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Abstract

Muscular dystrophies comprise a heterogeneous group of neuromuscular disorders, characterized

by progressive muscle wasting, for which no satisfactory treatment exists. Multiple stem cell

populations, both of adult or embryonic origin, display myogenic potential and have been

assayed for their ability to correct the dystrophic phenotype. To date, many of these described

methods have failed, underlying the need to identify the mechanisms controlling myogenic

potential, homing of donor populations to the musculature, and avoidance of the immune

response. Recent results focus on the fresh isolation of satellite cells and the use of multiple

growth factors to promote mesangioblast migration, both of which promote muscle regeneration.

Throughout this chapter, various stem cell based therapies will be introduced and evaluated

based on their potential to treat muscular dystrophy in an effective and efficient manner.

Keywords Stem Cell - Muscular Dystrophy - Skeletal Muscle - Regenerative Medicine - Cell

Therapy
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1. Introduction

1.1 Muscular dystrophy

Numerous types of muscular dystrophy exist and differ depending on their degree of severity and

the muscle types affected1. Duchenne muscular dystrophy (DMD), the most common form of

muscular dystrophy, is an X-linked genetic disorder that occurs at a rate of approximately 1 in

3500 male births2. DMD arises due to either spontaneous mutations or inherited nonsense point

mutations in the dystrophin gene3,4, the result of which is progressive muscle wasting and

weakness attributed to the loss of a functional dystrophin protein5. Dystrophin, an important

cytoskeletal protein, and a major component of the dystrophin-glycoprotein complex (DGC), is

responsible for the maintenance of cell integrity, mediation of cytoplasmic signaling and muscle

cell function6. Without dystrophin, muscle cells cannot form the DGC and degenerate as a result

of mechanical stress during contraction.

To test prospective therapeutic treatments for DMD numerous large and small animal models

have been created; the most common being the mdx mouse, which parallels DMD defects seen in

diaphragm muscle as a result of a genetic mutation causing premature termination of the

dystrophin transcript7,8. Although the mdx mouse lacks a functional dystrophin protein, it only

displays a mild dystrophic phenotype, which is attributed to a greater degree of fiber

regeneration and a reduction in endomysial fibrosis compared to DMD9. More recent mouse

models include the utrophin/dystrophin null mouse10,11 and the dystrophin/a7-integrin double

mutant mouse, both of which more closely resemble human DMD12,13. Feline14, zebrafish15, and
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the canine X-linked model of muscular dystrophy 16,17 complement the mouse models and

provide researchers with additional tools to study this disease

1.2 The Function of Stem Cells in Development and Tissue Homeostasis

Stem cells are defined by certain characteristics, primarily an ability for long term self renewal

and the capacity to differentiate into multiple cell lineages. Stem cells are responsible for the

development and maintenance of tissues and organs and self-renew or differentiate in response to

a combination of biochemical signals and biomechanical stimuli provided by the stem cell niche.

Stem cells can be isolated from either adult or embryonic tissue, and depending on a hierarchical

state differ in their ability to give rise to multiple cell lineages. This hierarchy progresses from a

state of totipotency through to unipotency; whereby, at each level the ability to differentiate into

multiple cell types is progressively diminished (Fig1). Stem cell division can be either symmetric

or asymmetric. An asymmetric division results in the formation of two non-identical daughter

cells; one commits to a specialized fate while the other remains quiescent to maintain the stem

cell pool. Conversely, differentiating daughter cells undergo symmetric divisions giving rise to a

reservoir of precursor cells that contribute to tissue regeneration.

Small quantities of adult stem cells exist in most tissues throughout the body where they remain

quiescent for long periods of time prior to being activated in response to disease or tissue injury.

Adult stem cells can be isolated from cells of the hematopoietic18, neural19, dermal20, muscle21-23

and hepatic24 systems. It is traditionally thought that adult stem cells give rise to the specialized

cell types of the tissue from which they originated. However, some recent reports have indicated

that adult stem cells can differentiate into lineages other then their tissue of origin, for example
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transplanted bone marrow or enriched hematopoietic stem cells (HSCs) are reported to give rise

to cells of the mesoderm25-30, endoderm31,32, and ectoderm33,34. Future experiments elaborating

upon the origins and characteristics of adult stem cells are necessary in order to fully distinguish

their potential from embryonic stem cells.

The embryonic stem cell (ESC) is defined by its origin - the inner cell mass of the blastocyst.

ESCs traditionally differ from adult stem cells in that they are deemed pluripotent; meaning they

can give rise to cells derived from all three germ layers35. Gene expression patterns observed

during the in vitro differentiation of ESCs mimic that seen in vivo; and these cells can give rise to

numerous cell types in vitro including neurons36, bone37,38, pancreatic islets39, and skeletal

muscle40.

In the past multiple stem cell populations have been assayed for their ability to treat muscular

dystrophy, the majority of which have met with limited success. In order to correct the

dystrophic phenotype, transplanted cells must fuse to existing, or form new, myotubes. Upon

fusion, the contribution of genetically normal myonuclei to the muscle myofiber should result in

the production of a functional dystrophin protein. Stem cell based therapies for the treatment of

muscular dystrophy can progress via two strategies. The first involves cells from a patient

afflicted with DMD and is termed autologous stem cell transfer. In this process cells from the

patient are genetically altered in vitro to restore dystrophin expression and subsequently re-

implanted (reviewed 41,42). In the second strategy, allogenic stem cell transfer, cells are isolated

from an individual with functional dystrophin and subsequently transplanted into a dystrophic

patient (reviewed 43). Both of these strategies have advantages and disadvantages. Autologous
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cells are advantageous in that they are derived from the patient and therefore unlikely to elicit an

immune response. However, the process of genetic alteration has in the past led to undesirable

effects including transformation of donor cells and even death44-46. Allogenic cells, on the other

hand, are not subject to genetic modification, making them ideal for functional muscle

regeneration. However, the patient is at risk for immune rejection, raising the issues of donor

compatibility and appropriate immunosuppressive regimes.  In this chapter, multiple sources of

stem cells with myogenic potential will be identified and their candidacy as cell sources to treat

muscular dystrophy will be assessed. The identification of a stem cell population that provides

efficient and effective muscle regeneration is critical for the progression of stem cell based

therapies to treat muscular dystrophy

1.3 Skeletal Muscle Regeneration

Adult skeletal muscle is capable of a remarkable degree of regeneration, suggesting the presence

of a stem cell population either resident within muscle or capable of migrating to muscle. The

major component of adult skeletal muscle is the myofiber; a giant syncytial cell containing

hundreds of myonuclei within a continuous cytoplasm. Under physiological conditions the

ability of adult muscle to undergo regeneration is largely attributed to a distinct subpopulation of

myogenic cells, termed satellite cells, located between the basal lamina and sarcolemma of

mature skeletal muscle fibers47,48. Despite the fact that satellite cells are multipotent in that they

can give rise to osteogenic, chondrogenic and adipogenic cells under appropriate conditions49,

they are a distinct lineage of myogenic stem cells that remain mitotically quiescent under normal

physiological conditions. Upon muscle damage or in a state of disease, satellite cells activate and

proliferate giving rise to a population of cells that contribute to muscle regeneration via a process
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of differentiation and fusion50,51. Satellite cells can be characterized by a panel of cell surface

markers including: m-Cadherin52, c-Met53, Syndecan 3 and 454,55, CD-3456, and nuclear markers

Pax757, MNF58, and Myf556. Patients afflicted with DMD rapidly exhaust their satellite cell

reserves due to continuous cycles of muscle injury and regeneration59, and as such lose their

ability to regenerate, resulting in compromised muscle function and degeneration.

2. Applications of Typical Muscle Stem Cells

2.1 Transplantation of Satellite Cell derived Myoblasts

Satellite cells are present at low quantities in adult muscle and account for 2-5% of sublaminar

nuclei associated with myofibers60. Due to their scarcity and the difficulties in isolating pure

populations, freshly isolated satellite cells have been largely neglected as a source for cell

therapy. The progeny of muscle satellite cells, upon culture and expansion in vitro, are termed

primary myoblasts, these cells are highly proliferative and can be maintained in an

undifferentiated state61,62. Historically primary myoblasts have been the principal source of

muscle progenitors for cell-based therapies aimed at treating muscular dystrophy. Myoblast

transplantation (MT) involves the delivery of primary unmodified skeletal myoblasts to muscle

typically via an intramuscular injection. This method is advantageous in that muscle biopsies are

easily conducted on limb musculature, techniques for genetic modification of myoblasts are

efficient, and large quantities of in vitro expanded myoblasts are easily achieved.

The potential of MT originates from initial experiments performed in mice which demonstrated

the capacity of donor myogenic cells to regenerate recipient muscle63-65. Experiments conducted

by Partridge et al. using the immortal C2C12 mouse myoblast cell line validated the ability of
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exogenous myoblasts to induce synthesis of dystrophin in dystrophin-deficient mdx muscle

fibers66. Subsequent experiments confirmed and elaborated upon these results by using

myoblasts from newborn67 or adult mice68,69 in addition to human myoblasts70,71 as donor cells

for transplant into mdx mice. These experiments demonstrated the ability to track the

transplanted cells in the host through the use of LacZ staining, or in the case of human myoblast

transfer antibodies specific for human dystrophin. MT was later tried in non-human primates in

order to assess the regenerative capacity and immune response involved. Primate derived

myoblasts successfully integrated into allogenic hosts when injected 1mm apart and in

combination with the immunosuppressive FK50672-74. These experiments indicate that primate

derived myoblasts could integrate into regenerating muscle and survive after one year, however

none of these experiments provide any evidence as to whether the transplanted cells provide any

physiological correction of the dystrophic phenotype.

On the basis of research conducted in mice and nonhuman primates, human clinical trials

involving the transplantation of myoblasts were initiated in the early 1990s75,76 . Initial trials

involved repetitive intramuscular injections of large quantities of myoblasts (>106 cells)

distributed over multiple sites.  Although reported as successful76, functional evidence was

elusive and plagued with false positives resulting from revertant fibers77, which arise from a

second mutation and occur due to either a somatic deletion or through splicing of further exons

in the dystrophin gene. These events lead to the restoration of the reading frame allowing for the

production of a truncated, yet partially functional dystrophin molecule78. Later clinical trials

involved techniques to distinguish dystrophin-positive fibers derived from donor DNA from host

revertant fibers. These techniques eliminate confusion concerning the contribution of donor cells
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to muscle regeneration and allow for a more confident assessment of physiological benefit post

transplantation.

The majority of past experiments involving myoblast transfer to treat DMD failed to show

substantial physiological correction of the dystrophic phenotype79-85. Although, recent clinical

attempts show improvement in the areas of cell survival, migration, and evasion of the immune

response, these issues remain at the forefront of myoblast transplantation86,87. Since grafted

myoblasts have limited migration, repeated local injections are required to treat a significant

portion of the myofibers in any given muscle. Considering DMD patients succumb to heart and

diaphragm failure, repeated injections 1 to 2mm apart would be required in these muscles to

ensure patient survival, a technique that is currently beyond our grasp. In addition, transplanted

myoblasts do not participate in long term muscle regeneration making them less than ideal for

the treatment of DMD. In conclusion, while myoblast transfer provides transient delivery of

dystrophin and improves the strength of injected dystrophic muscle it is considered an interim

solution to ease the suffering of patients with muscular dystrophy. In order to be considered a

viable widespread treatment option for DMD, myoblasts must contribute to multiple rounds of

regeneration and be conducive to widespread distribution throughout the musculature.

2.2 Satellite Cell Transplantation

The ability to directly isolate a pure population of satellite cells from diaphragm muscle, by

using a Pax3-GFP knock-in mouse88, was recently accomplished. This Pax3-GFP mouse

incorporates the green fluorescent protein (GFP) under the control of the Pax3 promoter allowing

faithful recapitulation of Pax3 expression. The use of fluorescent activated cell sorting (FACS)

permits the purification of a GFP positive population of Pax3+/CD34+/Pax7+ cells. Based on

gene expression, these results suggest the isolation of a predominantly quiescent population of
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satellite cells. When injected into dystrophic muscle, this population of cells is capable of

restoring dystrophin expression three weeks post-transplantation. Importantly, the yield of

dystrophin expressing muscle obtained when small numbers of isolated satellite cells were

transplanted into irradiated muscle was significant. Freshly isolated satellite cells not only

restored dystrophin expression in mdx mice but also formed roughly 17% of the satellite cell

pool expressing both Pax7 and Pax3-GFP; an indication that donor cells were capable of

contributing to the muscle satellite cell compartment. More over, approximately 25-fold more

cells are needed to obtain similar levels of regeneration from donor cells isolated by enzymatic

dissociation of whole adult muscles, as opposed to grafting Pax3-GFP sorted cells62.

However, the full potential of this approach is affected by several limitations. First, the

cultivation of freshly isolated satellite cells in vitro significantly reduces their in vivo myogenic

potential; therefore, whether or not sufficient numbers of donor satellite cells can be obtained is a

key issue. The isolation of sufficient quantities of Pax3-GFP satellite cells is difficult because

these cells can only be isolated from the diaphragm and body trunk muscles but not from limb

muscles. In fact, the current absence of appropriate cell surface markers to identify a

Pax3+/CD34+/Pax7+ population of satellite cells makes this isolation technique impossible in

humans. Given that genetic manipulations generally require short-term cultivation in vitro, and in

vitro culture decreases the regenerative potential of Pax3-GFP populations, then genetic

correction of autologous sorted satellite cells does not appear to be a viable option. This is

particularly important from a clinical standpoint since cell transplantation of autologous

genetically corrected satellite cells to DMD patients is theoretically the ideal approach to

minimize host immune rejection of donor cells. A clinically relevant approach to using fresh
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satellite cells would involve their isolation from the peripheral musculature, based on a panel of

cell surface markers, subsequent culture in vitro under conditions that promote the maintenance

of their stem cell state, followed by gene therapy prior to transplantation. In the absence of cell

surface markers to isolate quiescent satellite cells from the musculature this alternative is

currently not an option; therefore, research into the identification of a feasible isolation strategy

is of the utmost importance.

2.3 Single Muscle Fiber

Experiments conducted in the early 1980s involving the transplant of whole muscle indicated

that resident satellite cells are capable of initiating regeneration89,90. While, enzymatic

dissociation and the subsequent transplantation of satellite cells from myofibers results in

marginal muscle regeneration, the transplantation of satellite cells still associated with a single

muscle fiber (containing as few as seven satellite cells) can generate in the range of 100

myofibers with thousands of corresponding myonuclei91. Interestingly, the satellite cells resident

upon a transplanted myofiber will contribute to the host satellite cell compartment and be

available for multiple rounds of regeneration.  Transplanted satellite cells appear to migrate

throughout the muscle in which the myofibers were implanted; however, no direct quantification

of the migratory potential of donor satellite cells exists. The notion that single muscle fibers will

be used to treat muscular dystrophy does not in itself present a realistic therapeutic approach.

Questions regarding the procurement of donor muscle fibers is somewhat belied by the large

regenerative potential of individual satellite cells. However, no evidence suggests donor satellite

cells are able to populate neighboring muscles; indicating that this method of cell transplant

would involve multiple transplantations.
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In general the data presented in this section provides evidence that quiescent satellite cells

maintained in their niche retain a large degree of regenerative potential. Once it is possible to

simulate the satellite cell niche in vitro the real potential of satellite cells could be harnessed for

therapeutic purposes. Experiments conducted with fresh satellite cells as well as intact muscle

fibers allude to the necessity of identifying the molecular mechanisms responsible for satellite

cell self renewal and differentiation. The drastic increase in regenerative potential from either

freshly isolated satellite cells or intact myofibers suggests a link between the maintenance of the

satellite cell niche and the efficiency of muscle regeneration. Future experiments to identify the

components of the satellite cell niche that are responsible for the activation or maintenance of

satellite cells in a quiescent state will be of great importance for the validation of satellite cell

based therapies.

3. Applications of Atypical Muscle Stem Cells

3.1 Muscle Side Population Cells

Within muscle, in addition to satellite cells, there exists a population of stem cells that possess

myogenic potential, termed side population (SP) cells. This stem cell population, isolated by

fluorescent activated cell sorting (FACS) based on its exclusion of the Hoechst 33342 dye (via

the ABC transporter Bcrp1/ABCG2), can be isolated from many adult tissues92. SP cells isolated

from bone marrow (bmSP) or muscle (mSP) on their own are unable to undergo myogenic

differentiation in vitro, yet upon intramuscular transplantation can give rise to both myocytes and

satellite cells25,93. The mSP population when isolated from a Pax7-/- background, where satellite
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cells are absent, and co-cultured with myoblasts or forced to express MyoD undergo muscle

specification. These datas suggest mSP cells and satellite cells constitute distinct populations that

progress along different myogenic pathways57. Studies directly comparing muscle regeneration

after intravenous injection of bone marrow side population bmSP and mSP cells indicated a

reduced ability of the mSP fraction to reconstitute the hematopoietic compartment in lethally

irradiated mice; however, both populations regenerate muscle to a similar degree25.

In contrast to satellite cells or primary myoblasts, mSP cells are able to migrate from the blood

stream into muscle, a desirable feature for widespread distribution of a therapeutic cell type.

Intravenous transplantation of mSP cells typically yields at most a 1% engraftment rate, however

upon delivery into noninjured, nonirradiated mdx mice via femoral artery catheterization mSP

cells engraftment into muscle at rates approaching 5-8% in select muscles94,95. These results

provide evidence that, under physiological conditions, the mSP population can provide

dystrophin to diseased muscle via arterial transplantation.

One aspect of mSP transplantation is puzzling, if mSP cells can take up the satellite cell position,

and this is reported in numerous articles25,93,95, why do they not appear to contribute to long term

muscle regeneration? Perhaps mSP give rise to committed myogenic Pax7 expressing cells but

not to satellite stem cells. Further advances in the field of mSP transplantation must address the

following issues: low levels of integration following arterial or intramuscular transplantation, an

inability to partake in long term regeneration, and achieving physiological improvements to

dystrophic muscle. Prior to these issues being resolved mSP cells currently do not constitute a

viable cell source to treat DMD.
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3.2 Bone Marrow cells

Bone marrow transplantation (BMT) or hematopoietic stem cell transplantation (HSCT) involves

the transplantation of hematopoietic stem cells (HSC) in order to produce new blood cells and

repopulate the bone marrow96. Evidence of a population of circulating cells with myogenic

potential present in the bone marrow was identified in the late 1960s. Ferrari et al. (1998) later

confirmed that BM-derived cells can, at very low levels, undergo myogenic differentiation and

participate in muscle repair after injury26. This research presented the idea of delivering donor

cells via the circulation to take part in skeletal muscle regeneration; a potentially powerful

development considering the daunting task of injecting donor cells into individual muscle

masses. The following year studies involving the transplantation of BM-derived cells conducted

in the mdx mouse partially restored dystrophin expression25. Bone marrow derived cells persist

in the musculature for long periods of time and maintain their dystrophin expression, however

quantitatively the amount of muscle generated after a BM transplant does not comprise a

therapeutically relevant amount when only 0.5% of regenerating fibers contain donor cells97,98.

A clear mechanism detailing the process by which cells in the bone marrow contribute to muscle

regeneration remains elusive. Experiments conducted by LaBarge et al. attempted to elaborate on

the process by which bone marrow cells contribute to muscle regeneration by the transplantation

of bone marrow derived cells (BMDCs) into irradiated SCID mice99. BMDCs appear to

contribute following muscle irradiation to the satellite cell niche and further exercise induced

damage led to the incorporation of BMDCs into multinucleated myofibers at a frequency

approaching 3.5%. These initial experiments have been elaborated upon using exercise as
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opposed to muscle irradiation leading to the conclusion that BMDC can incorporate into muscle

under physiological conditions100. However, the question remains whether integration of cells

from the bone marrow into muscle is a physiologically relevant process. Experiments by

Camargo et al and Corbel et al. (2003) analyzed the ability of bone marrow derived HSCs to

participate in muscle regeneration; and while both studies found HSC progeny could incorporate

into muscle, this ability is more likely attributed to fusion rather then the existence of a myogenic

HSC101,102. Other hematopoietic stem cell populations exist including the CD45+/Sca-1+

population, which following muscle injury undergoes a 30 fold expansion in regenerating muscle

and readily undergoes myogenic differentiation in vitro103. These experiments further concluded

that Wnt signaling molecules play a role in augmenting the myogenic specification of

CD45+/Sca1+ cells. Although, later experiments would lead to the conclusion that under

physiological conditions bone marrow, and the HSCs contained within, play a minor role in

muscle regeneration104 this technique in combination with appropriate growth factors and

suitable methods for transplantation may eventually serve as a method to treat DMD.

Although the major stem cell component of bone marrow is that of the HSC, and the contribution

of bone marrow derived cells to the physiological process of muscle regeneration is considered

by some to be trivial, the contribution of cells in the bone marrow may differ significantly

between mice and humans. AC133, a human cell surface marker for the

hematopoietic/endothelial lineages was recently used to isolate a population of cells from human

blood that can, upon in vitro co-culture with myogenic cells or exposure to Wnt-producing cells,

undergo a degree of myogenic conversion105. This finding has reopened the debate on a blood

born population with myogenic potential. These AC133+ cells, when co-cultured or exposed to
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Wnts, display an mRNA pattern reminiscent of that found in satellite cells including:  M-

Cadherin, Pax7, CD34 and Myf5. Whether AC133+cells constitute a true myogenic progenitor is

difficult to determine considering these cells do not undergo myogenic differentiation

spontaneously when myogenesis was induced with low serum levels. Nevertheless, limited

myogenic conversion and dystrophin expression is observed upon intra-arterial injection or

intramuscular injection of AC133+ cells. This method offers certain advantages over other HSC

populations including: engraftment of donor cells under physiological conditions exceeds that

shown previously for bone marrow, HSCs or mSP cells, functional tests of injected muscles

revealed a substantial recovery of force after treatment. Considering these qualities this method

to treat DMD warrants further analysis regarding the process by which the AC133+ population

contributes to myogenic regeneration, the localization of AC133+ cells within the circulatory

system, and the ability to expand ex vivo these cells prior to transplantation.

3.3 Mesenchymal Stem cells

Multipotent mesenchymal stem cells (MSCs), first derived from bone-forming progenitor cells

resident in the bone marrow, are capable of producing skeletal muscle in addition to osteoblasts,

chondroblasts, and adipocytes106-108.  Typical methods for MSC isolation involve percoll

fractionation and subsequent culture with varying growth factors109. The debate surrounding the

pluripotent nature of MSCs continues; indeed reports suggest a population of cells co-purified

with MSCs can, in vitro, differentiate into visceral mesoderm, neuroectoderm and endoderm110.

These pluripotent stem cells are termed multipotent adult progenitor cells or MAPCs.  MAPCs

appear to reside in the brain, skeletal muscle, and bone marrow of human and mouse tissues111.

Being adult derived; MAPCs avoid many ethical and immunological hurdles associated with
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embryonic stem cells facilitating their therapeutic application. Continuing research must focus on

the origins of MAPCs and the molecular mechanisms that govern their development as well as

the ability to induce myogenesis from these cells prior to them being a potential therapeutic

source to treat DMD.

Other MSC populations exist and can be isolated via enzymatic digestion and serial passaging of

cells from adult human synovial membrane (hSM-MSCs)112. These hSM-MSCs possess

multilineage potential in vitro and recapitulate the temporal gene expression typical of

embryonic myogenesis when directly injected into injured TA muscles of immuno-suppressed

mdx mice113. hSM-MSCs can engraft into regenerating muscle, express dystrophin, and give rise

to putative satellite cells that persist for 6 months after transplantation. However, the gene

expression profile of hSM-MSC derived satellite cells must be clarified considering neither

Mcadherin, Pax7, or CD34 are shown to be expressed in these cells. A method to resolve this

issue would be to conduct single cell clonal analysis to confirm the ability of hSM-MSC derived

satellite cells to proliferate and give rise to multi-nucleate myotubes. At this point in time

additional research into the physiological benefits of hSM-MSCs post transplantation, as well as

the confirmation of satellite cell characteristics are necessary in order to progress therapeutically

with this technique.

In addition to the MSC types stated above there exists a method to convert MSCs to the skeletal

muscle lineage114 via infection with activated Notch in the presence of various cytokines. Notch

is a transmembrane protein, which upon binding with its ligands delta or jagged, undergoes

cleavage to release an intracellular domain (NICD) in order to effect downstream signaling. The
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Notch signaling pathway is involved in embryonic tissue morphogenesis115, adult cell fate

selection116, and has been linked to satellite cell activation and muscle differentiation, making it a

candidate molecule for the myogenic induction of MSCs117. Experiments conducted by Dezawa

et al (2005) demonstrate the ability to generate skeletal muscle progenitors from human and rat

MSCs. Single cell clonal analysis confirms the ability of isolated muscle-MSCs (M-MSCs) to

form multi-nucleate myotubes following treatment with the NICD and culture in low

concentrations of horse serum to induce fusion. Intravenous injection of M-MSCs in

immunosuppressed rats, pretreated with cardiotoxin in the gastrocnemius muscle, resulted in

their incorporation into newly formed myofibers, and not bone, heart, liver, kidney or

undamaged muscle. M-MSCs localize to the sublaminar portion of myofibers, express Pax7 and

c-Met via immunofluorescence of separate cellular fields and upon multiple rounds of

regeneration contribute to muscle repair.

Questions remain regarding the contribution of M-MSCs under physiological conditions to the

functional amelioration of the dystrophic phenotype. Interestingly, M-MSCs express myogenin

(a terminal marker of muscle differentiation) at high levels along with MyoD, early markers of

muscle formation Six1, and Six4 along with Pax7 a satellite cell marker. Considering their gene

expression profile M-MSCs appear to be a heterogeneous population of undifferentiated and

partially differentiated myogenic progenitors. Further characterization of M-MSCs and the in

vivo derived satellite cells is required to answer these questions. In addition, the use of Notch to

induce myogenic specification is a unique approach more commonly associated with the

maintenance of quiescent satellite cells or the prevention of terminal muscle differentiation. This

is not to say the use of Notch to promote myogenic specification is improper, however without a
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clear molecular mechanism governing the role of Notch in the myogenic commitment of MSCs

nor a basis for converting MSCs to the myogenic lineage without over-expressing the NICD this

current route is not practical for the treatment of patients with DMD. This method offers the

ability to derive myogenic cells that can be easily obtained and expanded from patients,

genetically modified in vitro, and re-introduced via the circulation all beneficial therapeutic

characteristics.

In summary, multiple different types of MSCs can be isolated and serve as potential cell types

for therapy, however in the absence of a defined group of cell surface markers a reproducible

system to isolate cells with myogenic potential from MSCs becomes difficult. The reproducible

isolation of pure MSC populations and their downstream differentiation into the muscle lineage

holds tremendous potential for the treatment of neuromuscular disorders. Given the rapid

progress in the areas of cell purification and characterization therapeutic relevancy may not be

far off.

3.4 Muscle Derived Stem Cells (MDSCs)

Muscle derived stem cells (MDSCs) are a distinct population of stem cells resident in adult

skeletal muscle. MDSCs are thought to reside upstream of satellite cells in the terms of their

potency, and are not restricted to either the myogenic or mesenchymal lineages118,119. Numerous

muscle derived stem cell populations have been shown to contain hematopoietic potential93,120,121

the most prominent being that derived via the preplate technique22.. These MDSCs represent a

heterogeneous population of cells in terms of their high expression of either Sca1 or CD34.

While the physiological location of MDSCs remains unknown they often express MNF and the
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myogenic regulatory factor MyoD and share certain characteristics with a population of

hematopoietic stem cells expressing CD34 and Sca1122. When injected into the muscle or into the

circulation of mdx mice MDSCs contribute to muscle regeneration and express dystrophin123,124.

In comparison to transplantations conducted with primary myoblasts, MDSCs show a 10 fold

increase in dystrophin expression and incorporate into vessels and surrounding nerves22.

Although certain characteristics of MDSCs including their ease of proliferation in vitro, ability to

migrate through the vasculature, and their multipotentiality are amenable to therapeutic

applications, a lack of physiological improvement to the dystrophic condition coupled with long

term self renewal resulting in their transformation mar the use of MDSCs to treat DMD125,126. In

an attempt to determine the physiological location of MDSCs, some reports claim they originate

in the bone marrow and reside in the musculature120 while others claim they are muscle

derived126,127. Further research into the origins of MDSCs is required prior to the clinical use of

these cells.

3.5 Vessel Associated Stem Cell Populations

Cells with endothelial and myogenic properties exist and can be isolated at embryonic, fetal128,

and postnatal stages129 (3 weeks) of development yet the identification of a bona fide adult vessel

derived stem cell remains elusive. In 1999 De Angelis et al discovered a stem cell population

resident in the embryonic dorsal aorta having both endothelial and myogenic markers130.

Although, explant cultures of the dorsal aorta do not initially express any myogenic markers;

upon differentiation in culture they gain both endothelial and myogenic markers known to be

present on adult muscle satellite cells. Surprisingly, the quantity of satellite cells produced in
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vitro from the dorsal aorta is in the range of 50 fold more than that derived from somitic

explants130. Dorsal aorta derived myogenic cells can in vitro fuse with primary myoblasts during

differentiation and when transplanted into TA muscles contribute their nuclei to muscle

regeneration130.

Further work on vessel associated stem cells isolated from the dorsal aorta demonstrated their

multi-potentiality leading to their classification as mesangioblasts131. Studies conducted by

Sampolesi et al using immunocompetent a-sarcoglycan null mice which serve as a model system

to study limb-girdle muscular dystrophy indicated that the intra-arterial injection of

mesangioblasts results in their migration throughout the vasculature, giving rise to both

morphological and functional correction of the dystrophic phenotype, a quality absent in other

myogenic stem cell populations132. This method was further improved by the treatment of

mesangioblasts with either stromal-derived factor (SDF) 1 or tumor necrosis factor (TNF) a

which resulted in enhanced transmigration in vitro and migration into dystrophic muscle in

vivo133.  The combination of pretreatment with TNFa and SDF-1 and the expression of a-4

integrin lead to remarkable (~50%) incorporation of arterially transplanted mesangionblasts into

a-sarcoglycan deficient muscle. Long term survival of pre-treated mesangioblasts is observed in

muscle masses after 4 months, with a-sarcoglycan mice expressing ~60% of the a-sarcoglycan

detected in a wild type mouse. Although these reports are extremely promising, confirmation of

the human equivalent of mesangioblasts that can be isolated from adult tissue is of great

importance.
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Pre-treated mesangioblast can migrate through the vasculature, engraft at therapeutic levels in

muscle, persist and contribute to long term regeneration, and upon genetic modification of

autologous cells do not elicit an immune response. Due to these qualities mesangioblasts

constitute a potential therapeutic cell type to treat DMD. Prior to their use in clinical trials

effective methods to isolate mesangioblasts from adult human tissue must be established,

information regarding their long term contribution to muscle function, and the effects of

unwanted penetration into non desired cell types must be resolved.

Research supporting the vascular origins of myogenic stem cell populations provides therapeutic

potential for the systematic delivery of myogenic progenitors. Whether or not these populations

(embryonic, fetal or post natal) of vessel associated stem cells are unique, or derived from an

upstream stem cell remains to be determined. Considering these cells are associated with the

vasculature it is not a stretch to imagine stem cell populations with myogenic potential residing

in multiple adult tissues. While the exact characteristics of vessel associated stem cells remains a

mystery their ability to migrate throughout the vasculature coupled with their myogenic potential

make them an attractive source for use in cell therapy.

4. Embryonic Stem cells

Small quantities of skeletal muscle were first derived from murine embryonic stem (ES) cells

nearly 20 years ago40, however since then few advances have been made to improve the

efficiency of the process. First reports regarding gene expression patterns, functional properties,

and morphology of ES derived skeletal muscle parallel observations in vivo40,134. Gene targeting

in ES cells is often used to assess gene function, and as a result numerous ES cell lines with
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modifications to genes important in myogenesis exist. Typically, created to study embryonic

development in the mouse these ES cell lines were analyzed during in vitro differentiation to

study the molecular mechanisms involved in embryonic myogenesis135-139.  Over time limited

inhibitors140 and activators141 of skeletal muscle formation from ES cells were identified along

with strategies to harness their potential for regenerative medicine142.

One study conducted by Barberi et al and published in 2005 shows therapeutic potential and

involves the derivation of skeletal muscle by way of hES derived mesenchymal stem cells143.

This method offers the ability to derive unlimited numbers of pure MSCs from hESCs, and their

subsequent differentiation into the skeletal muscle lineage. In order to obtain skeletal muscle

from hES derived MSCs (hESMPCs) either co-culture or conditioned medium from the murine

myoblast cell line C2C12 or the addition of 5-AzaC as a demethylating agent is required.

Currently these experiments do not address the ability of hESMPCs to give rise to Pax7 positive

cells nor their ability to contribute to muscle regeneration in vivo.

ES cells to date have not had a significant impact on the development of cell-based therapies to

treat muscular dystrophy. Currently one study exists using ES cells to treat muscular

dystrophy144. In this study differentiated ES cells (3 days) were co-cultured with dissociated

skeletal muscle fibers for four days prior to transplantation into mdx muscle. After 2 weeks

dystrophin expression was detected in select regions over and above that which would occur

naturally from revertant fibers. These experiments represent the preliminary steps for the use of

ES cells to treat DMD and currently do not demonstrate any indication of the long-term

regenerative capacity of transplanted cells. Questions remain as to the mechanism by which ES
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cells, co-cultured in the presence of adult skeletal muscle, contribute to the process of muscle

regeneration.

Currently no methods exist to generate large quantities of skeletal muscle from ES cells and for

this reason the ES cell model system remains better suited as a tool to study embryonic

myogenesis. Potential benefits of using ES cells to treat muscular dystrophy focus on the

isolation of large quantities of myogenic stem cells, their ease of genetic modification in vitro,

and the ability to derive immune matched cell lineages for transplant. Although the creation of

patient specific hES cell lines remains mired in controversy, the principle retains a high degree of

feasibility145 and in the interm progress on the mechanisms involved in myogenic induction and

differentiation continue.

5. Synergistic methods to improve stem cell based therapies

In this chapter we have presented numerous stem cell types with varying degrees of myogenic

potential. Irrespective of their source, these stem cell populations share certain hurdles to

overcome prior to their therapeutic use. Survival and the subsequent migration from the site of

injection remains suboptimal for many of the cell populations outlined previously and from a

clinical standpoint the immune response generated upon introduction of a foreign cell type, or in

the case of DMD a foreign protein, is a concern. As the mechanisms surrounding the survival

and proliferation of myogenic cells post transplant are unraveled146,147 and appropriate growth

factors148-150 are identified the success of cell based therapies to treat muscular dystrophy will

improve. Mechanisms involved in the migration of donor cells to skeletal muscle and the satellite

cell niche are still poorly understood. Although some stem cell types, namely mesangioblasts,
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mSP cells, M-MSCs, have the ability to migrate through the vasculature, most do not. Potential

future avenues to increase the migratory ability of stem cell populations include the identification

of cell surface markers151 (eg L-selectin+ cells) and appropriate growth factors152-155. As is

observed in the case of mesangioblasts, pre-treatment with the growth factors TNFa and SDF-1

led to a substantial improvement in their migratory abilities.

Cell transplantation often elicits an immune response, and in addition to immunosuppressive

drugs, there exist methods to overcome immune rejection. One such method involves the

establishment of central immune tolerance through a process of mixed hematopoietic

chimerism156. The mechanism surrounding mixed hematopoietic chimerism is not fully

understood yet the procedure is well established in animal models and pursued in the clinic157.

Matching the genetic background of the various stem cell derived myogenic precursors with

hematopoietic stem cells could potentially allow the tolerisation of patients to myogenic

transplants

Irrespective of the stem cell population chosen to treat muscular dystrophy the above-mentioned

characteristics (survival, localization, and immunogenicity) remain. In order for the chosen cell

type to be successful it must be optimized to deal with these issues. The identification of suitable

growth factors, appropriate surface markers, and methods to escape immune detection will be of

great importance for the progression of this field.
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6. Conclusions and Future Perspectives

Stem cell therapy is an attractive method to treat muscular dystrophy because in theory only a

small number of cells, together with a stimulatory signal for expansion, are required to elicit a

therapeutic effect. In order to achieve clinical relevance candidate stem cell populations must be

easily obtained, upon isolation remain capable of efficient myogenic conversion, and when

transplanted must integrate into the musculature leading to the functional correction of the

dystrophic phenotype.

Stem cell populations with myogenic potential can be derived from multiple regions of the body

at various stages of development (Fig2). Many questions linger regarding the mechanisms by

which atypical, or non satellite cell derived precursors, participate in muscle regeneration. A

general consensus in the field identifies satellite cells as the primary, if not only, physiologically

relevant population that contributes significantly to muscle regeneration. However, because

satellite cells are not currently amenable for distribution throughout the vasculature they do not

constitute a viable option to treat DMD. A superficial comparison of the atypical myogenic stem

cell populations reveals a common theme whereby a cell often linked to the circulatory system is

able to migrate to regenerating muscle and contribute in a limited way to this process. The

localization of adult mSP, MDSCs, Mesangioblasts, Bone Marrow derived HSCs and HSC

populations expressing the cell surface marker AC133 remains unknown. The idea that

myogenic potential resides in cells associated with the vasculature is not novel, in fact pericytes

which line the capillaries appear to possess qualities of multipotent mesenchymal

progenitors158,159. If indeed pericytes take part in myogenic regeneration this could explain the

widespread distribution of atypical stem cell populations with myogenic potential.
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In conclusion, upon comparing the prospective stem cell populations with myogenic potential,

the cell type that fulfills the most criteria for use in the treatment of DMD is the mesangioblast.

Mesangioblasts serve as a paradigm for wide spread distribution, and upon growth factor pre-

treatment are able to correct significantly the dystrophic phenotype. Perhaps the application of

growth factor pre-treatment to other myogenic stem cell populations may improve their ability to

treat muscular dystrophy, however for now mesangioblasts serve as a beacon of hope for patients

suffering from various muscular dystrophies.

.

,
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Figure Legends

Figure 1. Stem Cell Hierarchy. Progression of stem cells during development from a state of

totipotency through to terminal differentiation with intermediate stem cell types highlighting the

divergence of cell lineages.

Figure 2. Diversity of Myogenic Stem Cell Populations. The identification of various stem cell

populations with myogenic potential along with their known or potential localization within the

body. Abbreviations mSP (Muscle Side Population), MDSC (Muscle Derived Stem Cell), HSC

(Hematopoietic Stem Cell)
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