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Abstract 

Muscula r dystrophies are  a  hete rogeneous group of disorders linked to de fects in 20-30 

diffe rent genes. Muta tions in the genes encoding a pair of nuclea r envelope prote ins, 

emerin and lamin A /C , have been shown to cause the X -linked and autosoma l forms 

respectively of Emery-Dre ifuss muscula r dystrophy. A  third form of muscula r dystrophy, 

limb girdle muscula r dystrophy 1b, has a lso been linked to muta tions in the  lamin A /C  gene. 

G iven tha t these two genes a re ubiquitously expressed, a major goa l is to de te rmine how 

they can be associa ted with tissue specific diseases. Recent results suggest that lamin A /C  

and emerin contribute  to the maintenance of nuclea r envelope structure  and a t the same 

time may modula te  the  expression pa tte rns of ce rta in mechanosensitive and stress induced 

genes. Both emerin and lamin A /C may play an important role  in the  response of ce lls to 

mechanica l stress and in this way may help to ma inta in muscle ce ll integrity.
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Introduction 

Muscula r dystrophies (MDs) represent a dive rse group of severa l dozen inherited disorders 

[1]. While  the ir common fea ture  is a lways progressive weakness and degenera tion of 

ske le ta l muscle , these various disorders may diffe r, quite conside rably, with respect to 

loca tion of a ffected tissues, disease progression and severity. D isparity in a ffected muscles 

can easily be  apprecia ted when comparing facioscapulohumera l MD 1A (F S H MD1A 

OMIM#158900) to limb girdle MD 1A (LGMD1A OMIM#159000). In the  former, the muscle  

groups a ffected are  in the  face, shoulde r girdle  and lower legs. In the  la tte r, proxima l 

weakness of the hip girdle  is observed which only la te r progresses to the shoulde r girdle . 

O the r forms of muscula r dystrophy, for example  E mery-Dre ifuss MD (E D MD 

OMIM#310300), may fea ture degenera tion of ca rdiac muscle  in addition to ske le ta l muscle . 

F ina lly, ce rta in forms of muscula r dystrophy such as E D MD may appear ea rly in life  

whereas othe rs such as LGMD1A display an adult onse t. Muta tions in a t least 20-30 genes 

[2, 3] have been associa ted with MD . Proteins encoded by these genes can be grouped 

according to the ir subce llula r loca liza tion. While  this review will focus primarily on MD-

linked nuclea r prote ins, functiona l pa ra lle ls be tween prote in groups will be  explore d.   

 

Cytoskeletal and extracellular matrix related Muscular Dystrophies 

The most common form of MD is Duchenne MD (DMD OMIM#310200) [1]. This is an X -

linked disorder with an early onse t of about 3-5 yea rs of age. The affected gene in DMD 

encodes dystrophin, an extremely la rge  (~400kD) prote in re la ted to a lpha  actinin and 

spectrin. In muscle ce lls, dystrophin functions to link the  actin cytoske le ton to the plasma 

membrane and extracellula r ma trix (E C M)[2, 3]. The N -te rminus of dystrophin inte racts 

directly with cytoske le ta l actin filaments, but not actin filaments of the contractile  appara tus. 

D ista l regions of the molecule bind a complex of plasma membrane prote ins conta ining, 

among othe rs, members of the dystroglycan and sarcoglycan families of glycoprote ins. 

A lpha-dystroglycan in turn binds to a lpha2-laminin on the  extracellula r face of the plasma 

membrane providing a  link to the  E C M. Perhaps not surprisingly, muta tions in the genes 

encoding dystroglycans,  sarcoglycans and laminin have a ll been linked to various forms of 

muscula r dystrophy [2, 3]. In addition, forms of MD such as F ukuyama congenita l muscula r 
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dystrophy appear to involve prote ins tha t a re  implica ted in the  intracellula r processing of 

newly synthesized dystroglycans and sarcoglycans [4, 5].  What a ll of these prote ins have 

in common is the ir contribution to the  integrity of a structura l ne twork, with signa ling 

properties, that connects the muscle cell cytoskeleton to the E C M through the plasma 

membrane. O the r MD-associa ted genes encode cytosolic prote ins like ca lpa in-3 and 

sarcomeric prote ins such as titin. The la te r functions both as a molecula r rule r in sa rcomere  

assembly as well as an e lastic component of the contractile  appara tus. In this way titin 

makes a direct contribution to muscle ce ll functiona lity. 

 

Nuclear envelope related Muscular Dystrophies 

In recent yea rs an additiona l group of MDs have been linked to de fects in nuclea r envelope  

prote ins [1]. The prototype of these is Emery-Dre ifuss MD. E D MD displays two inheritance 

patte rns, X -linked (E D MD OMIM#310300) and autosomal (E D MD2 OMIM#181350). Both 

forms of the disease display simila r physica l symptoms fea turing degenera tion of muscles 

of the upper a rms, shoulde r girdle  and lower legs, and contactures of the Achilles tendons 

as well as of tendons of the e lbows and neck. These contractures have a childhood onse t 

and are one of the  early signs of the disease. E D MD also fea tures a very significant ca rdiac 

involvement with both ca rdiac muscle degenera tion and associa ted conduction system 

block. The la tte r frequently requires the  implanta tion of a pacemaker in  early adulthood and 

may ultimate ly necessita te  a  heart transplant. 

 

In 1994, the X -linked form of E D MD was mapped to a gene encoding emerin, a 29kD 

membrane prote in (named afte r Professor A lan Emery, who origina lly described the  

disease [6]) [7]. Emerin immedia te ly provided two surprises. F irst, it turned out to be  a  

nuclea r envelope membrane prote in and second it was not specific to muscle  [8, 9]. Instead 

it is expressed in virtua lly all human-cell types. Subsequent discussion will de lve  furthe r into 

the  e tiology of both X -linked and autosoma l E D MD , as well as othe r associa ted disorders, 

in an attempt to elucida te how defects in ubiquitously expressed prote ins might give  rise to 

tissue  specific diseases. F ina lly, recent findings will be  examined which might functiona lly 

connect nuclea r envelope components with dystrophin and dystrophin associa ted prote ins 
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(dytroglycans and sarcoglycans etc.) tha t a re  linked to Duchenne, Becker and re la ted forms 

of MD. 

 

The Nuclear Envelope 

The nuclea r envelope  (NE ) is a selective barrie r that forms the  inte rface between the  

nucleus and the cytoplasm, and as such plays a centra l role  in de fining the biochemica l 

identities of each compartment [10, 11]. In  addition to its ba rrie r function, it is becoming 

increasingly clea r that the NE  is a key dete rminant of nuclea r a rchitecture  and may strongly 

influence cytoplasmic organiza tion. The NE  conta ins severa l discre te structura l e lements, 

the most prominent of which are  the  inner and oute r nuclea r membranes (F igure 1). In 

mammalian somatic ce lls these two membranes are separa ted by a uniform gap of about 

30-50nm re fe rred to as the perinuclea r space (PNS). The INM and O N M are connected at 

annula r junctions which crea te  aqueous channels be tween the nucleoplasm and cytoplasm. 

These channels a re occupied by nuclea r pore complexes (NPCs), massive multi-prote in 

assemblies tha t regula te  the  tra fficking of macromolecules across the  NE . A mammalian 

somatic ce ll nucleus typica lly conta ins severa l thousand NPC s . 

 

In addition to its continuities with the  INM at the periphery of each NPC , the O N M also 

displays multiple connections to the periphera l endoplasmic re ticulum (E R ) to which it is 

functiona lly re la ted. E vidently the  INM, O N M and E R  form a single continuous membrane 

system.  Simila rly, the   PNS constitutes a perinuclea r extension of the  E R  lumen, and 

conta ins both secre tory prote ins and soluble  E R  resident prote ins, including E R  

chaperones. 

 

The final ma jor structura l fea ture of the NE  is the nuclea r lamina  [12]. This is a  re la tively 

thin (20-50nm) prote in meshwork tha t is close ly associa ted with both the nuclea r face of the 

INM and the underlying chromatin. The key components of the nuclear lamina are a group 

of prote ins known as A - and B -type  lamins. The lamin prote ins a re members of the more  

extensive cytoplasmic inte rmedia te  filament (IF ) family and like a ll IF  prote ins conta in a  

centra l coiled-coil doma in flanked by non-helical head and ta il doma ins . In contrast to the ir 

cytoplasmic counte rpa rts, each of the lamins conta ins a nuclea r loca liza tion sequence 
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(NLS) within the C -te rmina l non-helical doma in required for e fficient nuclea r import of newly 

synthesized lamin prote ins. Both A- and B -type  lamins a re known to inte ract with 

membrane prote ins of the  INM [12] as well as with chromatin [13] [14]. In this way, the 

nuclea r lamina may provide  anchoring sites at the nuclea r pe riphery for higher orde r 

chromatin doma ins in addition to stabiliz ing and organiz ing the  NE . While  the bulk of the  

lamins appear to reside  a t the nuclea r pe riphery, nucleoplasmic lamins have a lso been 

observed [15-17] with proposed roles in severa l aspects of nuclea r me tabolism, including 

DNA replication [18-21]. 

 

In mammalian cells the re  a re  two ma jor A-type  lamins, A  and C , encoded by a single gene, 

LMNA [22]. These two prote ins a re  identical for the  first 566 amino acid residues. Both 

prote ins possess unique C -te rmina l extensions. In the case of lamin C  this consists of a  

sequence of six amino acids. The unique  region of lamin A  is conside rably la rge r a t 98 

amino acids. Two othe r A-type  lamins have been described. The first of these, lamin A∆10 

[23], lacks a 30 amino acid sequence within the unique  lamin A specific region tha t is 

encoded by exon 10 (LMNA  conta ins 12 exons). While  it is found in somatic ce lls, its 

abundance and distribution has yet to be well defined. Lamin C 2[24] is ma le germ ce ll-

specific and essentia lly consists of a  trunca ted form of lamin C  tha t conta ins an a lte rna tive 

N-te rminus modified by myristoyla tion.  

 

Mammalian somatic ce lls also conta in two B-type  lamins, lamins B1 and B2 [25], encoded 

by separa te genes (LMNB1 and LMNB2) [26, 27]. A third B -type  lamin, lamin B3, de rived 

from the  LMNB2 primary transcript by a lte rna tive splicing is ma le germ ce ll-specific [28]. 

While B -type  lamins as a class are  expressed in a ll nuclea ted cell types, the expression of 

A-type  lamins is developmenta lly regula ted [29, 30]. As a genera l rule , A-type  lamins a re  

found in most adult diffe rentia ted cell types but a re  absent from both ea rly embryonic ce lls 

and adult stem cell popula tions [31, 32]. In the mouse, A -type  lamin expression 

commences only midway through gesta tion a t embryonic day 8 or day 9, initia lly in ce lls of 

the  trophoblast and visce ra l endoderm [29].  
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The ubiquitous expression of B -type  lamins led to the conclusion ea rly on tha t these were  

essentia l prote ins. This has certa inly turned out to be  true of lamin B1, at least at the 

organisma l level. G e ne ta rge ting experiments in mice have revea led tha t lamin B1 is 

required for the development of viable  embryos [33]. However, mouse  embryonic 

fibroblasts de rived from Lmnb1-null embryos can nevertheless be mainta ined in culture . 

E vidently this prote in is dispensable  in ce rta in ce ll types. This observa tion is supported by 

findings tha t HeLa cells deple ted of lamin B1 [34] and/or lamin B2 using RNA inte rfe rence 

continue  to prolife ra te  in culture , at least in the short term (Kyle Roux, Melissa C risp and 

Brian Burke , unpublished observa tions).  

 

Lamin A  and lamins B1 and B2, fea ture C -te rmina l C a a X  motifs (where  C is cyste ine , a is 

an a lipha tic amino acid and X is usua lly a hydrophobic residue). The C a a X  motif was 

origina lly described in sma ll Ras-re la ted G T P a ses and represents a site of fa rnesyla tion 

[35]. This modifica tion is media ted by a prote in fa rnesyl transfe rase and occurs on the  

C a a X  cyste ine  residue soon afte r comple tion of lamin synthesis [36-39]. F a rnesyla tion is 

followed by C -te rmina l proteolysis to remove the  aaX  residues [40]. Processing of the C a a X  

motif is then comple ted by carboxy methyla tion of the newly exposed C -te rmina l cyste ine  

residue  [40]. F a rnesyla tion of the C a a X  cyste ine  residue  is a pre requisite  for the  e fficient 

assembly of newly synthesized lamins into the  inte rphase nuclea r lamina  [41-43]. While  the  

B-type  lamins remain pe rmanently fa rnesyla ted, lamin A  is unique  in tha t this modifica tion 

is lost following proteolytic cleavage 14 residues upstream from the  fa rnesyla ted cyste ine  

[44]. This cleavage event is ca ta lyzed by ZmpSte24, a membrane associa ted prote inase 

[45, 46], and occurs soon a fte r incorpora tion into the nuclea r lamina , typica lly within 30-

60min of synthesis [47]. In this way, full length, or pre -lamin A  exists only transiently in 

norma l ce lls.  

 

While  individua l lamin monomers a re known to assemble  to form coiled-coil homodimers, 

the higher orde r organiza tion of the lamina  is still a  topic of conside rable debate . As 

members of the  IF  family, the  lamins a re  thought to be organized in the  form of filaments. 

C e rta inly this has been borne out in ultrastructura l studies of Xenopus oocyte nuclea r 

envelopes where  the  lamina  appears as an oftentimes orthogona l meshwork of 10nm 
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filaments [48]. However, the oocyte  lamina  is composed primarily of a single  lamin isoform 

(lamin L3) [49]. The organiza tion of the more complex mammalian somatic ce ll lamina  

conta ining lamins A , C , B1, B2 and perhaps A ∆10, has yet to be satisfactorily addressed. 

 

Nuclear membrane proteins 

Despite  the ir numerous connections a t the periphery of each NPC , the INM and O N M are  

biochemica lly quite distinct. This could be surmised even from ea rly ultrastructura l studies 

since  the  O N M, but not the  INM, conta ins numerous bound ribosomes. Recent proteomic 

studies have revea led the  existence of as many as 67 integra l membrane prote ins tha t a re  

enriched in the  NE . The bulk of these appear to reside within the  INM [50]. The mechanism 

by which prote ins become loca lized to the  INM has been a topic of some debate . The 

consensus tha t has emerged is tha t it involves, at least in pa rt, a process of se lective 

re tention [51-53]. In this mode l, prote ins tha t a re synthesized on the periphera l E R  or O N M 

gain access to the  INM by lateral diffusion via the membrane continuities surrounding each 

NPC . O nly prote ins tha t can inte ract with nuclea r, othe r INM or lamina components will be  

re ta ined and concentra ted. However, recent findings tha t movement of membrane prote ins 

between the  O N M and INM involves an energy dependent mechanism [54] and which 

appears to opera te  a t the level of the  NPC , suggest that we have not ye t hea rd the  final 

word on INM prote in sorting. 

 

The recent identification of a number of O N M-specific integra l membrane prote ins has 

ra ised additiona l questions [55-57]. In pa rticula r, wha t prevents O N M prote ins from simply 

drifting away in to the periphera l E R ? The issue of O N M prote in loca liza tion was origina lly 

addressed in C . elegans. Starr and Han [58] demonstra ted tha t the appropria te  loca liza tion 

of Anc-1, a  very la rge  type  II O N M prote in involved in actin-dependent nuclea r positioning, 

was dependent upon Unc-84, an INM protein [58]. Loca liza tion of Unc-84 itself was found 

to be dependent upon the single  C . elegans lamin [59]. Based upon these and simila r 

findings, both Lee  e t a l. and  Sta rr and Han [59, 60], proposed a model in which Unc-84 

and Anc-1 would inte ract across the  PNS via  the ir respective lumenal doma ins. In this way, 

Unc-84 would as a  trans-lumenal te the r for Anc-1 in the  O N M. 
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In mammalian cells two giant (800-1000kDa!) actin binding prote ins have been identified 

(va riously te rmed NUANC E , nesprin 2 G iant, nesprin 1, enaptin, Syne 1, syne 2, myne 1) 

as integra l prote ins of the  O N M [55-57, 61, 62]. Due to a complex array of a lte rna tively 

spliced isoforms a very la rge  family of prote ins a re  encoded by the  nesprin 1 and nesprin 2 

genes[56]. Nesprins a re  re la ted to Anc-1, as well as to a  Drosophila O N M prote in known as 

Klarsicht [63-66] A ll three  prote ins conta in an ~60 amino acid C -te rmina l KASH doma in 

(K la rsicht, Anc-1, Syne  Homology) tha t is comprised of a  single  transmembrane anchor 

and a short segment of about 40 residues tha t resides within the  PNS. 

 

A  third nesprin family member, nesprin 3, has a lso been described [67]. Like nesprins 1 

and 2, nesprin 3 possesses a C -te rmina l KASH doma in. However, its distinct N-te rmina l 

cytoplasmic doma in fea tures a binding site  for plectin, a  very la rge  (466kDa) inte rmedia te  

filament-associa ted prote in. Thus, whereas nesprins 1 and 2 connect the NE  to 

microfilaments, nesprin 3 may function as a  link be tween the  NE  a nd the cytoplasmic 

inte rmedia te  filament ne twork. 

 

O ne of the defining fea tures of the C . elegans Unc-84 prote in is a 200 amino acid region of 

homology with Sad1p, an S. pombe polypeptide tha t is associa ted with the spindle pole  

body [68]. This region of homology is known as the  SUN doma in (for Sad1p, UNc-84) and 

extends into the  PNS. Mammalian cells conta in severa l SUN doma in prote ins. Indeed the re  

a re  five tha t a re  encoded within the human genome. Two of these, Sun1 and Sun2, are  

INM proteins and have a topology simila r to tha t of Unc-84 with a nucleoplasmic N-te rmina l 

doma in and a C -te rmina l SUN doma in in the  PNS [69-71]. At least in the case of Sun1, its 

nucleoplasmic doma in inte racts with fa rnesyla ted pre -lamin A  ra ising the possibility tha t this 

prote in could function in lamin A  ta rge ting and/or assembly [69].  

 

Recent reports indica te  tha t both Sun1 and Sun2 coopera te  in te the ring nesprin 2 G iant 

(nesp2G ) within the  O N M [69, 72]. This te the ring involves the  establishment of molecula r 

inte ractions tha t span the  PNS [73] simila r to tha t suggested  for Anc-1 and Unc84 in C . 

elegans (F igure 2). C ircumstantia l evidence based upon competition be tween nesprin 1 

and nesprin 2 KASH doma ins indica tes tha t nesprin 1 G iant (nesp1G , enaptin) is simila rly 
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te the red by Sun1 and Sun2. It follows, the re fore , that Sun1 and Sun2 function as links in a  

molecula r cha in tha t connects the  actin cytoske le ton, via giant nesprin prote ins, to nuclea r 

lamins and othe r components of the nuclea r inte rior. We now re fe r to this assembly as the  

LINC  complex (for LInke r of Nucleoskele ton and C ytoske le ton) [69]. The recent discovery 

of nesprin 3 as a  link to the  IF  system [67], suggests tha t there maybe multiple  functiona lly 

distinct isoforms of the LINC  complex tha t a re  responsible  for integra ting the nucleus with 

diffe rent components of the cytoske le ton. The implica tion of the existence of these linkages 

across the  NE  is tha t the nucleus and cytoplasm may display inte rdependent mechanica l 

properties. As will be discussed below, this has recently been shown to be  the case. 

 

The nuclear envelope and muscular dystrophy 

X-linked E D MD was the  first human disorder to be  linked to de fects in a component 

(emerin) of the  NE . Emerin is a  type  II transmembrane prote in tha t loca lizes exclusive ly to 

the  INM [7-9]. The bulk of its mass resides within its 220 amino acid N-te rmina l 

nucleoplasmic doma in. The majority of emerin muta tions, e ither point or nonsense 

muta tions, tha t a re  associa ted with E D MD lead to comple te  loss of the  emerin prote in or to 

its misloca liza tion [74-77]. It would appear that E D MD must be caused by loss of some 

essentia l emerin function. The nature of this function, however, is still a  matte r of debate . 

A lthough emerin is expressed in the majority of adult cell types, only ske le ta l and ca rdiac 

muscle seem to be  adverse ly a ffected by its loss. 

 

De ta iled analyses of the emerin prote in both in vivo and in vitro have revea led tha t the 

nucleoplasmic doma in of emerin inte racts with multiple nuclea r prote ins [78-82]. The N -

te rminus of emerin shares a sequence of about 40 amino acids with severa l othe r prote ins 

including the  INM proteins lamina associated polypeptide 2 (LAP2) and MAN1. This region 

of homology, known as the LEM domain (for LAP2, emerin and MAN1) functions as a  

binding site  for BAF  (barrie r to autointegra tion factor) a small DNA binding prote in [83, 84]. 

In this way BAF  functions as a  link be tween emerin and chromatin. Emerin also binds to 

severa l transcriptiona l regula tors, ge rm ce ll less (G C L) [80] and Btf [78]. Binding of G C L 

and B A F  to emerin are mutua lly exclusive  [80]. Btf when overexpressed induces apoptosis. 

Thus sequestra tion of B tf by emerin could potentia lly have an anti-apoptotic function. In 
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te rms of regula tory activities, emerin might a lso modula te pre -mRNA processing through 

inte ractions with YT521-B , a factor involved in splice site selection [82]. 

 

In addition to these regula tory molecules, emerin inte racts with a number of structura l 

prote ins including actin and A -type  lamins. Emerin has been shown to promote  the  

polymeriza tion of actin and to cap the pointed end of actin filaments in vitro. It likely binds 

nuclea r actin in vivo. As will be described furthe r be low, the  inte raction with A -type  lamins 

contributes to the  appropria te  loca liza tion of emerin to the  INM.  

 

S tudies on the  role of emerin in vivo have so fa r shed only a  little  light on the  e tiology of X -

linked E D MD. In C . elegans, depletion of the emerin orthologue by RNA intereference 

yie lds no de tectable phenotype  [85]. Emerin deple tion is however, synthe tic le thal with 

deple tion of MAN1, which like  its mammalian orthologue , is also a LEM domain protein 

[85]. Mice harboring a  dele tion of the emerin gene have no overt symptoms of muscula r 

dystrophy and display no obvious ske le ta l or ca rdiac muscle  pathology [86]. However, in 

common with human E D MD patients, fibroblasts de rived from emerin de ficient mice often 

have irregula rly shaped nucle i fea turing blebbing of the nuclea r membranes [87]. 

F urthe rmore , emerin de ficient fibroblasts exhibit impa ired signa ling response s to 

mechanica l stress. This may be observed in te rms of reduced induction of iex-1 and egr-1, 

a  pa ir of mechanosensitive genes [87]. The overa ll e ffect is tha t emerin-null cells, when 

compared with wild type cells, display increased ra tes of apoptosis when subjected to 

mechanica l stra in [87]. 

 

Severa l yea rs a fte r the identification of the emerin as the site of muta tions causing X-linked 

E D MD, the autosomal dominant form of the disease was mapped to the LMNA  gene [88]. 

Soon the rea fte r, limb girdle MD 1B (LG MD1B) and dila ted cardiomyopa thy (D C M) were  

a lso linked to muta tions in LMNA [89, 90]. In tota l more  than 70 distinct muta tions within 

LMNA  have now been linked to ske le ta l and cardiac muscle diseases (F igure 3). A  few ra re  

muta tions which cause autosoma l recessive  E D MD have also been mapped to LMNA .  
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Muscula r dystrophy (E D MD and LGMD1B) and cardiomyopa thy a re only three  of a t least 

11 (depending upon de finition) othe r disorders linked to muta tions in the  LMNA  gene [91]. 

These diseases, which a re commonly re fe rred to as “laminopa thies”, include  Dunnigan type  

familia l pa rtia l lipodystrophy (F P LD) [92, 93], C harcot-Marie -Tooth disease (CMT2) [94], 

mandibuloacra l dysplasia  (MAD) [95], restrictive dermopa thy (RD) [96] and two premature  

aging syndromes, Hutchinson-G ilford progeria  (HG P S ) [97-99] and atypica l Werner’s 

syndrome (aWRN) [100, 101]. A major goa l now is to de te rmine how muta tions in the  

wide ly expressed LMNA  gene can give  rise to such a bewildering a rray of tissue specific 

disorders. What is becoming increasingly clea r is tha t multiple disease mechanisms must 

be at work [12, 102, 103]. A comple te discussion of the  laminopa thies is beyond the scope 

of this review. therefore the remainder of the article  will focus primarily on the molecular 

causes of E D MD, LGMD1B and DCM. 

 

D ila ted cardiomyopa thy is a  fea ture of both E D MD and LGMD1B. These two disorders 

diffe r only in te rms of the  a ffected muscle groups (e .g. dista l ve rsus proxima l leg muscles). 

E vidently, ce rta in LMNA  muta tions may cause heart disease (DCM) but spare skele ta l 

muscle . However, e ither additiona l genetic or environmenta l factors may tip the balance 

towards ske le ta l muscle  involvement [104]. This view is supported by observa tions of 

Brodski e t a l who have identified a  family ca rrying a single  lamin A muta tion (a  frameshift 

caused by a single nucleotide dele tion a t position 959) where diffe rent members have been 

diagnosed with E D MD, LGMD or with DCM [105]. The bulk of LMNA  muta tions associa ted 

with muscle disease involve single  amino acid change s, a lthough de le tions, frameshifts 

(above) and nonsense muta tions a re well represented (F igure 3). Indeed the  ea rliest report 

linking LMNA  to autosoma l dominant E D MD highlighted a nonsense muta tion a t codon 

number six [88]. This would in e ffect represent a  functiona l gene dele tion, thus LMNA  

haploinsufficiency is sufficient to cause muscle disease.  

 

Muta tions associa ted with muscle disease are  found throughout the  LMNA  gene, including 

many in exons encoding the coiled-coil doma in. These may prevent dimer formation or a lte r 

la te ra l inte ractions be tween A -type  lamins the reby inte rfe ring with the  assembly of higher 

orde r lamin structures. It is ce rta inly true  tha t some (but by no means a ll) muscle disease -
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linked lamin muta tions cause abnorma lities in A-type  lamin assembly a t the nuclea r 

periphery [106-108]. The non-helical lamin A  ta il is known to be comprised in pa rt by an 

immunoglobulin type  fold consisting of apposed beta sheets [109, 110]. Those  E D MD-

associa ted muta tions found in this region of the  lamin A  molecule  a re predicted to 

significantly disrupt the 3D organiza tion of the Ig doma in. Taken toge the r, these 

observa tions a re consistent with the notion tha t muscle  pathologies are  linked to loss of 

structura lly functiona l lamin prote ins.  

 

Homologous recombina tion has been used to e limina te  the  Lmna gene in mice  [111]. 

Anima ls homozygous for the dele tion a re born without any striking abnorma lities, indicating 

tha t A-type  lamin expression is not a pre requisite  for norma l embryonic development. 

However, newborn Lmna-null mice  fa il to thrive  and display clea r evidence of muscle  

weakness. Histologica l analyses revea l extensive muscula r dystrophy and cardiomyopa thy. 

These anima ls, which never survive beyond eight weeks of age, display a syndrome tha t is 

very simila r to human E D MD. There  a re , however, two important diffe rences. The first is 

tha t Lmna-null mice display a periphera l axonal neuropa thy simila r to CMT2 (in humans 

this is caused by an R298C mutation) [112].There  is no evidence of any othe r laminopa thy-

re la ted pathology in these knock out anima ls. Secondly, he te rozygous anima ls (Lmna+/-) 

a re  asymptomatic [111]. As described above, loss of just one  LMNA  a lle le  in humans is 

associa ted with E D MD. Regardless of these diffe rences, however, the mouse studies lend 

conside rable support for the view tha t it is loss of A -type  lamin function tha t underlies the  

ske le ta l and cardiac muscle  pathologies. 

 

A t the cellula r level, loss of A-type  lamin expression is associa ted with prominent changes 

in nuclea r morphology [111]. In both fibroblasts from Lmna-null mice  as we ll as cells from 

laminopa thy pa tients [113], nucle i a re  frequently observed to have highly irregula r shapes. 

This is usua lly associa ted with the  appearance of NE  “hernia tions” in which B -type  lamins, 

INM prote ins, NPC s and chromatin are withdrawn from one pole of the nucleus. This is 

accompanied by loca lized dila tion of the O N M in the  NPC  free  regions. C hanges in 

hete rochromatin organiza tion, pa rticula rly loss of pe riphera l he te rochromatin, a re  a lso 
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observed [114]. G iven tha t he te rochromatin is genera lly transcriptiona lly silent, loss of A-

type  lamins could be  associa ted with changes in gene expression pa tte rns.  

 

A  final conspicuous fea ture of fibroblasts de rived from Lmna-null mice  is the  frequent 

misloca liza tion of emerin from the  INM to the peripheral E R  [111]. Introduction of human 

lamin A  in to these cells by transfection will restore  the norma l loca liza tion of emerin to the  

INM. Similar mislocalization of emerin can be observed in HeLa cells following deple tion of 

A-type  lamins by RNA inte rfe rence [34]. These observa tions clea rly demonstra te  tha t A-

type  lamins contribute  to the norma l loca liza tion of emerin and provide  a  molecula r 

re la tionship be tween X -linked and autosoma l E D MD. 

 

Muta tions of titin are  associa ted with multiple MD disorders where conventiona l thought 

suggests its role  as a structura l prote in of the muscle sarcomere  is presumably disrupted 

[115]. However, a  recent report by Zastrow e t a l. identified nuclea r titin as a binding pa rtner 

for A- and B -type  lamins [116], making titin the  third N E  prote in muta ted in MD. It remains 

to be seen if perturba tion of titin function a t the NE might underlie some aspects of disease 

pathology within muscle ce lls.  

 

A t present there  a re  two views of how de fects in N E  prote ins might give  rise to ske le ta l and 

cardiac muscle disease, and involve  e ither mechanica l stress or gene expression based 

mode ls [102] [117]. As will be seen, however, these views are not mutua lly exclusive . The 

mechanica l stress mode l proposes tha t muscle ce ll nucle i lacking functiona l A-type  lamins 

or emerin may be excessive ly prone  to mechanica l damage caused by repeated cycles of 

muscle contraction. This notion has some merit. F irstly, we know tha t nucle i conta ining 

e ither de fective A -type  lamins or deple ted of A-type  lamins exhibit structura l abnorma lities. 

F urthe rmore , nucle i isola ted from Lmna-null mouse  livers a re  fa r more prone  to 

fragmenta tion than the ir wild-type derived counte rpa rts [111]. Recently Lammerding e t a l. 

[118] and Broers e t a l. [119] have demonstra ted exactly such nuclea r fragility in Lmna-null 

fibroblasts in vivo.  Basica lly these investigators used direct mechanica l me thods to de form 

nucle i in ce lls in culture . They were  able  to show tha t the nucle i in Lmna-null fibroblasts 

were more deformable  and ruptured under lower applied forces than nucle i in wild-type  
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fibroblasts. Lammerding e t a l a lso demonstra ted tha t the cytoplasm of Lmna-null cells was 

mechanica lly less resilient than tha t of wild-type cells [87]. This begins to make some sense 

given tha t we now know tha t nucle i a re coupled to both the  actin and IF  cytoske le ton via  

the LINC  complex of SUN prote ins and nesprin prote ins [56, 57, 67, 69, 72]. In muscle ce lls 

actin filaments and desmin IF  filaments a re  linked to dystroglycans and sarcoglycans at the 

cell surface via contacts with dystrophin and othe r dystrophin inte racting prote ins. This 

ra ises the possibility tha t in E D MD and re la ted myopa thies, mechanica l stress might have 

detrimenta l e ffects on both nuclea r and cytoplasmic (and perhaps plasma membrane) 

organiza tion. In this respect, the etiology of E D MD could have more  in common with tha t of 

Duchenne and re la ted MDs than immedia te ly mee ts the  eye.  

 

The a lte rna tive view of E D MD, LGMD1B and DCM pathology proposes that changes in N E  

organiza tion due  to emerin or lamin muta tions might lead to changes in muscle ce ll gene 

expression pa tte rns. Both emerin and A -type  lamins a re known to inte ract with a number of 

transcriptiona l regula tors including G C L and Btf (in the case of emerin) [78, 80] and SRE B P  

[120], Rb [121] and MO K 2 (in the case of lamin A) [122]. F urthe rmore , the well documented 

rea rrangements in he te rochromatin organiza tion would be  entire ly consistent with this idea . 

C ompe lling evidence in favor of the gene expression mode l comes from severa l quarte rs. 

As described above, emerin de ficient mice  exhibit no ove rt pathology. However, muscle  

regenera tion in these mice show clea r abnorma lities. In particular, myogenic differentiation 

is de layed, a phenomenon tha t is a ssocia ted with pe rturba tions in transcriptiona l pa thways 

tha t a re  regula ted by Rb and MyoD [86]. Simila rly, lamin A mutants have been found to 

inte rfe re with the diffe rentia tion program of C 2C12 myoblasts [123, 124]. 

 

Both mechanica l stress and gene expression de fects may be integra ted in othe r 

observa tions. Lmna-null fibroblasts exhibit grossly impa ired mechanotransduction and 

decreased viability under mechanica l stra in [118, 119]. Induction of the mechanosensitive 

genes, iex-1 and egr-1 is strongly a ttenua ted [118]. Simila r but milde r e ffects a re observed 

in emerin-null cells [87]. Lmna-null cells (but not emerin-null cells) a lso exhibit reduced NF -

κB-regula ted transcription in response  to e ither cytokine or mechanica l stimula tion [118]. 

Taken toge the r, a ll of these observa tions suggest that emerin- and Lmna-null cells exhibit 
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reduced viability when subjected to mechanica l stress. This reduced viability may be due to 

direct mechanica l e ffects (i.e . physica l damage), inability to induce mechanosensitive 

gene s or indeed to both. In this way both the mechanica l stress and gene expression 

mode ls may accura te ly describe diffe rent aspects of the molecula r basis of E D MD and 

re la ted myopa thies. 

 

C lea rly we have come a conside rable way in improving our understanding of NE  biology 

since  the origina l rea liza tion tha t X-linked E D MD was caused by defects in an INM protein. 

However, the recognition tha t a t least nine or ten more human diseases are  linked to 

defects in A-type  lamins has ra ised puzzling questions. How for instance can defects in a  

near ubiquitously expressed gene give  rise to such an array of tissue specific phenotypes? 

The answer may well lie with othe r prote ins tha t a re  themselves expressed in a  tissue  

specific fashion but which inte ract with A -type  lamins. Some such prote ins may be 

represented among the sixty or more nuclea r membrane prote ins identified using 

proteomics approaches. G iven the  role of the LINC  complex in integra ting the nucleus with 

the cytoske le ton a bette r understanding of some laminopa thie s may even arise through 

studies of NE -associa ted cytoplasmic prote ins. What is ce rta in is tha t this a rea  of research 

a t the inte rface of medicine  and ce ll biology will continue  to present us with surprises tha t 

redefine our understanding of ce llula r structure  and function while hopefully revea ling nove l 

avenues for disease the rapy. 
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Figure Legends 

F igure 1  

O verview of the organiza tion of the nuclea r envelope . Severa l se lected prote in components 

a re shown. These include  the nuclea r lamina composed of lamin oligomers,  and both inner 

and oute r nuclea r membrane (INM and O N M) prote ins. INM prote ins include  lamin B  

receptor (LBR), lamina  associa ted prote ins 1 and 2 (LAP1 and LAP2), MAN1, emerin and 

Sun1. The la te r acts as a  te the r for Nesprin 2 in the  O N M through inte ractions which span 

the perinuclea r space (PNS). The la tte r is continuous with the  E R  lumen. Soluble prote ins, 

hete rochromatin prote in 1 (HP1) and barrie r to autointegra tion factor (BAF ) inte ract with the  

nucleoplasmic domains of ce rta in INM prote ins and provide  a  link for chromatin doma ins a t 

the  NE . C hromatin doma ins a re  a lso anchored to the nuclea r lamina . 

 

F igure 2  

Sun1 prote in dimers in the  inner nuclea r membrane (INM) function as te the rs for nesprin 

prote ins in the oute r nuclea r membrane (O N M). D imeriza tion of Sun1 is like ly media ted by 

an extended coiled-coil doma in within the perinuclea r space (PNS). The nucleoplasmic 

doma in of Sun1 binds fa rnesyla ted pre -lamin A . The cytoplasmic doma in of nesprins 1 and 

2 inte racts with actin filaments whereas tha t of nesprin 3 binds plectin. The la tte r is likely to 

provide  a  link to the cytoplasmic inte rmedia te  filament (IF ) ne twork. 

 

F igure 3  

Myopa thy re la ted muta tions within human lamin A . The position and nature of E D MD 

muta tions a re  indica ted by blue boxes. Dila ted cardiomyopa thy (D C M) muta tions a re  

indica ted in orange. LGMD1B muta tions a re  indica ted in purple . Substitutions a re  in single  

le tte r code . X represents a nonsense mutation, fs refers to a frameshift and a deletion is 

indica ted by ∆.  The lamin A centra l coiled-coil doma in is shaded in da rk blue , while  the C -

te rmina l C a a X  box is in green. This figure was compiled from the Leiden Unive rsity 

muscula r dystrophy pages and lamin A /C  sequence varia tion da tabase 

(http://www.dmd.nl/lmna_seqvar.html). 
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