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ABSTRACT  

Myotonic dystrophy (DM) is a complex multisystemic disorder linked to two different genetic loci.  

Myotonic dystrophy type 1 (DM1) is caused by an expansion of a CTG repeat located in the 3’ 

untranslated region (UTR) of DMPK (myotonic dystrophy protein kinase) on chromosome 19q13.3.  

Myotonic dystrophy type 2 (DM2) is caused by an unstable CCTG repeat in intron 1 of ZNF9 (zinc 

finger protein 9) on chromosome 3q21.  Therefore, both DM1 and DM2 are caused by a repeat 

expansion in a region transcribed into RNA but not translated into protein. The discovery that these 

two distinct mutations cause largely similar clinical syndromes put emphasis on the molecular 

properties they have in common, namely, RNA transcripts containing expanded, non-translated repeats.  

The mutant RNA transcripts of DM1 and DM2 aberrantly affect the splicing of the same target RNAs, 

such as chloride channel 1 (ClC-1) and insulin receptor (INSR), resulting in their shared myotonia and 

insulin resistance.  Whether the entire disease pathology of DM1 and DM2 is caused by interference in 

RNA processing remains to be seen.  This review focuses on the molecular significance of the 

similarities and differences between DM1 and DM2 in understanding the disease pathology of 

myotonic dystrophy. 
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INTRODUCTION 

Overview of Repeat Expansion Disorders 

Myotonic dystrophy is currently one of over 30 neurological disorders that can attribute their 

pathogenesis to extensions of tandem repeats above a critical size.  Yet the theories as to how large 

repeat arrays can cause such highly variable and multifaceted diseases are numerous and unresolved 

[1].  In general, the repeats become meiotically unstable above a certain pathogenic size threshold, and 

often demonstrate tissue-specific somatic mosaicism of increasing repeat lengths over time.  Many of 

the disorders also show a clear propensity for inheritance of a more severe disease phenotype with 

increasing penetrance than previous generations, termed anticipation [2, 3].  Most of the expansion 

disorders exhibit a delayed onset form of their diseases, indicating that they may share mechanisms 

that postpone clinical expression until later in life.  The population maintenance of these disorders 

marked by low reproductive fitness also indicates that there might be a common mechanism of 

generating new expansions from an existing pool of normal size repeats [4, 5].  Lastly, nuclear 

inclusions typically characterize repeat expansion disorders, but they begin to differ by whether these 

aberrant aggregations are derived from mutant protein or RNA transcripts. 

Depending on where the unstable repeats are located within the gene, the repeat expansion 

disorders can be classified as having coding or noncoding mutations.  Coincidentally, in 1991, the first 

two triplet repeat expansion disorders discovered  revealed examples from both coding and noncoding 

categories – the fragile X syndrome was linked to unstable CGG repeats in the noncoding 5’UTR of 

FMR1 [6-8], whereas spinobulbar muscular atrophy was associated with unstable CAG repeats in the 

coding region of AR [9].  DM1 followed in 1992 as the third trinucleotide repeat expansion disorder 

discovered and was mapped to CTG repeats in the noncoding 3’UTR of DMPK [10-13].   Coding 

region expansion disorders such as Huntington’s disease (HD), dentatorubralpallidoluysian atrophy 

(DRPLA), and spinocerebellar ataxia (SCA) 1, 2, 3, 6, 7, and 17, are comprised of CAG repeats that 

become translated into polyglutamine tracts.  Polyglutamine extensions from 40-100 residues become 

toxic to cells of the central nervous system [14].  Noncoding triplet repeat expansion diseases such as 
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in SCA8, fragile X syndrome, and Friedreich ataxia encode tandem CTG, CGG or GAA repeat units, 

respectively [15, 16].  Diseases caused by noncoding repeats exhibit a higher range of pathogenic 

repeat lengths, often numbering in the hundreds or thousands of repeats.   

Unlike the gain-of-function mutations of the altered protein products from the polyglutamine 

expansion disorders, the noncoding expansion disorders appear to result from either a loss-of-function 

by transcriptional repression or a gain-of-function mediated by the mutant RNA transcripts.  For 

example, hypermethylation of the expanded CGG repeat region in the 5’UTR of FMR1 silences 

expression of the gene [17-19].  In agreement with the loss-of-function model, mice deficient in Fmr1 

display a similar reduction in cognitive abilities as humans with fragile X syndrome [20].  In contrast, 

both DM1 and SCA8 express RNA with untranslated CTG repeats in the 3’UTR domains of their 

respective genes.  The fact that SCA8 is predicted to be a noncoding RNA highlights how protein 

function of the mutant genes may not be primarily involved in mediating these particular disorders.  It 

is, however, studies on myotonic dystrophy that has first unveiled the critical role of RNA in 

contributing to disease phenotype.  

 

Myotonic Dystrophy 

Myotonic dystrophy (Steinert’s disease, 1909) is the most prevalent form of muscular dystrophy 

with a frequency of 1 in 8000 individuals worldwide [21].  Affected individuals express highly 

heterogeneous, multisystemic symptoms including myotonia (muscle hyperexcitability), progressive 

muscle weakness and wasting, cataract development, testicular atrophy, and cardiac conduction 

defects [22, 23].  It has an autosomal dominant mode of inheritance and disease severity generally 

correlates with repeat length.  The first insight into the molecular mechanism of this disorder came 

from its linkage to chromosome 19q13.3 and subsequent identification of an expanded CTG repeat in 

the 3' UTR of DMPK in patients with DM1.  Wildtype individuals have 5-38 CTG repeats at this 

locus, whereas individuals with DM1 have repeats in the hundreds to thousands [24]. 
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Once the genetic mutation for DM1 was identified, it became clear that there was a subset of DM 

patients who did not have CTG expansions at the DM1 locus, but did share significant clinical aspects 

of the disease, including an autosomal dominant mode of inheritance, myopathy, myotonia, cataracts, 

and cardiac disturbances [25, 26].  The early pattern of muscle weakness was proximal in these 

patients, often involving hip flexors and extensors, which initially distinguished them from DM1 

patients who displayed an early pattern of distal muscle weakness, such as those of the face, neck and 

fingers [27, 28].  Hence, proximal myotonic myopathy (PROMM) was the initial term for those who 

did not have DM1 [26].  Manual strength tests, however, showed that PROMM patients also shared 

early patterns of muscle weakness in the distal neck and finger flexors, but in a less prominent manner 

than DM1 [27, 29].  As the disease progresses, the muscle degeneration pattern may overlap and reach 

proximal and distal muscles for DM1 and DM2, respectively [30].  Almost a decade after the 

discovery of unstable CTG repeats in 3’ UTR of DMPK, Liquori et al. revealed that a CCTG 

expansion in intron 1 of ZNF9 on chromosome 3q21 is associated with individuals who were 

diagnosed with having PROMM/DM2 [31].  This new locus associated with the myotonic dystrophy 

disorder has been designated as DM2.  The frequency of DM2 is uncertain, but most recent reports 

suggest that its incidence could be as high as DM1 [32]. 

Both DM1 and DM2 share repeat expansions in noncoding regions of genes (DMPK and ZNF9) 

that are expressed in tissues affected by this disease.  DMPK, a serine-threonine kinase [3, 13], shows 

no functional similarity to ZNF9, a 7 zinc finger protein thought to bind RNA [33-35].  The fact that 

both genes were associated by repeat expansions in transcribed but untranslated regions suggested that 

the mutant RNA might have a significant role in the disease process.  However, a key difference 

between DM1 and DM2 is that only the DM1 locus presents a congenital form of this disorder not 

shared by DM2 [23, 36].  This strongly implies that although the basic features of adult and congenital 

DM may stem from the transcription of expanded CUG/CCUG repeats, regardless of the encoding 

gene, additional qualities unique to early onset DM1 may be ascribed to changes at the DM1 locus.   
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Clinical Features of DM1 and DM2 

DM1 and DM2 manifest signs of myotonia, muscle weakness, and early cataract development as 

the principal traits of myotonic dystrophy [27, 30, 37].  Changes in chloride conductance from defects 

in ClC-1 protein function account for the myotonia observed in most symptomatic adults [38, 39].  Its 

accompaniment with progressive muscle degeneration distinguishes this disorder from other forms of 

clinical myotonias.  Although the initial pattern of muscle weakness is noticeably different between 

DM1 and DM2 (distal vs proximal), the muscle biopsies show a similar histology of central nucleation 

and increased fiber sizes.  Muscle atrophy, as shown by ATPase staining, occurs preferentially in type 

1 fibers in DM1 and in type 2 fibers in DM2 [40].  The most treatable symptom of DM is cataract 

development beginning in the second decade or later and is characterized by multicolored lens 

opacities on slit-lamp examination.  Additional common features include testicular atrophy, frontal 

balding, insulin insensitivity and hypogammaglobulinemia (reduced IgG and IgM serum levels).  

Cardiac problems typified by varied and potentially lethal arrhythmias and occasional signs of 

cardiomyopathy, are additional examples of the multisystemic nature of this disease [37]. 

DM2 is considered to present a milder version of this disorder compared to DM1 in most aspects 

of their related clinical phenotypes although the CCTG expansions can be much larger than DM1 

ranging in size from 75 to 11,000 repeats [31] (Fig. 1).  In addition, there is no strong evidence for 

anticipation in DM2 as there is in DM1, in which successive generations inherit increasing disease 

severity with decreasing age of onset [29].  Most of the clinical features of DM2 appear in adulthood 

(median age 48 yrs) [29] as opposed to DM1 that clearly demonstrates adult-onset, childhood-onset 

and congenital forms with corresponding increasing disease severity and repeat size.  The most 

significant difference between DM1 and DM2 is the presence of the congenital form of DM (hereafter 

referred to as congenital DM1) that is absent in DM2.  Neonatal symptoms of congenital DM1 do not 

include some of the features characteristic of adult onset DM1 and DM2, such as cataract 

development, myotonia and myopathy [41].  Instead, congenital DM1 is associated with hypotonia, 

mental retardation, facial diplegia and a maternal bias in DM transmission [36, 42, 43].  And rather 
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than progressive muscle degeneration, congenital DM1 exhibits skeletal muscle immaturity that makes 

this early onset form of DM1 distinct from the adult-onset examples of DM1 and DM2 [44, 45].  To a 

somewhat lesser degree, childhood-onset in DM1 also exhibits cognitive impairment without the 

maternal bias in transmission seen in congenital DM1 [23, 46].  Although there are a few reports of 

childhood-onset in DM2, they are not usually associated the developmental disease of the central 

nervous system as in congenital and childhood-onset DM1.  Surviving congenital and childhood-onset 

DM1 patients eventually manifest the hallmark features of the adult-onset form of the disorder.   

The clinical complexity produced by dynamic mutations from two different loci engendered diverse 

models for the pathobiology of this expansion disorder. 

 

Model Mechanisms for Myotonic Dystrophy 

There are several theories as to the molecular pathophysiology of DM1 [47].  In all, the expanded 

CTG  repeats are proposed to disrupt normal cellular processes at the RNA, protein or chromatin level.  

Initial research targeted the role of the DMPK protein, especially in light of the fact that several 

studies showed that cytoplasmic DMPK was reduced in DM1 patients, presumably due to the 

deleterious effects of the expanded repeats on RNA processing or nucleocytoplasmic transport [48-

50].  To test that haploinsuffiency of DMPK may elicit signs of myotonic dystrophy, two groups 

eliminated its function in mice and demonstrated that mice homozygous for the DMPK deletion 

developed a late onset mild myopathy [51, 52].  Mice both heterozygous and homozygous for the 

disrupted DMPK gene also displayed cardiac conduction defects [53].   In addition, skeletal muscle 

cells and cardiac myocytes isolated from heterozygous and homozygous DMPK-deficient mice 

exhibited abnormalities in Na+ channel gating and Ca2+ cycling akin to DM1 patients, which 

implicated DMPK in muscle weakness and cardiac dysfunction through its involvement in ion 

homeostasis [54, 55].  The mild and partial DM phenotype observed in the DMPK knockout mice also 

indicated that other models were necessary to fully explain the complex disease phenomenon. 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 8

There is strong corroboration for the hypothesis that DM is primarily an RNA-mediated disease 

(Fig. 2).   Initial studies into the intracellular distribution of DMPK transcripts surprisingly revealed 

that DM1 cells were associated with multiple nuclear foci of mutant DMPK RNA [56].  This visual 

cue led to the novel theory that the ribonuclear inclusions signify a toxic gain-of-function effect 

mediated at the RNA level [57, 58].  In search of proteins that bind to the anomalous triplet repeat 

expansion, in vitro studies identified CUG-binding protein (CUG-BP1), which belongs to the CELF 

(CUG-BP1 and ETR-3-like factors) family of proteins [59-61].  A major insight into the cellular 

process that might be impaired in myotonic dystrophy came from the discovery that CUG-BP1 

regulates alternative splicing of cardiac troponin T (TNNT2) pre-mRNA by directly binding to CUG-

repeat-containing splicing enhancers within the transcript, and that this splicing pattern was disrupted 

in DM1 cardiac and skeletal muscle tissues [62].  There were inconsistencies in trying to fit CUG-BP1 

into the emerging model that the trans-dominant effects of the mutant RNA is mediated by the 

sequestration and inactivation of RNA binding proteins within the intranuclear inclusions found in 

DM1 cells.  The aberrant splicing of TNNT2 indicated that CUG-BP1 activity was increased in DM1, 

rather than decreased by its titration away from its normal function.  Studies also failed to demonstrate 

co-localization of CUG-BP1 with the foci of mutant DMPK RNA, bringing to question whether CUG-

BP1 plays a secondary, rather than primary role in the RNA pathogenesis of DM1 [63, 64].  In the 

meantime, it became evident that increased CUG-BP1 levels in DM1 myoblasts [65] were involved in 

the aberrant splicing of additional genes such as ClC-1 and INSR, leading to the clinical symptoms of 

myotonia and insulin resistance, respectively [66, 67].  Moreover, transgenic mice engineered to 

express 250-300 noncoding CUG repeats in the context of either the human skeletal actin gene 

(HSALR) or the human DMPK gene developed ribonuclear inclusions, myotonia, myopathy, and ClC-1 

splicing defects which emphasized the primary role of the mutant RNA on disease pathogenesis [68, 

69]. 

Further investigation into proteins that bind to CUG sequences revealed a family of MBNL 

(muscleblind-like) proteins that bind specifically to the double-stranded RNA hairpins formed by long 
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stretches of CUG repeats [70].  All three isoforms of MBNL proteins (MBNL1, MBNL2, MBNL3) 

were recruited to the mutant RNA foci in DM1 cells, presumably diverting them from their normal 

cellular functions [71].  Since the Drosophila muscleblind  homolog is critical for terminal 

differentiation in muscle and photoreceptor cells [72, 73], MBNL proteins became attractive 

candidates for the toxic effects of mutant RNA in the pathology of DM1.  This trans-dominant RNA 

theory was further substantiated by the fact that mice homozygous for Mbnl1 deficiency (Mbnl1∆3/∆3) 

developed myotonia, cataracts and splicing irregularities in ClC-1, TNNT2, and skeletal muscle 

troponin T (TNNT3) which are phenotypic and molecular changes associated with DM1 [74].  

Interestingly, it was shown that the splicing activities of MBNL proteins and CUG-BP1 are 

antagonistic, with MBNL proteins promoting a switch to adult isoforms and CUG-BP1 inducing 

retention of embryonic isoforms of genes mis-regulated in DM1 tissues such as INSR and TNNT2 

[75].  Although their splicing functions are in opposition to one another, MBNL1/MBNL2 and CUG-

BP1 do not directly compete with each other as they require different RNA binding sites on their 

target pre-mRNAs, and their expression levels are independently regulated [76].   Accordingly, 

transgenic mice overexpressing CUG-BP1 developed signs of muscle defects and abnormal splicing of 

ClC-1 and TNNT2 similar to Mbnl1∆3/∆3 mice [77, 78].  Cell culture studies using minigenes and 

siRNA depletion of MBNL1/MBNL2 or CUG-BP1 indicate that focal accumulation of mutant CUG 

RNA is primarily dependent on MBNL1, but the aberrant splicing of TNNT2 and INSR genes require 

CUG-BP1 binding sites [62, 67, 75].  In addition, nuclear aggregation of MBNL1 with expanded CAG 

repeats instead of CUG repeats does not correlate with splicing irregularities [79], bringing to question 

the extent of involvement of parallel processes mediated by MBNL sequestration and CUG-BP1 

elevation in DM1 pathogenesis.  Additional research will be needed to clarify the exact mechanism by 

which MBNL1 is functionally inhibited by the CUG repeats, and apparently not by the CAG repeats, 

and the mechanism of increasing CUG-BP1 expression and activity in DM1.   

In addition to the major role of the CUG repeat containing RNA, the chromatin landscape 

surrounding the pathological repeat motif may contribute to the disease by affecting the expression of 
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neighboring genes at the DM1 locus.  CTG repeats were shown to be strong nucleosome positioning 

elements [80, 81], and the expansion of the CTG repeats at the DM1 locus resulted in the occlusion of 

an adjacent DNase hypersensitive site, signifying a fundamental change in chromatin structure that 

extends beyond the repetitive sequence motif upon repeat expansion [82].  DMPK is located in a gene-

rich region, surrounded by genes less than a kilobase away on either side such as DMWD (dystrophia 

myotonica-containing WD repeat motif) upstream of its 5’UTR, and SIX5 (sine oculis homeobox 

homolog 5, formerly DMAHP) immediately downstream of its 3’UTR.  Other genes such as RSHL1 

(radial spoke head-like) and SYMPLEKIN are all included in a 120kb region that is flanked by nuclear 

matrix attachment regions (MARs) that place DMPK and regional genes in the same chromatin fiber 

loop [83].  The loss of a DNase hypersensitive site located between the CTG repeats in DMPK’s 

3’UTR and SIX5’s promoter on the mutant DMPK allele suggested that this normally ‘open’ 

chromatin region becomes ‘closed’ when the triplet repeats expand, making it less accessible to DNA 

binding factors for gene regulation.  Reporter assays and allele-specific RT-PCRs demonstrated that 

this normally nuclease-sensitive region contains an enhancer to SIX5, called the hypersensitive site-

enhancer (HSE), and that  the loss of the HSE associated by the altered chromatin structure caused by 

the expanded repeat results in suppression of SIX5 from the expanded DMPK allele in human DM1 

cells [84, 85].  To test that loss of SIX5 expression contributes to the DM1 disease phenotype, SIX5-

deficient mice were created by two groups.  With increasing severity, heterozygous and homozygous 

mice for SIX5 deletion developed premature cataracts [86, 87].  In a similar dose-dependent manner, 

loss of SIX5 also resulted in cardiac conduction defects and testicular atrophy [88, 89].  With 

additional evidence that DMWD expression from the mutant allele is also decreased in human DM1 

cells [90], it became plausible to suspect that some of the features associated with DM1 might be 

instigated by repeat expansion-induced chromatin condensation and suppression of local DM1 genes. 

In the midst of accumulating evidence for the proposed DMPK haploinsufficiency, trans-dominant 

RNA, and regional chromatin condensation models to varying degrees, the existence of another DM2 

locus associated with the disorder promised to impart more insight into its molecular pathology, and 
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perhaps provide more validity to one theory over the others.  When DM2 was identified as a CCTG 

expansion in intron 1 of ZNF9 associated with nuclear inclusions composed of mutant ZNF9 

transcripts and MBNL proteins, it reinforced the primacy of the RNA toxic gain-of-function 

hypothesis [31, 91].  Furthermore, alternatively spliced isoforms of ClC-1 and INSR found in DM1 

cells were also found in DM2 tissues, implying that similar pathogenic mechanisms were initiated by 

expanded CUG or CCUG RNA repeats [92, 93].  However, an important difference between DM1 and 

DM2 that might not be explained solely by the toxicity of repetitive elements in RNA, is that only the 

DM1 locus presents a congenital form with symptoms of mental retardation and hypotonia not shared 

by DM2.  And rather than progressive muscle degeneration, congenital DM1 exhibits muscle 

immaturity akin to cell culture studies demonstrating inhibition of myogenesis by overexpression of 

the 3’UTR region of DMPK [94].  This suggests that congenital DM1 might be caused by factors 

associated with the DM1 locus that add additional pathological mechanisms to those mediated by the 

CUG containing RNA through MBNL proteins and CUG-BP1 in adult-onset DM1 and DM2.  

 

DM1 Locus and associated congenital DM1  

Repetitive elements exist throughout the human genome and are susceptible to epigenetic 

processes such as bidirectional transcription, histone modification and DNA methylation [95-98].  

Congenital DM1 provides evidence for all of the above alterations at the DM1 locus that may have 

important implications for the unique developmental and clinical manifestation of this disease and 

perhaps other repeat expansion disorders.  Cell culture studies in C2C12 myoblasts demonstrated that 

stable expression of mutant CUG100 RNA generates foci, but does not inhibit myoblast differentiation 

in the same manner as expressing DMPK’s 3’UTR with expanded repeats [99].  Cis-elements adjacent 

to the repeat domain in DMPK’s 3’UTR were thus found necessary for impairing muscle 

differentiation in C2C12 cells [94, 100].  Transgenic mice designed to overexpress the human DMPK 

3’UTR with a wildtype number of repeats demonstrated myogenic defects, including reduced fusion 

potential in primary myoblasts that resembled the delayed muscle development profile of congenital 
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DM1 [101].  In all, influences other than CUG repeats expressed at the RNA level may contribute to 

congenital DM1 and those factors may involve properties of the DM1 locus. 

Prior studies have shown that the CTG repeats in DMPK are flanked by CTCF sites [83] that can 

function as insulators to the effects of nearby enhancers or to the position effects of suppressive 

chromatin domains [102].  Interestingly, CTCF binding is inhibited by to CpG methylation that occurs 

in an area encompassing the CTG repeats in congenital DM1 and not adult DM1 [83, 103].  Further 

studies have shown that CTCF binding is indeed absent on the expanded, methylated DM1 allele, but 

present on the wildtype, non-methylated allele in a congenital DM1 cell line [104].  A model for 

heterochromatin formation at repetitive DNA sequences implicates dsRNA in triggering an RNAi 

pathway that produces siRNAs, recruits histone methyltransferases, heterochromatin protein 1 (HP1) 

and DNA methyltransferases [105].  In comparing the wildtype and expanded alleles in congenital 

DM1, it was shown that bidirectional transcription extends across the CTG repeats and is converted to 

siRNA-sized fragments on both alleles, but the antisense transcription is limited by the presence of 

CTCF on the wildtype allele.  On the wild-type allele, this was associated with heterochromatin-

associated modifications restricted to the region of the repeat, whereas the functional loss of CTCF 

next to the expanded repeats was correlated with the spread of antisense transcription and 

heterochromatin-associated histone modifications to the surrounding regions, which might account for 

the loss of the nearby HSE and reduced SIX5 expression [104].  Exclusion of CTCF insulator activity 

on the expanded allele might also expose the DMPK promoter to the enhancer activity of SIX5’s HSE 

during embryogenesis when it is most active [86], potentially resulting in elevated levels of expanded 

DMPK RNA.  As shown in cell culture and transgenic mouse studies, increased expression of DMPK 

results in signs of arrested muscle development and other DM1-associated pathologies that is 

aggravated by but not dependent on expanded CUG repeats [101, 106].  It is currently unknown 

whether the DM2 locus shares similar chromatin features as DM1. 

HSALR and Mbnl1∆3/∆3 mice connect DM1 and DM2 pathogenesis to the RNA toxic gain-of-

function hypothesis but fail to demonstrate the congenital form of this disease.  More recently, two 
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groups have shown that overexpressing CUG-BP1 in skeletal muscle of mice leads to neonatal 

lethality at doses from 4 to 10 fold above endogenous levels [77, 78].  Histological analysis of skeletal 

muscle from the CUG-BP1 transgenic mice also revealed defects in myogenic development that was 

partly characteristic of congenital DM1.  The CUG-BP1 transgenic mice displayed DM1-associated 

splicing defects for Clcn1, and cardiac troponin T (Tnnt2), in addition to myotubularin-related 1 gene 

(Mtmr1).  Although MTMR1 splicing irregularities have not been tested in adult DM1 and DM2 

skeletal muscle, it has been shown that MTMR1 is aberrantly spliced in congenital DM1 muscle cell 

cultures and tissue samples [107], which suggests that the congenital phenotype of this expansion 

disorder may also result from mis-regulation in alternative splicing through the antagonistic roles of 

MBNL proteins and CUG-BP1.  Mental retardation distinguishes congenital myotonic dystrophy from 

adult DM1 and DM2, but there have been no reports of CNS involvement in Mbnl1∆3/∆3 mice where 

Mbnl1 function in brains is eliminated.  However, transgenic mice overexpressing human DMPK with 

expanded repeats does lead to altered tau protein isoforms in neurons [69].  Similarly, studies on adult 

DM1 brain tissues demonstrated ribonuclear inclusions of mutant DMPK RNA and MBNL proteins, 

as well as splicing alterations in neuronal pre-mRNAs such as NMDA NR1 receptor (NMDAR1), 

amyloid beta precursor protein (APP), and microtubule-associated protein tau (MAPT) [108].  It 

remains to be seen whether congenital DM1 is also associated with comparable ribonuclear inclusions 

and compromises in alternative splicing in the CNS. 

 

Conclusions and Future Therapies 

As the molecular intricacies of myotonic dystrophy continue to unfold, it is now clear that 

unstable expansions of CTG or CCTG repeats from genetically distinct contexts can cause this disease 

syndrome.  There is also no doubt that expression of RNA transcripts containing pathogenic repeat 

lengths can produce defects in alternative splicing of multiple RNAs, providing a basis for the 

multisystemic features of DM1 and DM2.  Therapies targeted to diminishing the toxic effects of CUG 

repeats show potential in ameliorating the debilitating aspects of this disease.  For example, exploiting 
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the endogenous RNAi pathway has been successful in reducing the nuclear accumulation of expanded 

RNA foci [109, 110], and even restoring CUG-BP1 levels and repairing muscle differentiation and 

insulin insensitivity defects in DM1 myoblasts [111].  Also, catalyzing the cleavage of DMPK RNA in 

DM1 myoblasts by a hammerhead ribozyme demonstrates a similar reduction in nuclear foci and 

rescue of INSR splicing alterations [112].  Finally, a survey of chemical compounds to alleviate the 

toxic effects of expanded CTG repeats in a neuronal cell culture model shows promise in using 

flavonoids and DHEA-S by an unknown mechanism [113].  There are other prospective targets for 

therapy such as MBNL proteins, CUG-BP1, and certain transcription factors that may also be 

sequestered by the expanded RNA transcripts [114].  It is a lasting tribute to the many researchers who 

have labored to reveal the molecular mechanisms that cause DM1 and DM2 that rational therapies are 

being developed that will surely ameliorate or cure these diseases.  
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Figure 1.  Clinical features of myotonic dystrophy.  Myotonic dystrophy type 1 (DM1) and type 2 

(DM2) share several hallmark clinical traits affecting the muscle, eye, heart, brain and 

endrocrine systems.  DM1-specific features include a distal pattern of muscle weakness and 

atrophy at disease onset, congenital DM1 with associated symptoms of mental retardation, 

hypotonia and facial diplegia, as well as gastrointestinal tract problems (congenital and late 

onset) that are notably absent in reports of DM2.  Clinical symptoms unique to DM2 include a 

pronounced proximal distribution of muscle weakness and atrophy at disease onset and 

hypertrophy of calf muscles. 
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Figure 2.  RNA toxic gain-of-function model for myotonic dystrophy.  Myotonic dystrophy is 

associated with expansions in either CTG repeats in the 3’UTR of DMPK or with CCTG 

repeats in intron 1 of ZNF9.  RNA transcripts likely form double-stranded hairpin structures 

from the extended tracts of CUG or CCUG repeats, to which MBNL proteins prefer to bind 

[70, 115].  MBNL proteins co-localize with the ribonuclear inclusions formed by mutant RNA 

[91].  It is not clear whether nuclear sequestration of MBNL directly leads to a significant 

decrease in normal MBNL activity, or whether expanded CUG/CCUG RNA signals an 

alternate pathway to MBNL functional inhibition [79].  CUG-BP1 levels are increased in 

DM1 cells [65, 67], independent of MBNL protein regulation [76].  Increased CUG-BP 

activity and/or loss of MBNL function may lead to aberrant gene splicing events associated 

with DM1 and DM2 as shown. So far, it has been shown that myotonia and insulin resistance 

can be attributed to splicing defects in chloride channel 1 (ClC-1) and insulin receptor (INSR), 

respectively, in DM1 and DM2 cells [66, 67].  Other identified splicing alterations in DM 

tissues are as follows: TNNT2, cardiac troponin T [62]; TNNT3, skeletal muscle troponin T 

[74]; MAPT, microtubule-associated protein tau [108]; APP, amyloid beta precursor protein 

[108]; NMDAR1, N-methyl-D-aspartate receptor 1 [108]; RyR1, ryanodine receptor 1 [116]; 

SERCA, sarcoplasmic/endoplasmic reticulum Ca2+-ATPase [116]; MTMR1, myotubularin-

related 1 gene [77, 107]. 
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Clinical Features of Myotonic Dystrophy

DM1-specific features
prominent distal muscle weakness at onset [23]
distal muscle atrophy at onset [23]
congenital DM1 [23]

mental retardation
hypotonia
facial diplegia

gastrointestinal tract problems [30]

Shared features*
myotonia* [27]
muscle weakness and atrophy* [27]

face, neck, fingers, limbs
cataracts [37]
cardiac conduction defects* [27]
cognitive dysfunction* [27]
hypersomnia* [27]
insulin resistance [37]
testicular atrophy [37]
frontal balding in males [27]
hypogammaglobulinemia [37]
muscle pain [30]

DM2-specific features
prominent proximal muscle weakness at onset [23]
proximal muscle atrophy at onset [23]
hypertrophy calf muscles [27]

*symptoms present in DM2, but more prominent in DM1

DM2

DM1

Figure 1
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