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On Linear Equivalence for Time-Delay Systems

C. Califano, L.A. Marquez-Martinez, C.H. Moog

Abstract— The aim of the present paper is to introduce new
mathematical tools for the analysis and control of nonlinear
time-delay systems (NLTDS). An Extended Lie bracket opera-
tion equivalent to the Lie bracket operation for system without
delays is introduced. It will be shown that this operation, which
generalizes that introduced in [19], helps to characterize certain
properties of a given submodule, such as nilpotency. This basic
property is then used to define the conditions under which
a given unimodular matrix represents a bicausal change of
coordinates. The effectiveness of the proposed approach will be
shown by solving an important basic problem: to characterize
if a NLTDS is equivalent or not, to a Linear Time-Delay System
by bicausal change of coordinates.

I. INTRODUCTION

Geometric tools for addressing control problems have been

extensively used both in the linear and nonlinear context.

We recall the pioneering works [22] for the linear con-

text and [9] with reference to the nonlinear context where

the decoupling problem was addressed. Another topic of

paramount importance which was first solved by using ge-

ometric tools concerns the conditions under which a given

nonlinear system is diffeomorphic to a linear one. In the

single input case, as well known, the solution to this problem

is linked to the nilpotency of a specific distribution defined

by the vector fields which characterize the dynamics of

the given system ((g, adfg, · · ·adn
f g) for continuous time

systems and (G0, AdF0
G0, · · ·Adn

F0
G0) for discrete time

systems). This property which implies that in turn each

subdistribution is also nilpotent, implies that when seeking

for the weaker property of feedback equivalence, the solu-

tion is linked to the involutivity of a specific subdistribu-

tion (g, adfg, · · ·adn−2
f g) for continuous time systems and

(G0, AdF0
G0, · · ·Adn−2

F0
G0) for discrete time systems (see

for example [2], [3], [7], [10], [11], [12], [16], [17]).

Time-delay systems are recently gaining more and more

attention due to their importance in several applications such

as those concerning the delay in the signal transmission over

communication networks (see for example [1], [5], [13],

[15], [18], [19], [20], [21] ). A first attempt to extend some
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geometric tools to this context has been pursued in [19] with

reference to the input–output linearization problem.

In the present paper we introduce an Extended Lie bracket

operation equivalent to the Lie bracket operation for system

without delays. It will be shown that this operation, which

generalizes that introduced in [19], helps to characterize

certain properties of a given submodule, such as nilpotency.

This basic property is then used to define the conditions

under which a given unimodular matrix represents a bicausal

change of coordinates. We will finally introduce a set of

submodules which are linked to the accessibility property

of the system. Some of their properties are discussed. The

effectiveness of the proposed approach will be shown by

solving an important basic problem: to characterize if a

NLTDS is equivalent or not, to a Linear Time-Delay System

(LTDS) by bicausal change of coordinates.

With respect to ([5], [19]) we will consider a more general

class of systems where there is no assumption on the delay

of the input and we will study the effect of bicausal change

of coordinates on the given system. For notational simplicity

and without loss of generality, we will consider the same

maximal delay on the state and input variables.

The paper is organized as follows. Section II concerns

recalls and notations about time-delay systems. In Section

III some geometric tools for dealing with time-delay systems

are introduced and discussed. In Section IV the proposed

approach is used to address the problem of the equivalence

under bicausal coordinates change to linear accessible time-

delay systems. For space reasons most of the proofs are

omitted.

II. PRELIMINARIES

The following notation and definitions, taken from [14], [23],

will be used:

K denotes the field of meromorphic functions of a

finite number of symbols in {x(t−i), u(t−i), u̇(t−
i), . . . , u(k)(t − i), i, k ∈ IN}.

E is the vector space spanned by the symbols {dx(t−
i), du(t− i), du̇(t− i), . . . , du(k)(t− i), i, k ∈ IN}
over K. The elements of this space are called 1-

forms.

d is the standard differential operator that maps ele-

ments from K to E .
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δ represents the backward time-shift operator, that is,

given a(t), f(t) ∈ K:

δ a(t) df(t) = a(t − 1)δdf(t)

= a(t − 1)df(t − 1),

deg(·) is the polynomial degree in δ of its argument.

K(δ] is the (left) ring of polynomials in δ with coeffi-

cients in K. Every element of K(δ] may be written

as α(δ] = α0(t)+α1(t) δ+· · ·+αrα
(t) δrα , αi ∈

K, where rα = deg(α(δ]). Addition and multipli-

cation on this ring are defined by α(δ] + β(δ] =
∑max{rα , rβ}

i=0 (αi(t) + βi(t))δ
i and α(δ]β(δ] =

∑rα

i=0

∑rβ

j=0 αi(t) βj(t − i)δi+j .Although this ring

is non-commutative, it is an Euclidean ring, [23].

This property has been exploited in [6][14] to

obtain an inverse for matrices with entries in K(δ].

F(δ] = spanK(δ]{r1, . . . , rs}, is the (right) module

spanned over K(δ] by the column elements

r1, . . . , rs ∈ Kn×1(δ].

A polynomial matrix A(x, δ) is called unimodular if its

inverse is polynomial too.

Example 1: Let f(t) = x(t − 2) x(t) ∈ K. Then

• δf(t) = x(t − 1) x(t − 3)δ ∈ K(δ],
• df(t) = x(t)dx(t − 2) + x(t − 2)dx(t) = x(t)δ2dx +

x(t − 2)dx, is an exact form.

Let us consider a nonlinear dynamics with delays Σ, repre-

sented as

Σ : ẋ(t) = F (x[s]) +
s

∑

j=0
Gj(x[s])u(t − j) (1)

where x[s] = (x(t), · · ·x(t − s)) with x ∈ IRn, u ∈ IR. It

is assumed that (0, 0) is an equilibrium pair, and X0 × U0

a neighborhood of this point. Note that there is no loss of

generality in using the same upper bound s for the maximum

time delay occuring in the state and that of the control input,

which is done for notational simplicity.

We will denote by x[s](−p) = (x(t − p), · · ·x(t − s − p)).
u[s],u[s](−p), z[s], and z[s](−p) are defined in a similar

vein. When no confusion is possible the subindex will be

omitted so that x will stand for x[s] and x(−p) will stand

for x[s](−p).

With such notation, ΣL, the differential form representation

of Σ, is given by

ΣL : dẋ = f(x[s],u[s], δ)dx + g(x[s], δ)du (2)

with

f(x[s] ,u[s], δ) =

s
∑

i=0

∂F (x[s], δ)

∂x(t − i)
δi

+

s
∑

j=0

u(t − j)

s
∑

i=0

∂Gj(x[s])

∂x(t − i)
δi

g(x[s], δ) =

s
∑

j=0

Gj(x[s])δ
j

Example 2: Consider

ẋ1(t) = x2(t) − x2(t − 1)+
+2x2(t − 1) (u(t − 1) + u(t − 2))

ẋ2(t) = u (t) + u (t − 1)

The associated differential form representation is then char-

acterized by

f(x[s],u[s], δ)=

(

0 (2 (u(t−1)+u(t−2))−1) δ + 1
0 0

)

,

g(x[s], δ)=

(

2 x2(t − 1) (δ + 1) δ

δ + 1

)

Let us end this section by recalling the definition of a bicausal

change of coordinates given in [14].

Definition 1 (Bicausal change of coordinates):

Consider the dynamics Σ with state coordinates x.

z = φ(x[α]), φ ∈ Kn is a bicausal change of coordinates

for Σ if there exist an integer ℓ ∈ IN and a function

φ−1(z[ℓ]) ∈ Kn such that x(t) = φ−1(z[ℓ]).

III. THE GEOMETRY OF TIME–DELAY SYSTEMS

In the following section we will first examine some properties

of a bicausal change of coordinates and then enlighten some

geometric properties of time-delay systems.

A. Some properties of a bicausal change of coordinates

The following preliminary result is needed to show the

connection between the degree of a unimodular matrix and

the degree of its inverse.

Proposition 1: Let A ∈ Kn×n(δ] be a unimodular matrix

with deg(A) = s. Then deg(A−1) ≤ (n − 1) s.

Sketch of Proof. First, note that the standard Gauss-Jordan

method can be used to compute the inverse matrix [6]. The

noncommutativity does not affect the number of iterations

nor the maximal degree of the inverse with respect to the

commutative case.

In the commutative case, the inverse can be expressed as the

adjugate matrix, divided by the determinant, which is scalar

for unimodular matrices. Thus, the maximal polynomial

degree of the inverse, cannot be greater than any element

of the adjugate matrix. Since its elements are determinants
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of (n-1)x(n-1) polynomial matrices, their polynomial degree

cannot be greater than (n-1)s. ⊳

Let z(t) = φ(x[α]) be a bicausal change of coordinates and

dz = T [x[α], δ]dx its associated differential form represen-

tation then

P1) T [x[α], δ] =
α
∑

i=0

∂φ(x[α])

∂x(t − i)
δi =

α
∑

i=0
T i(x[α])δ

i is uni-

modular

P2) The inverse T−1[z, δ] of T [x, δ] is unimodular, with

polynomial degree ℓ ≤ (n − 1)α and given by

T−1[z, δ] =
ℓ

∑

i=0

∂φ−1(z[ℓ])

∂z(t − i)
δi =

ℓ
∑

i=0

T̄ i(z)δi.

The following relations, which link a bicausal change

of coordinates to its inverse, hold true ∀x ∈ X0:

T 0(x)|φ−1(z)T̄
0(z) = T̄ 0(z)|φ(x)T

0(x) = I

k
∑

i=1

T i(x)|φ−1(z)T̄
k−i(z(−i)) = 0, ∀k ≥ 1 (3)

k
∑

i=1

T̄ i(z)|φ(x)T
k−i(x(−i)) = 0, ∀k ≥ 1

Let us end this section by noting that under a bicausal change

of coordinates z(t) = φ(x[α]) the differential form (2) is

transformed into

dż(t) = f̃ (z,u, δ)dz + g̃(z, δ)du (4)

with

f̃ (z,u, δ)=
[(

T (x, δ)f(x,u, δ) + Ṫ (x, δ)
)

T−1(x, δ)
]

φ−1(z)

g̃(z, δ)=(T (x, δ)g(x, δ))φ−1(z) .

B. Geometric tools for time-delay systems

Hereafter the main tools for dealing with time-delay systems

are introduced. The obtained results are discussed with

respect to nonlinear systems with delay.

The following definition of Delayed Lie bracket, taken from

[19], will be instrumental for the definition of the Extended

Lie bracket.

Definition 2: Let r1(x, δ) =
s

∑

j=0
r

j
1(x)δj and r2(x, δ) =

s
∑

j=0

r
j
2(x)δj . The Delayed Lie bracket [rk

1(·), r
l
2(·)]D of

rk
1 (x) and rl

2(x) is defined as

[rk
1(·), rl

2(·)]D = −[rl
2(·), r

k
1(·)]D =

k
∑

i=0

∂rl
2(x)

∂x(t − i)
rk−i
1 (x(−i)) −

l
∑

i=0

∂rk
1(x)

∂x(t − i)
rl−i
2 (x(−i)).

Definition 3: Let r1(x, δ) =
s

∑

j=0
r

j
1(x)δj and r2(x, δ) =

s
∑

j=0

r
j
2(x)δj . The Extended Lie bracket [rk

1(·), r
l
2(·)]E, with

k ≤ l is defined as

[rk
1(·), rl

2(·)]E =

k
∑

j=0

[rk−j
1 (·), rl−j

2 (·)]D(x(−j))
∂

∂x(t − j)

= −[rl
2(·), r

k
1(·)]E .

Definition 4: Consider the bicausal change of coordinates

z = φ(x[α]), with dz = T (x, δ)dx. In the new coordinates

the submodule element r(x,u, δ) is transformed as

r̃(z,u, δ) = [T (x, δ)r(x,u, δ)]φ−1(z) . (5)

Setting T j = 0 for j > α = deg(T (x, δ)) and rj = 0 for

j > deg(r(x, δ)) one has

r̃l(z) =

l
∑

p=0

(

T p(x)rl−p(x(−p), )
)

φ−1(z)
. (6)

Remark. Let us note that in the new coordinates r̃(z,u, δ) is

characterized in general by a different delay than r(x,u, δ).
This is because the change of coordinates may itself depend

on the delayed variables. ⊳

We can now study the action of a change of coordinates either

on the delayed Lie bracket and the Extended Lie bracket. The

following result whose proof is omitted for space reasons,

holds true.

Lemma 1: Let r1(x, δ) =
s

∑

j=0

r
j
1(x)δj and r2(x, δ) =

s
∑

j=0
r

j
2(x)δj . Under the bicausal change of coordinates z(t) =

φ(x[α]), characterized by dz = T (x, δ)dx with T (x, δ) =
∑α

j=0 T j(x)δj one has, for k ≤ l,

[r̃k
1(z), r̃l

2(z)]D =
(7)

l−k
∑

p=0

(

T p(x)[rk−p
1 (x), rl−p

2 (x)]D(x(−p))
)

φ−1(z)

and

[r̃k
1(z), r̃l

2(z)]E =
(

Γl−k(x)[rk
1(x), rl

2(x)]E
)

φ−1(z)
(8)

with

Γl−k(x) =











T 0(x) T 1(x) · · · T l−k(x)
0 T 0(x(−1)) · · · T l−k−1(x(−1))

. . .

T 0(x(−l + k))











.
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Next theorem enlightens the conditions under which a set

of n one-forms are exact and define a bicausal change of

coordinates. The conditions are given on the corresponding

submodule elements. It is shown that the nilpotency condi-

tion of a specific distribution which is the key point in the

case of nonlinear systems without delays is transformed into

a nilpotency condition on a certain submodule which takes

into account not only the state variable x(t) but also the

delayed variables. The bound on the delay is defined by the

state dimension and the maximal delay.

Theorem 1: Consider the matrix

T (x, δ) = [r1(x, δ), · · · , rn(x, δ)] ∈ Kn×n(δ] (9)

with ri =
s

∑

j=0
r

j
i (x[β])δ

j . Then locally around the origin

there exist a bicausal change of coordinates z = φ(x) such

that dz = T−1(x, δ)dx if and only if

a) T (x, δ) is unimodular

b) ∀x ∈ X0, ∀l, j ∈ [1, n] and ∀i, k ∈ [0, 2s]

[ri
j(x), rk

l (x)]E = 0 (10)

While the detailed proof is omitted for space reasons, note

that conditions (10) correspond to consider the vector fields

Rk
j (x) =

∑k
i=0 rk−i

j (x(−i)) ∂
∂xi defined on the infinite

dimensional space, that is







































r0 r1 ··· rs 0 ··· 0 ···

0 r0(−1) ··· rs−1(−1) rs(−1) 0
... ···

0 0 ··· rs−2(−2) rs−1(−2) rs(−1)
. . . ···

...
. . .

. . .
...

...
. . . 0 ···

0 ··· 0 r0(−s) r1(−s) ··· rs(−s) ···

...
...

...
...

...
...

... ···







































with ri = ri
1 · · ·r

i
j. Despite the infinite dimensionality of the

vector fields, all the brackets are characterized by a finite

number of equations. In fact it is immediately clear that the

Lie bracket [Rk
j , R

l
i] = 0 whenever |k − l| > 2s, while the

others yield the same equations, only time-shifted.

Let us now consider the submodules

Ri = spanK(δ](g1(x[s], δ), · · ·gi(x[s],u[s], δ)), i ∈ [1, n+1]

with g1(x[s], δ) := g(x[s], δ) and for k > 1, gk recursively

defined as

gk(x[s],u[s], δ) = f(x[s] ,u[s], δ)gk−1(x[s],u[s], δ) +

−ġk−1(x[s],u[s], δ).

Remark. Note that for nonlinear time-delay systems, the left-

kernel of Ri is the left-submodule Hi+1, as shown in [23].

For nonlinear systems without delays

gk(x(t), u(t), · · · , u(k−2)(t)) =

(−1)k−1
(

adk−1
f g + [g, adk−2

f g]u + · · ·
)

while for the linear time-varying and time-invariant cases,

Rn reduces to the corresponding accessibility matrices

[B(t) A(t)B(t)−Ḃ(t) · · · ] and [B AB · · · An−1B]. We

will thus call R(x) = (g1(x[s], δ), · · ·gn(x[s],u[s], δ)) the ac-

cessibility matrix and a system characterized by a unimodular

R(x) accessible. ⊳

The following property holds true.

Proposition 2: If gi+1(x,u) ∈ Ri then ∀j ≥ 1,

gi+j(x,u) ∈ Ri.

Proof: Since gi+1(x,u) ∈ Ri then gi+1(x,u) =
∑i

j=1 gj(x,u)αj(x,u). By definition

gi+2(x,u) = f(x,u)gi+1(x,u)− ġi+1(x,u)

= f(x,u)





i
∑

j=1

gj(x,u)



 αj(x,u) +

−

i
∑

j=1

ġj(x,u)αj(x,u) −

i
∑

j=1

gj(x,u)α̇j(x,u)

=

i
∑

j=1

gj+1(x,u)αj(x,u) −

i
∑

j=1

gj(x,u)α̇j(x,u) ∈ Ri

which ends the proof.

Proposition 3: Under the change of coordinates z =
φ(x[α]), with dz = T (x[α], δ)dx, g̃j(·), j ≥ 1 is transformed

as

g̃j(z,u, δ) = [T (x, δ)gj(x,u, δ)]
φ−1(z) . (11)

Proof: According to (5), (11) is verified for j = 1.

Recursively, assume that it is verified for k − 1, then by

definition

g̃k(z,u, δ) = f̃(z,u, δ)g̃k−1(z,u, δ)− ˙̃gk−1(z,u, δ)

=
[(

T (x, δ)f(x,u, δ) + Ṫ (x, δ)
)

T−1(x, δ)
]

φ−1(z)
×

[T (x, δ)gk−1(x,u, δ)]φ−1(z) +

−
[

Ṫ (x, δ)gk−1(x,u, δ) + T (x, δ)ġk−1(x,u, δ)
]

φ−1(z)

that is

g̃k(z,u, δ) = (T (x, δ)f(x,u, δ)gk−1(x,u, δ) +

−T (x, δ)ġk−1(x,u, δ))φ−1(z)

= (T (x, δ)gk(x,u, δ))φ−1(z)

An immediate consequence is the following.

Corollary 1: Under a bicausal change of coordinates z =
φ(x[α])

Ri = spanK(δ]{g1(x) · · · gi(x,u)}

≡ R̃i = spanK(δ]{g̃1(z) · · · g̃i(z,u)}.
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IV. LINEAR EQUIVALENCE OF TIME-DELAY SYSTEMS

We will now show how the results proposed in the previous

section can be effectively used to address the problem of the

equivalence under change of coordinates to a linear system

with time delays. The following result holds true.

Theorem 2: System (1) is equivalent, under a bicausal

change of coordinates, to a linear strongly controllable delay

system if and only if

a) for 1 ≤ i ≤ n, gi(·) := gi(x, δ)

b) R(x) = (g1(x, δ), · · ·gn(x, δ)) is unimodular

c) gn+1(·) ∈ spanR(δ)Rn, that is gn+1(·) :=

gn+1(x, δ) =
n
∑

i=1
gi(x, δ)ci(δ)

d) denoting by s̄ ≤ ns the maximal delay in R(x), ∀x ∈
X0, for i, j ∈ [1, n] and r ≤ β ∈ [0, 2s̄], the following

relations are satisfied

[gβ
j (x), gr

i (x)]E = 0

with gl(x, δ) = g0
l (x) + g1

l (x)δ + · · · gk
l (x)δk.

Proof: It is easily verified that conditions a)÷ d) are

satisfied by a linear strongly controllable time-delay system

since gi(·, δ) = gi(δ). Due to Lemma 3 under any bicausal

change of coordinates g̃i(x, δ) = (T (z, δ)gi(z, δ))φ−1(x)

which implies that a)÷ c) must be satisfied. Finally d) must

be also satisfied, due to Lemma 1.

Sufficiency. Let us assume that the conditions are satisfied.

According to Theorem 1, since R(x, δ) is unimodular and d)

are satisfied, we can consider the change of coordinates z =
φ(x[α]) such that dz = T (x, δ)dx with T (x, δ) = R−1(x, δ).
Under such a change of coordinates, due to a) and b)

(g̃1(z, δ), · · · g̃n(z, δ)) =

[T (x, δ)(g1(x, δ), · · ·gn(x, δ))]φ−1(z,δ) = Id

and due to c)

g̃n+1(z, δ) =

[

T (x, δ)

n
∑

i=1

gi(x, δ)ci(δ))

]

φ−1(z)

=
n

∑

i=1

g̃i(δ)ci(δ).

It follows that g̃1(·) = B which proves the linearity of

the control dependent part of the dynamics in the new

coordinates, and due to the independence of g̃i(·) from z

and u

(g̃2(z, δ), · · · g̃n+1(z, δ))=

s
∑

i=0

∂F̃ (z, δ)

∂z(t − i)
δi(g̃1(·), · · · g̃n(·))

= Q1(δ)

that is
s

∑

i=0

∂F̃ (z, δ)

∂z(t − i)
δi = Q1(δ) =

s
∑

i=0

Aiδ
i

which proves the linearity of the dynamics with

∂F̃ (z, δ)

∂z(t − i)
= Ai, for i ≥ 0.

Corollary 2: System (1) is equivalent, under a bicausal

change of coordinates, to a linear strongly controllable sys-

tem without delays if and only if conditions a) b) and d) of

Theorem 2 are satisfied, and additionally

c’) gn+1(·) ∈ spanRRn that is gn+1(·) := gn+1(x, δ) =
n
∑

i=1
gi(x, δ)ci with ci ∈ R.

Proof: As for the necessity of c’), note that for a linear

system gi = AiB for i ≥ 0, and due to Cayley Hamilton

An = c1I + c2A + · · · cnAn−1 with real coefficients ci, so

that gn+1 =
∑n

i=1 gici = AnB =
∑n−1

i=0 AiBci+1. Under

any bicausal change of coordinates z = φ(x[α]) with dz =
T (x, δ)dx, g̃i(z) = (T (x, δ)gi(x))φ−1(z), so that

g̃n+1(z, δ) =

[

T (x, δ)

n−1
∑

i=0

gi(x)ci

]

φ−1(z, δ)

=
n

∑

i=1

g̃i(z, δ)ci

which instead proves c’).

As for the sufficiency, we must prove that in the new

coordinates the obtained linear system is without delays.

To this end note that by assumption in the new coordinates

(g̃1(z, δ), · · · g̃n(z, δ)) = Id and (g̃2(z, δ), · · · g̃n+1(z, δ)) =
A. Since

s
∑

j=0

∂F̃ (z)

∂z(t − j)
δj(g̃1(z, δ) · · · g̃n(z, δ))=(g̃2(z, δ) · · · g̃n+1(z, δ))

we have that
∑s

j=0
∂F̃ (z)

∂z(t−j)
δj = A, which proves that

∂F̃ (z)
∂z(t)

= A and
∂F̃ (z)

∂z(t − i)
= 0 for i ≥ 1.

Example 3: Consider the dynamics

ẋ1(t) = x2(t) − x2(t − 1) + 2x2(t − 1)u (t − 1)
ẋ2(t) = u (t)

for which

g1 =

(

0
1

)

+

(

2 x2(t − 1)
0

)

δ, g2 =

(

1
0

)

, g3 = 0

Since condition a) of Theorem 2 is satisfied, the accessibility

matrix R(x) is independent of u and given by

R(x) =

(

2 x2(t − 1) δ 1
1 0

)
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Thus R(x) is unimodular which shows that condition b) is

verified. Condition c) is also satisfied so we must only check

condition d) with s̄ = 1. We have

[

g0
1, g

0
2

]

E
=

[(

0
1

)

,

(

1
0

)]

= 0

[

g1
1, g

0
2

]

E
=

[(

2x2(t − 1)
0

)

,

(

1
0

)]

= 0

[

g1
1, g

0
1

]

E
=

[(

2x2(t − 1)
0

)

,

(

0
1

)]

= 0

Though we should consider also

g2
1 = 2x2(t − 2)

∂

∂x1(t − 1)
+

∂

∂x2(t − 2)

g2
2 =

∂

∂x1(t − 2)
,

it is immediately clear that all the extended Lie brackets are

zero. It follows that the unimodular matrix R(x, δ) defines

the change of coordinates

dz =

(

0 1
1 −2x2(t − 1)δ

)

dx

=

(

d(x2(t))
d(x1(t) − x2

2(t − 1))

)

and yields

ż(t) =

(

0 0
1 − δ 0

)

z(t) +

(

1
0

)

u(t)

V. CONCLUSION

In the present paper a geometric approach for the study

of time-delay systems has been used. It has been shown

that starting from the definition of delayed state bracket

introduced in [19] an analysis of the geometric properties of

a delayed system can be successively pursued. This has been

shown with respect to the problem of the equivalence of a

nonlinear time-delay system to a linear strongly controllable

system.
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