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Summary 

Duchenne muscular dystrophy is the most prevalent and severe form of human 

muscular dystrophy.  Investigations into the molecular basis for Duchenne muscular 

dystrophy were greatly facilitated by seminal studies in the 1980’s that identified the 

defective gene and its major protein product, dystrophin.  Biochemical studies revealed 

its tight association with a multi-subunit complex, the so-named dystrophin-glycoprotein 

complex.  Since its description, the dystrophin-glycoprotein complex has emerged as an 

important structural unit of muscle and also as a critical nexus for understanding a 

diverse array of muscular dystrophies arising from defects in several distinct genes.  

The dystrophin homologue utrophin can compensate at the cell/tissue level for 

dystrophin deficiency, but functions through distinct molecular mechanisms of protein-

protein interaction. 
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Dystrophin 

 Dystrophin is the 427 kDa protein product of the gene defective in Duchenne 

muscular dystrophy [1,2].  Dystrophin is comprised of four major domains [2], three of 

which are homologous to domains present in several actin binding cytoskeletal proteins 

including α-actinin and β-spectrin (Figure 1).  The amino terminal domain contains a 

pair of calponin homology (CH) modules that together form a functional actin binding 

domain in dystrophin and related proteins.  The largest domain of dystrophin consists of 

24 triple helical spectrin like repeats interspersed with 4 putative hinge domains [3] that 

together are thought to give dystrophin an elongated and flexible rod shape.  The third 

domain of dystrophin, initially named the cysteine-rich domain, encodes two EF hand-

like modules [2] bounded by WW [4] and ZZ [5] modules.  Finally, the carboxy-terminal 

domain is unique to dystrophin and its closest homologues utrophin [6] and the 

dystrobrevins [7].  To date, crystal structures have been solved for the tandem CH 

domains (ABD1) of dystrophin [8] and utrophin [9] and also for sequence encoding the 

WW and EF hand modules of the cysteine-rich domain of dystrophin [10], which 

represents less than 14% sequence coverage for the entire protein.  In addition to three 

promoters that regulate expression of full-length dystrophin in a tissue-specific fashion, 

the DMD gene also contains four internal promoters that drive expression of distinct, 

serially truncated proteins (Figure 1) in non-muscle tissues [11]. 

Dystrophin is localized to the cytoplasmic face of the muscle cell plasma 

membrane, or sarcolemma [12], and particularly within a cytoskeletal lattice termed 

costameres [13,14].  Through an extensive network of interacting proteins [15] 

costameres physically couple the sarcolemma with the Z disk of force-generating 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 4

myofibrils (Figure 2).  The absence of dystrophin in humans and the mdx mouse leads 

to costamere disorganization [13,16-19], sarcolemmal fragility [20-24], muscle 

weakness [25,26] and necrosis [27].   Sarcolemmal fragility, muscle weakness and 

necrosis are all exacerbated by mechanical stress, improved by muscle immobilization, 

and corrected in the mdx mouse by transgenic expression of full-length dystrophin 

[22,23,26,28-34].  Taken together, these studies provide compelling evidence that 

dystrophin stabilizes the sarcolemma against mechanical forces experienced during 

muscle contraction or stretch. 

Identification of the dystrophin domains important for its function has been 

elegantly advanced through the characterization of transgenic mdx mice expressing 

dystrophin constructs bearing deletions in different domains.  The severe phenotype of 

mdx mice expressing a dystrophin deleted in the cysteine-rich domain [35] suggested it 

is necessary for dystrophin function.  Expression of Dp71 also resulted in a severe 

phenotype [36,37], thus indicating that the cysteine-rich domain was not sufficient for 

dystrophin function.  Intriguingly, transgenic mdx mice expressing dystrophin constructs 

deleted for the amino-terminal tandem CH domain or carboxy-terminal domain 

presented with a very mild or no phenotype suggesting neither is essential for 

dystrophin function [38,39].  Specific deletion of the large rod domain was well tolerated 

to the extent that only 4 of 24 spectrin repeats were necessary to largely retain function 

[40].  In contrast, substitution with the 4 homologous spectrin repeats of α-actinin-2 was 

not tolerated [41].  Finally, co-expression of Dp71 and the cysteine-rich domain deleted 

construct failed to rescue the dystrophic phenotypes of mdx muscle [42].  These studies 
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demonstrated that the cysteine-rich domain present in cis with either the amino-terminal 

domain or portions of the rod domain are minimally required for dystrophin function. 

 

The Dystrophin-Glycoprotein Complex 

Shortly after identification of the DMD gene and dystrophin, it was shown that 

dystrophin could be dramatically enriched from detergent-solubilized skeletal muscle 

membranes using wheat germ agglutinin chromatography [43].  The dystrophin-

enriched fraction was further purified by serial anion exchange chromatography and 

sucrose gradient centrifugation to identify 10 tightly associated proteins of 156 kDa, 88 

kDa, a triplet of 59 kDa, 50 kDa, a doublet of 43 kDa, a singlet of 35 kDa present at a 

molar ratio of 2:1 relative to dystrophin, and 25 kDa [44].  The 156, 50, 43, and 35 kDa 

proteins were shown to be glycosylated with the 156 kDa protein so extensively 

glycosylated that it stained poorly with Coomassie blue [44].  Since these proteins co-

localized with dystrophin at the sarcolemma, co-purified with dystrophin in stoichiometric 

amounts through several purification steps, and were diminished in biopsies from DMD 

patients and muscle of the dystrophin-deficient mdx mouse [44,45], it was concluded 

that dystrophin functioned as part of a larger, hetero-oligomeric glycoprotein complex 

(Figure 2) that may serve to stabilize the sarcolemma against the repetitive stress 

imposed during muscle contraction.  Dystrophin and its tightly associated proteins were 

collectively named the dystrophin-glycoprotein complex. 

The genes encoding all core components of the dystrophin-glycoprotein complex 

have been characterized and their interactions with dystrophin and each other better 

defined (Figure 2).  The 156 kDa and one of the 43 kDa dystrophin-associated 
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glycoproteins are encoded by a single transcript and the propeptide is proteolytically 

processed into extracellular 156 kDa and single-pass transmembrane 43 kDa subunits 

which remain non-covalently associated [46].  Based on the extensive glycosylation of 

the 156 kDa subunit [45] and tight association of both proteins with dystrophin [44,45], 

the 156 kDa and 43 kDa subunits were renamed α- and β-dystroglycan, respectively.  

Using limited proteolysis, wheat germ agglutinin chromatography and an array of site-

specific dystrophin antibodies, Ozawa and colleagues demonstrated that the cysteine-

rich and first half of the C-terminal domains of dystrophin were important for its binding 

to the glycoprotein complex [47].  By blot overlay assay, they further showed that β-

dystroglycan, and the 88 kDa and 59 kDa dystrophin-associated proteins directly bound 

the cysteine-rich and/or C-terminal domains of dystrophin [48].  Several biochemical 

studies have since refined the sites of molecular contact between dystrophin and β-

dystroglycan [49-52] with the most recent work demonstrating that the WW, EF hand 

and ZZ domains are all required for dystrophin binding to β-dystroglycan [53].  

Interestingly, a DMD-causing missense mutation (C3340Y) results in loss of β-

dystroglycan binding activity [53], which reinforces the importance of dystrophin/β-

dystroglycan interaction in normal muscle function.  While no human muscle disease 

has been linked with mutations in the dystroglycan gene, its protein products are clearly 

essential to the function of the dystrophin-glycoprotein complex because muscle-

specific ablation of dystroglycan in mice causes muscular dystrophy [54,55]. 

Elucidation of the genes encoding isoforms of the 88 kDa and 59 kDa dystrophin-

associated proteins (named dystrobrevins and syntrophins, respectively) greatly 

benefited from comparative investigations into the molecular composition of the 
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mammalian neuromuscular junction and electric organ of Torpedo californica that 

preceeded the discovery of dystrophin [7,56,57].  Dystrobrevins and syntrophins are 

cytoplasmic proteins that bind directly to each other and to sequences within the 

carboxy-terminal domain of dystrophin [57].  While syntrophins are thought to function 

as modular adaptors that anchor ion channels and signaling molecules to the 

dystrophin-glycoprotein complex, no myopathy is associated with syntrophin ablation in 

mice [58-60].  In contrast, knockout of α-dystrobrevin results in a progressive myopathy 

[61], suggesting an important role in dystrophin-glycoprotein complex function. 

Distinct but related genes encode the 50 kDa subunit [62], the second 43 kDa 

protein [63], and two different 35 kDa proteins [64,65] of the dystrophin-glycoprotein 

complex, which were renamed α-, β-, γ- and δ-sarcoglycan.  The sarcoglycans are all 

single pass transmembrane proteins that co-assemble into a stable tetrameric complex 

[66].  While its function is not fully understood, the sarcoglycan complex appears to 

strengthen interaction of β-dystroglycan with α-dystroglycan and dystrophin [66].  

Importantly, mutations in individual sarcoglycan genes lead to loss of the entire 

sarcoglycan complex resulting in forms of limb-girdle muscular dystrophy in humans 

and progressive muscular dystrophy when knocked out in mice [66].  The 25 kDa 

dystrophin associated protein, named sarcospan [67], is also stably associated with the 

sarcoglycan complex.  However, no human myopathy has been linked to mutations in 

the sarcospan gene and ablation of sarcospan in mice caused no muscle phenotype 

[68].  Finally, α-dystrobrevin has been shown to directly interact with the sarcoglycan 

complex [69], which raises the possibility that the myopathy accompanying α-
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dystrobrevin ablation may arise from destabilization of an indirect linkage between 

dystrophin and the sarcoglycan complex. 

 

Molecular Partners of the Dystrophin-Glycoprotein Complex 

A screen of known extracellular matrix molecules for skeletal muscle α-

dystroglycan binding activity identified laminin as the first extracellular ligand for α-

dystroglycan [46,70].  Laminin-Sepharose pull-down of the entire dystrophin complex 

definitively demonstrated that α-dystroglycan was a stoichiometric component of the 

complex [70].  Agrins, neurexins and perlecan all contain modules homologous to the α-

dystroglycan binding G-domain of laminin [71], and all have been shown to bind α-

dystroglycan with high affinity [72,73].  Like laminins, these proteins all bind to α-

dystroglycan in a manner dependent on its oligosaccharide modifications [72,73].  In 

contrast, the chondroitin sulfate chains of the proteoglycan biglycan have been shown 

to mediate its binding to the core protein of α-dystroglycan [72,73].  While the 

physiologic significance of α-dystroglycan binding to such a wide variety of extracellular 

matrix molecules is not clear, the functional role of the dystroglycan complex may 

depend on which extracellular ligand is locally available.  O-linked oligosaccharides of 

unknown structure are clearly important for α-dystroglycan binding to extracellular 

ligands as well as its function in vivo because mutations in glycosyltransferases that 

post-translationally modify α-dystroglycan result in hypoglycosylation, loss of 

extracellular ligand binding, and several forms of congenital muscular dystrophy in 

humans and mice [72,73].   
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As noted earlier, sequence similarity of the dystrophin amino-terminal domain 

with the tandem CH actin binding domains of β-spectrin and α-actinin suggested that it 

may bind actin filaments.  Recombinant proteins encoding the first 246 amino acids of 

dystrophin or the first 261 amino acids of its homologue utrophin have been shown by 

several groups to bind actin filaments in vitro with a Kd of ~ 12 µM and 1:1 stoichiometry 

(summarized in [74]).  Electron microscopy and image reconstruction analysis 

suggested substantial plasticity in the modes of actin filament binding displayed by the 

utrophin amino-terminal tandem CH domain [75-78].  However, all of these studies 

assumed that the actin binding function of dystrophin and utrophin is restricted to the 

amino-terminal, tandem CH domain, which exhibits 25-fold lower affinity for actin 

compared to purified dystrophin-glycoprotein complex [79].  Furthermore, the 

stoichiometry of dystrophin-glycoprotein complex binding to actin filaments (1 

dystrophin/24 actin monomers) demonstrated a more extensive lateral association 

between dystrophin and actin than could be explained by the amino-terminal domain 

alone [79].  Limited proteolysis experiments led to the identification of a second actin 

binding site (ABD2, Figure 1) situated in the middle third of the dystrophin rod domain 

[79].  Five of seven spectrin repeats in the second site were rich in basic amino acid 

residues (Figure 1) and the cluster of basic repeats was shown to independently bind 

acidic actin filaments through electrostatic attraction [80,81].  Moreover, the dystrophin-

glycoprotein complex was shown to slow depolymerization of actin filaments in vitro but 

neither the amino-terminal, nor middle rod domain alone or present in trans had any 

effect on actin filament depolymerization [79,82].  Although separated by ~1200 amino 

acids, the two sites were proposed to act in concert to effect an extended lateral 
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association that could account for the measured 1:24 stoichiometry of binding [79,82].  

The redundancy of two actin binding domains also provided a molecular basis to explain 

why neither the amino-terminal nor middle rod domain are essential for dystrophin 

function [38,40], yet expression of the cysteine-rich and carboxy-terminal domains alone 

(and recovery of dystrophin-associated proteins) was insufficient to correct the 

dystrophic phenotype [36,37]. 

While dystrophin exhibits no preferential binding to cytoplasmic actin over 

sarcomeric α-actin in vitro [83], it co-immunoprecipitated with cytoplasmic γ-actin [84] 

even though this isoform represents only 1/4000th of the total actin expressed in adult 

skeletal muscle [85].  Immunofluorescence analysis of mechanically peeled sarcolemma 

demonstrated that dystrophin is tightly attached to the sarcolemma [14] and was closely 

co-localized with cytoplasmic γ-actin filaments [86].  Importantly, γ-actin filaments were 

absent from all sarcolemma peeled from muscle fibers of the dystrophin-deficient mdx 

mouse [86].  Transgenic expression of utrophin [87], or dystrophin constructs retaining 

the β-dystroglycan binding site plus either the amino-terminal [85] or middle rod actin 

binding domain [88] was sufficient to restore coupling between the sarcolemma and γ-

actin in mdx muscle.  These data demonstrate that dystrophin functions to mechanically 

anchor cytoplasmic γ-actin filaments of the cortical cytoskeleton to the sarcolemma 

(Figure 2) and that utrophin can compensate in this role when dystrophin is absent. 

Two-hybrid screens using α-dystrobrevin as bait have identified several novel 

interacting proteins [89-91].  Two of these proteins, synemin [91] and syncoilin [89,92], 

are structurally related to intermediate filament proteins and interact with the 

intermediate filament protein desmin (Figure 2).  Synemin also directly binds to α-actinin 
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[93] and vinculin [94] to provide additional mechanical linkages between the dystrophin-

glycoprotein complex and muscle cytoskeleton (Figure 2).  Mice null for either α-

dystrobrevin [61] or desmin [95,96] exhibit skeletal and cardiomyopathy, which suggests 

that mechanical coupling of the dystrophin-glycoprotein complex to the intermediate 

filament cytoskeleton is necessary for normal muscle function.  Curiously, the skeletal 

myopathies of α-dystrobrevin null and desmin null mice manifests in the absence of 

sarcolemmal fragility [61,95,96] and the sarcolemma of desmin null muscle is actually 

protected from stress-induced injury [97,98].  Reiterative two-hybrid screens with a third 

α-dystrobrevin binding protein, dysbindin [90], led to the identification of a novel 413 

kDa muscle protein named myospryn [99].  Interestingly, the myospryn gene was 

recently identified as a downstream target for the MEF2A transcription factor and 

myospryn protein binds directly to α-actinin-2 [100].  Two hybrid screens also led to the 

identification of γ-filamin as a sarcoglycan interacting protein [101].  Like dystrophin, 

filamin contains an amino-terminal tandem CH actin binding domain, but in combination 

with a large number of Ig motifs instead of spectrin repeats [102]. Thus, the α-

dystrobrevin/dysbindin/α-actinin-2 and sarcoglycan/γ-filamin/actin axes provide 

additional structural linkages between the sarcolemmal dystrophin-glycoprotein complex 

and myofibrillar apparatus (Figure 2).  Finally, dystrophin has been shown to co-

immunoprecipitate with cytokeratins 8 and 19 [84] through a direct interaction of 

dystrophin’s amino-terminal tandem CH domain with cytokeratin 19 [103].  Thus, many 

of the proteins found to interact with the dystrophin-glycoprotein complex couple it with 

other structural elements of muscle (Figure 2) suggesting it plays an essential 

structural/mechanical role in striated muscle.  
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Costamere Remodeling in Dystrophin-Deficient Muscle 

Mounting evidence suggests that dystrophin-deficient muscle may sense the 

underlying structural defect in sarcolemmal integrity and partially adapts through 

activation of a compensatory cytoskeletal remodeling program.  Cytoplasmic γ-actin 

protein levels are elevated 10-fold within dystrophin-deficient mdx muscle fibers (Figure 

2) while its mRNA is increased 2-fold [85].  In contrast, cytoplasmic β-actin mRNA and 

protein were elevated only 2-fold in mdx muscle and β-actin was undetectable within 

muscle fibers (L.M. Hanft and J.M. Ervasti, unpublished results).  Besides γ-actin, 

several costameric actin binding proteins are also upregulated in mdx muscle (Figure  

2) including γ-filamin [101], the cytolinker plectin [104], talin and vinculin [105].  

Furthermore, dysbindin [90] and syncoilin [89] expression are increased in dystrophin-

deficient muscle, as is α7β1 integrin [106,107], which can form a parallel mechanical 

linkage between laminin-2, the sarcolemma, and the myofibrillar Z disk (Figure 2).  

While normally expressed at very low levels in normal postnatal muscle (Table I), 

utrophin shows increased expression in dystrophin-deficient muscle and is targeted to 

costameres [86,87].  Thus, it seems likely that dystrophin-deficient muscle attempts to 

compensate for the absence of dystrophin through upregulation of available structural 

proteins.  In fact, transgenic overexpression of either utrophin [108] or α7 integrin [109] 

has been shown to further compensate for dystrophin deficiency.  Thus, many of the 

proteins upregulated in dystrophin’s absence are capable of forming parallel mechanical 

links between the sarcolemma and myofibrillar apparatus.  As such, these findings 
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further reinforce an important mechanical function for the dystrophin-glycoprotein 

complex. 

 

Dystrophin versus Utrophin 

Utrophin is a widely expressed autosomal gene product [6] with significant 

homology to dystrophin (Figure 3).  Utrophin is distributed throughout the sarcolemma in 

fetal and regenerating muscle, but is down-regulated at birth and restricted to the 

myotendinous and neuromuscular junctions in normal adult muscle [11].  Because 

utrophin and dystrophin bind the same complement of proteins [110,111], it was 

hypothesized that utrophin may be capable of compensating for dystrophin deficiency.  

Indeed, continued utrophin expression in adult mdx mice partially attenuates the 

phenotype associated with dystrophin deficiency as mice lacking both proteins exhibit a 

severe phenotype more similar to that seen in DMD patients [112,113].  Moreover, 

transgenic overexpression of full length utrophin rescued all known phenotypic 

parameters of dystrophin deficiency in mdx mice [87,108].  Based on the original 

quantitative estimate of dystrophin abundance in normal muscle [1] and the measured 

abundance of utrophin in a line of transgenic mice fully corrected for the mdx phenotype 

[87], it is widely perceived that 7-fold higher levels of utrophin may be necessary to 

compensate for dystrophin deficiency (Table I).  However, new quantitative 

measurements using full-length recombinant mouse dystrophin as standard [114] 

indicate that the abundance of dystrophin in normal muscle is 13-fold higher (Table I) 

than previously reported [1].  Thus, utrophin upregulation can fully rescue all known 
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parameters of the mdx phenotype [108] even when expressed at one-half the measured 

abundance of dystrophin in normal muscle (Table I). 

While the studies of dystrophin-deficient mdx and transgenic mice provide 

compelling evidence that utrophin over-expression can compensate for the absence of 

dystrophin, biochemical data suggest that utrophin differs from dystrophin in its mode of 

binding to actin filaments and β-dystroglycan.  Utrophin lacks the cluster of basic, actin 

binding spectrin repeats present in the middle rod domain of dystrophin [81].  However, 

full-length recombinant utrophin bound actin filaments with high affinity and a 

stoichiometry of 1 utrophin per 14 actin monomers [87], implying a stronger and more 

extensive lateral association with actin filaments than anticipated from studies with 

isolated utrophin fragments [74,81].  Interestingly, utrophin constructs encoding the 

amino-terminal tandem CH domain plus 10 spectrin repeats bound actin filaments with 

the same properties as full-length utrophin, while constructs encoding the tandem CH 

domain plus 9, 6, 3 or no spectrin repeats each bound actin filaments with progressively 

lower affinity and stoichiometry [115].  Thus, the amino-terminal CH domain and first 10 

spectrin repeats encode the complete actin binding domain of utrophin (Figure 3), which 

may provide a molecular explanation for the greater effectiveness of full-length utrophin 

in rescuing dystrophin-deficient muscle [108] compared to a utrophin mini-gene deleted 

for spectrin repeats 4-19 [116,117]. 

Full-length recombinant dystrophin bound actin filaments with properties [114] 

remarkably similar to those previously measured for purified dystrophin-glycoprotein 

complex [79], suggesting that neither α1-syntrophin [118], nor any other dystrophin-

associated protein contributes to dystrophin-glycoprotein complex binding to actin 
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filaments.  In direct comparison, dystrophin and utrophin differed in their extent of lateral 

association with actin filaments, in sensitivity of actin binding to increasing ionic 

strength, and in the spectrin repeat modules necessary for actin filament binding [114].  

In stark contrast to utrophin, spectrin repeats 1-10 of dystrophin play no direct role in 

actin binding other than to link the two distinct and spatially separated actin binding 

modules residing within the amino-terminal CH domain and spectrin repeats 11-17 

(Figure 3).  Furthermore, their modes of contact differ to the extent that dystrophin and 

utrophin do not compete for binding sites on actin filaments [114].   

Given their similar affinities for actin filaments [114] and efficacies in maintaining 

normal muscle function in vivo [87,114], dystrophin and utrophin are likely to bind β-

dystroglycan with similar affinities.  Ozawa and colleagues have recently reported that 

utrophin was less effective than dystrophin in competitively inhibiting dystrophin binding 

to β-dystroglycan[53].  However, my group’s quantitative comparison of actin binding 

properties shows that dystrophin and utrophin can bind a common molecular partner 

with similar affinities yet not compete due to distinct modes of contact [114]. Following 

this theme, mutagenesis experiments performed by Ozawa’s group demonstrated that 

dystrophin and utrophin also exhibit different modes of contact with β-dystroglycan [53]. 

 

Unsolved Mysteries 

Based on its association with several proteins implicated in signal transduction, 

the dystrophin-glycoprotein complex is also hypothesized to play a role in cellular 

signaling [119,120].  For example, α-syntrophin interacts with neuronal nitric oxide 

synthase [121], which in turn regulates vasodilation during exercise [122,123].  MAP 
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kinase signaling is also altered in dystrophic muscle [124-126].  However, it remains to 

be demonstrated that the dystrophin-glycoprotein complex actively participates in a 

signal transduction pathway or that altered signaling initiates the pathologies observed 

in dystrophic muscle.  In fact, a recent study aimed at revealing putative signaling 

functions for the dystrophin-glycoprotein complex instead concluded that mechanical 

destabilization is the primary cause of muscle necrosis in dystrophin-deficient muscle 

[127]. 

The Lisanti laboratory recently reported that the proteasome inhibitor MG-132 

rescued dystrophin expression in mdx muscle and restored the dystrophin-glycoprotein 

complex to the sarcolemma [128].  Despite compelling evidence that both actin filament 

and β-dystroglycan binding activities are necessary for normal dystrophin function, the 

dystrophin molecule credited with effecting these outcomes incredibly lacked the 

carboxy-terminal two-thirds of sequence, including the cysteine-rich domain important 

for dystrophin binding to β-dystroglycan.  Alternatively, it seems more logical that MG-

132 inhibition of protein degradation caused increased utrophin levels as is the case in 

a mechanistically diverse array of therapeutic strategies [129-132]. 

The accumulated data [87,108,114] strongly suggest that utrophin can 

functionally compensate for dystrophin-deficiency in vivo.  However, the clear 

differences between dystrophin and utrophin with respect to molecular mechanisms of 

actin filament [87,114,115] and β-dystroglycan binding [53] support the possibility of 

distinct in vivo functions that remain to be identified.  We recently hypothesized [114] 

that the cluster of basic actin binding spectrin repeats could act as the long speculated 

molecular “shock absorber” to dampen elastic extension and recoil during rapid 
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changes in muscle length (Figure 4).  In this role, the “non-specific” electrostatic binding 

of the dystrophin middle rod domain to actin filaments would be attractive because it 

would be less affected by changes in conformation and/or binding interface orientation 

that may occur with mechanical distortion.  The availability of full-length dystrophin 

through expression in the baculovirus system [114] makes immediately possible studies 

to test such mechanical hypotheses at the level of single molecules [133,134] while 

tests in vivo promise to be more daunting.  In contrast to the two site design of 

dystrophin, the actin binding interface of utrophin functions as a single contiguous unit 

[115] and probably lacks the capacity to function as a molecular shock absorber.  

Instead, utrophin may normally function to stabilize newly polymerized actin filaments 

during costamere formation during development.  It is also interesting to speculate that 

their non-competitive binding [114] would allow utrophin and dystrophin to 

simultaneously bind and stabilize costameric filaments during the downregulation of 

utrophin and upregulation of dystrophin that occurs shortly after birth. 

 The large size and multi-domain structure of dystrophin and utrophin suggest that 

additional interacting proteins remain to be identified.  In support of this hypothesis, 

Chamberlain and colleagues [88] demonstrated that Dp260 (Figure 1) restored 

costameric actin on mechanically peeled sarcolemma and sarcolemmal integrity when 

transgenically expressed in mdx muscle.  However, muscle weakness and necrosis 

were not markedly improved.   Because Dp260 lacks the amino-terminal actin binding 

domain and spectrin repeats 1-10, but retains the basic middle rod actin binding site 

(Figure 1), it is possible that sequences absent from Dp260 encode binding sites for 

unidentified dystrophin-interacting proteins.  Furthermore, dystrophin and utrophin 
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exhibit marked differences in amino acid sequence, particularly within the large rod 

domain (Figure 3).  Thus, it is possible that proteins with unique specificity for 

dystrophin or utrophin remain to be identified.  Toward addressing these possibilities, 

the availability of biochemical amounts of recombinant dystrophin and utrophin should 

prove valuable. 
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TABLE I 

 
Utrophin abundance in WT, mdx, and transgenically rescued mdx muscle 

 
               
    Line  % Tot. Prot.A  % WT Dys = 0.002B   % WT Dys = 0.026C 
 
      WT      0.0006      30        2  
 
      mdx      0.0013      65        5 
 
      Fiona/mdx     0.014      700        54   
 
 AValues in this column taken from [87]. 
  BValue for dystrophin abundance (% of total muscle protein) from [1]. 
 CValue for dystrophin abundance (% of total muscle protein) from [114]. 
 
 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 33 

 FIGURE LEGENDS 

 

Figure 1.  Protein products of the DMD gene.  Shown is a schematic diagram 

illustrating the domain structure of the protein isoforms encoded by the DMD gene.  

Dystrophin (DYS) contains an amino-terminal actin binding domain (ABD1) consisting of 

tandem CH domains, a spectrin-like triple-helical repeat (SR) domain with 4 putative 

hinge modules (H1-H4) interspersed throughout its length, a cysteine-rich (CR) domain 

critical for binding β-dystroglycan, and a carboxy-terminal domain (CT) important for 

binding syntrophins and α-dystrobrevin-2.  Acidic spectrin repeats are colored red, basic 

repeats colored blue, and a cluster of basic repeats form a second independent actin 

binding domain (ABD2).  Alternate promoters drive the expression of four truncated 

non-muscle isoforms, Dp260, Dp140, Dp116, and Dp71 each with unique amino-

terminal sequences and the indicated domains in common with full-length dystrophin. 

 

Figure 2.  The dystrophin-glycoprotein complex network.  Shown in red are the 

constituents of the core dystrophin-glycoprotein complex, which co-purify as a highly 

stable complex from skeletal muscle and which show greatly decreased abundance in 

dystrophin-deficient muscle.  α-Dystroglycan and β-dystroglycan (α-DG, β-DG); the 

sarcoglycan complex (SGC); sarcospan (SPN); α-dystrobrevin-2 (α-Db 2); syntrophin 

(SYN).  Also shown are structural proteins that interact directly with components of the 

dystrophin-glycoprotein complex, their direct binding partners, and their location within 

striated muscle cells.  Cytokeratins 8 and 19 (K8/K19).  Proteins highlighted in blue are 

present at increased levels when dystrophin is absent. 
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Figure 3.  Dystrophin and utrophin are the same only different.  Shown is a 

schematic diagram comparing the domain structures and sequence identity/similarity of 

murine dystrophin and utrophin.  Shaded regions are important for binding actin 

filaments and β-dystroglycan.  Utrophin lacks modules corresponding to spectrin 

repeats 15 and 19 in dystrophin and also the cluster of basic actin binding spectrin 

repeats present in dystrophin (ABD2).  Spectrin repeats 1-10 of utrophin are important 

in actin filament binding, but the corresponding repeats of dystrophin play no direct role 

in actin binding. 

 

Figure 4.  Dystrophin as a molecular shock absorber.  Shown is a hypothetical 

model for how dystrophin may function to dampen elastic extension during muscle 

stretch.  I)  relaxed muscle.  II) Muscle stretch imposes forces that uncoil spring-like 

elements within repeats 1-10 and 18-24.  III)  Electrostatic interaction of basic actin 

binding repeats 11-17 with acidic actin filaments dampens extension of the spring-like 

elements.  The “non-specific” electrostatic interaction between the basic spectrin 

repeats and actin filaments is optimal because it does not require a specific orientation 

for interaction and would allow sliding between dystrophin and actin.  As muscle rapidly 

shortens during contraction, the electrostatic interaction of the basic actin binding 

repeats with acidic actin filaments would also serve to dampen elastic recoil. 
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