss of Pin1 

function in mice can cause both tau and Aβ-related pathologies in an age-dependent 

manner, resembling many aspects of human Alzheimer’s disease [51, 52]. As a support 

for the deleterious effect of Pin1 depletion, Pin1 has been found to be oxidized and 

inhibited in AD brains even with mild cognitive impairment [107, 108] and AD neurons 

have  been shown to be depleted of the soluble form of Pin1 [48, 49]. Moreover, the Pin1 

promoter polymorphisms have been found to be associated with reduced Pin1 levels and 

an increased risk for late-onset AD in a certain population [105]. Thus, Pin1 plays a 

pivotal role in protecting against age-dependent neurodegeneration, and Pin1 

downregulation or inhibition may provide a link between tangle and plaque formation in 

AD. While it is possible that depletion of Pin1 modulates additional AD related 

molecular pathways, its impact on the function and metabolism of the two major AD 

related molecules Tau and APP is likely an important factor in AD development. 

Furthermore, since the ablation of the Pin1 gene alone or in combination with mutant 

APP overexpression leads to the age-dependent accumulation of insoluble Aβ42 in 

multivesicular bodies of neurons, an early sign of plaque pathology in human AD, it can 

be speculated that Pin1 plays a role in the initial steps of β-amyloid pathology and plaque 

formation. Moreover, Pin1 prevents tau hyperphosphorylation, which again precedes 

tangle formation and neurodegeneration. These findings suggest that Pin1 may be an 
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attractive new target to be modulated for the treatment of Alzheimer’s disease at early 

stages. Further analysis of the regulation of Pin1 expression in neurons will be necessary 

to achieve this goal. 
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Figure legend 

Fig. 1: Pin1 catalyzes cis to trans conformational change of APP phosphorylated at 

T668-P and Tau phosphorylated at T231-P. In the presence of functional Pin1 (A) 

isomerization of pT668-P and pT231-P is shifted towards the trans conformation, which 

promotes non-amyloidogenic cleavage of APP and dephosphorylation of Tau. In 

Alzheimer’s disease (B), downregulation, oxidation or mutation of Pin1 reduces the 

isomerization rate that may, in the case of APP, promote the amyloidogenic pathway and 

increase Aβ  production. In the case of Tau, reduced isomerization rate may promote 

aggregation of hyperphosphorylated Tau, inducing formation of NFTs and pathological 

re-entry into cell cycle. 
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