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Introduction

In the present paper we are concerned with the following (2 + 1)-dimensional analog of the Korteweg-de Vries equation:

∂ t v = 4Re(4∂ 3 z v + ∂ z (vw) -E∂ z w), ∂ z w = -3∂ z w, v = v, E ∈ R, v = v(x, t), w = w(x, t), x = (x 1 , x 2 ) ∈ R 2 , t ∈ R, (1.1)
where

∂ t = ∂ ∂t , ∂ z = 1 2 ∂ ∂x 1 -i ∂ ∂x 2 , ∂ z = 1 2 ∂ ∂x 1 + i ∂ ∂x 2 .
(1.2)

Equation (1.1) is contained implicitly in the paper of S.V. Manakov [M] as an equation possessing the following representation

∂(L -E) ∂t = [L -E, A] + B(L -E) (1.3) (Manakov L-A-B triple)
, where L = -∆ + v(x, t), ∆ = 4∂ z ∂ z , A and B are suitable differential operators of the third and zero order respectively, [•, •] denotes the commutator. Equation (1.1) was written in an explicit form by S.P. Novikov and A.P. Veselov in [START_REF] Novikov | Finite-zone, two-dimensional, potential Schrödinger operators. Explicit formula and evolutions equations[END_REF], [START_REF] Novikov | Finite-zone, two-dimensional Schrödinger operators. Potential operators[END_REF], where higher analogs of (1.1) were also constructed. Note that both Kadomtsev-Petviashvili equations can be obtained from (1.1) by considering an appropriate limit E → ±∞ (see [ZS], [G]).

In the case when v(x 1 , x 2 , t), w(x 1 , x 2 , t) are independent of x 2 , (1.1) can be reduced to the classic KdV equation:

∂ t u -6u∂ x u + ∂ 3 x u = 0, x ∈ R, t ∈ R. (1.4)
It is well-known that (1.4) has the soliton solutions u(x, t) = u κ,ϕ (x-4κ 2 t) = -2κ 2 ch 2 (κ(x -4κ 2 tϕ))

, x ∈ R, t ∈ R, κ ∈ (0, +∞), ϕ ∈ R.

(1.5) Evidently,

u κ,ϕ ∈ C ∞ (R), ∂ j
x u κ,ϕ (x) = O(e -2κ|x| ) as x → ∞, j = 0, 1, 2, . . .

(1.6)

Properties (1.6) imply that the solitons (1.5) are exponentially localized in x.

For the 2-dimensional case we will say that a solution (v, w) of (1.1) is an exponentially localized soliton if the following properties hold:

v(x, t) = V (x -ct), x ∈ R 2 , c = (c 1 , c 2 ) ∈ R 2 , V ∈ C 3 (R 2 ), ∂ j x V (x) = O(e -α|x| ) for |x| → ∞, |j| 3 and some α > 0 (where j = (j 1 , j 2 ) ∈ (0 ∪ N) 2 , |j| = |j 1 | + |j 2 |, ∂ j x = ∂ j 1 +j 2 /∂x j 1 1 ∂x j 2 2 ), w(•, t) ∈ C(R 2 ), w(x, t) → 0 as |x| → ∞, t ∈ R.
(1.7) In [N1] it was shown that, in contrast with the (1 + 1)-dimensional case, the (2 + 1)-dimensional KdV equation (1.1), at least for E = E f ixed > 0, does not have exponentially localized solitons. More precisely, in [N1] it was shown that the following theorem is valid for E = E f ixed > 0:

Theorem 1.1. Let (v, w) be an exponentially localized soliton solution of (1.1) in the sense (1.7). Then v ≡ 0, w ≡ 0.

The main result of this paper consists in the proof of Theorem 1.1 for the case E = E f ixed < 0. This proof is given in Section 3 and is based on Propositions 3.1 and 3.2. In addition: Proposition 3.1 is an analog of the result of [N1] about the transparency of sufficiently localized solitons for equation (1.1) for E > 0; Proposition 3.2 is an analog of the result of [N2], [START_REF] Grinevich | Transparent potentials at fixed energy in dimension two. Fixed energy dispersion relations for the fast decaying potentials[END_REF] that there are no nonzero bounded real-valued exponentially localized transparent potentials (that is potentials with zero scattering amplitude) for the Schrödinger equation (2.1) for E = E f ixed > 0.

Note that nonzero bounded algebraically localized solitons for equation (1.1) for E < 0 are also unknown (see [G]), but their absence is not proved.

As regards integrable systems in 2+1 dimensions admitting exponentially decaying solitons in all directions on the plane, see [BLMP], [FS].

As regards integrable systems in 2 + 1 dimensions admitting nonzero bounded algebraically decaying solitons in all directions on the plane, see [FA], [BLMP], [G], [KN] and references therein.

2 Inverse scattering for the 2-dimensional Schrödinger equation at a fixed negative energy

Consider the scattering problem for the two-dimensional Schrödinger equation at a fixed negative energy:

-∆ψ + v(z)ψ = Eψ, E = E f ixed < 0, ∆ = 4∂ z ∂ z , z = x 1 + ix 2 , x ∈ R 2 , (2.1)
where ∂ z , ∂ z are the same as in (1.2). We will assume that the potential v(z) satisfies the following conditions

v(z) = v(z), v(z) ∈ L ∞ (C), |v(z)| < q(1 + |z|) -2-ε for some q > 0, ε > 0. (2.2)
In this paper we will be concerned with the exponentially decreasing potentials, i.e. with the potentials v(z) satisfying (2.2) and the following additional condition v(z) = O(e -α|z| ) as |z| → ∞ for some α > 0.

(2.3) Direct and inverse scattering for the two-dimensional Schrödinger equation (2.1) at fixed negative energy under assumptions (2.2) was considered for the first time in [START_REF] Grinevich | Two-dimensional inverse scattering problem for negative energies and generalized-analytic functions. I. Energies below the ground state[END_REF]. For some of the results discussed in this section see also [N2], [G].

First of all, we note that by scaling transform we can reduce the scattering problem with an arbitrary fixed negative energy to the case when E = -1. Therefore, in our further reasoning we will assume that E = -1.

It is known that for λ ∈ C\(0 ∪ E), where E is the set of zeros of the modified Fredholm determinant ∆ for the integral equation (2.10), (2.4) there exists a unique continuous solution ψ(z, λ) of (2.1) with the following asymptotics

ψ(z, λ) = e -1 2 (λz+z/λ) µ(z, λ), µ(z, λ) = 1 + o(1), |z| → ∞.
(2.5)

In addition, the function µ(z, λ) satisfies the following integral equation

µ(z, λ) = 1 + ζ∈C g(z -ζ, λ)v(ζ)µ(ζ, λ)dζ R dζ I , (2.6) g(z, λ) = - 1 2π 2 ζ∈C exp(i/2(ζ z + ζz)) ζ ζ + i(λ ζ + ζ/λ) dζ R dζ I , (2.7) where z ∈ C, λ ∈ C\0, ζ R = Reζ, ζ I = Imζ.
In terms of ψ of (2.5) equation (2.6) takes the form

ψ(z, λ) = e -1/2(λz+z/λ) + ζ∈C G(z -ζ, λ)v(ζ)ψ(ζ, λ)dζ R dζ I , (2.8) G(z, λ) = e -1/2(λz+z/λ) g(z, λ), (2.9) where z ∈ C, λ ∈ C\0. In terms of m(z, λ) = (1+|z|) -(2+ε)/2 µ(z, λ) equation (2.6) takes the form m(z, λ) = (1+|z|) -(2+ε)/2 + ζ∈C (1+|z|) -(2+ε)/2 g(z-ζ, λ) v(ζ) (1 + |ζ|) -(2+ε)/2 m(ζ, λ)dζ R dζ I , (2.10) where z ∈ C, λ ∈ C\0. In addition, A(•, •, λ) ∈ L 2 (C × C), |TrA 2 (λ)| < ∞,
where A(z, ζ, λ) is the Schwartz kernel of the integral operator A(λ) of the integral equation (2.10). Thus, the modified Fredholm determinant for (2.10) can be defined by means of the formula:

ln ∆(λ) = Tr(ln(I -A(λ)) + A(λ))
(2.11)

(see [GK] for more precise sense of such definition).

Taking the subsequent members in the asymptotic expansion (2.5) for ψ(z, λ), we obtain (see [N2]):

ψ(z, λ) = exp - 1 2 λz + z λ 1 -2πsgn(1 -λ λ)× × iλa(λ) z -λ 2 z + exp - 1 2 1 λ -λ z + 1 λ -λ z λb(λ) i( λ2 z -z) +o 1 |z| , (2.12) |z| → ∞, λ ∈ C\(E ∪ 0).
The functions a(λ), b(λ) from (2.12) are called the "scattering" data for the problem (2.1), (2.2) with E = -1. It is known that for a(λ), b(λ) the following formulas hold (see [N2]):

a(λ) = 1 2π 2 z∈C µ(z, λ)v(z)dz R dz I , (2.13) b(λ) = 1 2π 2 z∈C exp - 1 2 λ - 1 λ z -λ - 1 λ z µ(z, λ)v(z)dz R dz I , (2.14)
where λ ∈ C\(0 ∪ E), z R = Rez, z I = Imz. In addition, formally, formulas (2.13), (2.14) can be written as

a(λ) = h(λ, λ), b(λ) = h λ, 1 λ , (2.15)
where

h(λ, λ ′ ) = 1 2π 2 z∈C exp 1 2 (λ ′ z + z/λ ′ ) ψ(z, λ)v(z)dz R z I , (2.16) and λ ∈ C\(0 ∪ E), λ ′ ∈ C\0. (Note that, under assumptions (2.2), the integral in (2.16) is well-defined if λ ′ = λ of if λ ′ = 1/ λ but is not well- defined in general.) Let T = {λ ∈ C : |λ| = 1}.
(2.17)

From (2.15), in particular, the following statement follows:

Statement 2.1. Let (2.2) hold and ∆ = 0 on T . Then

a(λ) = b(λ), λ ∈ T.
(2.18)

The following properties of functions ∆(λ), a(λ), b(λ) will play a substantial role in the proof of Theorem 1.1.

Statement 2.2. Let (2.2) hold. Then:

1. ∆(λ) ∈ C(C); 2. ∆(λ) → 1 as λ → 0 or λ → ∞; 3. ∆(λ) ≡ const for λ ∈ T ; 4. ∆ is real-valued: ∆ = ∆. 5. ∆(λ) = ∆(1/ λ), λ ∈ C\0. Statement 2.3. Let conditions (2.2)-(2.
3) be fulfilled. Then:

• ∆(λ) is a real-analytic function on D + , D -, where D + = {λ ∈ C : 0 < |λ| 1}, D -= {λ ∈ C : |λ| 1}. (2.19) • a(λ) = A(λ) ∆(λ) , b(λ) = B(λ) ∆(λ)
, where A(λ), B(λ) are real-analytic func-

tions on D + , D -.
Items 1-4 of Statement 2.2 are either known or follow from results mentioned in [HN], [N2] (see page 129 of [HN] and pages 420, 423, 429 of [N2]). In particular, item 1 of Statement 2.2 is a consequence of continuous dependency of g(z, λ) on λ ∈ C\0; item 3 of Statement 2.2 is a consequence of (2.11) and of the formula (see pages 420, 423 of [N2]) G(z, λ) = (-i/4)H 1 0 (i|z|), z ∈ C, λ ∈ T , where G is defined by (2.9), H 1 0 is the Hankel function of the first type. In addition, item 5 of Statement 2.2 follows from item 4 of this statement and from symmetry

G(z, λ) = G(z, 1/ λ), z ∈ C, λ ∈ C\0.
Statement 2.3 is similar to Proposition 4.2 of [N2] and follow from: (i) formulas (2.13), (2.14), (ii) Cramer type formulas for solving the integral equation (2.10), (iii) the analog of Proposition 3.2 of [N2] for g of (2.7).

Under assumptions (2.2), the function µ(z, λ), defined by (2.6), satisfies the following properties:

µ(z, λ) is a continuous function of λ on C\(0 ∪ E);
(2.20)

∂µ(z, λ) ∂ λ = r(z, λ)µ(z, λ), (2.21a) r(z, λ) = r(λ) exp 1 2 λ - 1 λ z -λ - 1 λ z , (2.21b) 
r(λ) = πsgn(1 -λ λ) λ b(λ) (2.21c) for λ ∈ C\(0 ∪ E); µ → 1, as λ → ∞, λ → 0. (2.22)
The function b possesses the following properties (see [START_REF] Grinevich | Two-dimensional inverse scattering problem for negative energies and generalized-analytic functions. I. Energies below the ground state[END_REF], [N2]):

b ∈ C(C\E), (2.23) b - 1 λ = b(λ), b 1 λ = b(λ), λ ∈ C\0, (2.24) λ -1 b(λ) ∈ L p (D + ) (as a function of λ) if E = ∅, 2 < p < 4.
(2.25)

In addition, the following theorem is valid: ]). Let v satisfy (2.2) and E = ∅ for this potential. Then v is uniquely determined by its scattering data b (by means of (2.20), (2.21) and equation (1.1) for E = -1 and ψ of (2.5) ).

Theorem 2.1 ([GN2], [ N2 
Finally, if (v(z, t), w(z, t)) is a solution of equation (1.1) with E = -1, where (v(z, t), w(z, t)) satisfy the following conditions: v, w ∈ C(R 2 × R) and for each t ∈ R the following properties are fulfilled:

v(•, t) ∈ C 3 (R 2 ), ∂ j x v(x, t) = O |x| -2-ε for |x| → ∞, |j| ≤ 3 and some ε > 0, (2.26) w(x, t) → 0 for |x| → ∞,
then the dynamics of the scattering data is described by the following equations

a(λ, t) = a(λ, 0), (2.27) b(λ, t) = exp λ 3 1 λ 3 -λ3 - 1 λ3 t b(λ, 0), (2.28)
where λ ∈ C\0, t ∈ R.

3 Proof of Theorem 1.1

The proof of Theorem 1.1 is based on Proposition 3.1 and Proposition 3.2 given below. 

a ζ (λ) = a(λ), (3.1) b ζ (λ) = exp - 1 2 λ - 1 λ ζ -λ - 1 λ ζ b(λ), (3.2) where z, ζ ∈ C, λ ∈ C\0.
Proof. We first note that ψ(z -ζ, λ) satisfies equation (2.1) with the operator

L = -∆ + v ζ (z). Then the function ψ ζ (z, λ) corresponding to v ζ (z) and possessing the asymptotics (2.5) is ψ ζ (z, λ) = e -1 2 (λ ζ+ζ/λ) ψ(z -ζ, λ). In terms of function µ this relation is written µ ζ (z, λ) = µ(z -ζ, λ) Thus we have a ζ (λ) = 1 2π 2 z∈C v(z -ζ)µ(z -ζ, λ)dz R dz I = a(λ),
and, similarly,

b ζ (λ) = 1 2π 2 z∈C exp - 1 2 λ - 1 λ z -λ - 1 λ z × × v(z -ζ)µ(z -ζ, λ)dz R dz I = = exp - 1 2 λ - 1 λ ζ -λ - 1 λ ζ b(λ).
Proposition 3.1. Let (v(z, t), w(z, t)) be an localized soliton of (1.1) in the sense (1.7). Let b(λ, t) be the scattering data for v(z, t) for some E = E f ixed < 0. Then b(λ, t) ≡ 0 in the domain where it is well-defined, i.e. in C\E, where E is defined by (2.4).

Proof. In virtue of (2.28) and Statement 2.3 it is sufficient to prove that b(λ, 0) ≡ 0 in some neighborhoods of 0 and ∞. Let U 0 , U ∞ be the neighborhoods of 0 and ∞, respectively, such that ∆ = 0 in U 0 , U ∞ (such neighborhoods exist in virtue of item 2 of Statement 2.2). For λ ∈ U 0 ∪ U ∞ the function b(λ, 0) is well-defined and continuous. As (v(z, t), w(z, t)) is a soliton, the dynamics of the function b(λ, t) can be written as

b(λ, t) = exp - 1 2 λ - 1 λ c -λ - 1 λ c t b(λ, 0) (3.3) (see Lemma 3.1).
Combining this with formula (2.28), we obtain exp -

1 2 λ - 1 λ c -λ - 1 λ c t b(λ, 0) = = exp λ 3 + 1 λ 3 -λ3 - 1 λ3 t b(λ, 0). As functions λ, λ, 1 λ , 1 λ , λ 3 , λ3 , 1 λ 3 , 1 λ 3 , 1 are linearly independent in any neighborhood of 0 and ∞, we obtain that b(λ, 0) ≡ 0 in U 0 ∪ U ∞ . Proposition 3.2. Let v(z) satisfy (2.2)-(2.
3) and b(λ) be its scattering data for some E = E f ixed < 0. If b(λ) ≡ 0 in the domain where it is well-defined, i.e. in C\E, where E is defined by (2.4), then v ≡ 0.

Note that Proposition 3.2 can be considered as an analog of Corollary 3 of [START_REF] Grinevich | Transparent potentials at fixed energy in dimension two. Fixed energy dispersion relations for the fast decaying potentials[END_REF].

Proof of Proposition 3.2.

1. First we will prove that from the assumptions of this proposition it follows that a(λ) ≡ 0 in U 0 ∪ U ∞ , where U 0 and U ∞ are such neighborhoods of 0 and ∞, respectively, that ∆(λ) = 0 for λ ∈ U 0 ∪ U ∞ . We note that from (2.13), (2.14), (2.21a), (2.22) it follows that

∂a(λ) ∂ λ = πsgn(1 -λ λ) λ b(λ)b(λ), λ ∈ C\(E ∪ 0), (3.4) a(λ) → v(0) as λ → ∞ or λ → 0, where (3.5) v(p) = 1 2π 2 z∈C e i 2 (pz+pz) v(z)dz R dz I , p ∈ C. (3.6) It means that a(λ) is holomorphic in C\(E). (3.7)
According to item 3 of Statement 2.2, ∆(λ) ≡ const for λ ∈ T . We will consider separately two cases: ∆ ≡ C = 0 on T and ∆ ≡ 0 on T .

(a) ∆(λ) ≡ C = 0 on T : From item 1 of Statement 2.2 it follows that there exists U T , a neighborhood of T , such that ∆(λ) = 0 in U T . Thus a(λ) is holomorphic in U T . From Statement 2.1 we obtain that a(λ) = b(λ) = 0 on T . It follows then that a(λ) ≡ 0 in U T . Using statement 2.3, we obtain that a(λ) ≡ 0 in U 0 ∪ U ∞ .

(b) ∆(λ) ≡ 0 on T :

In [HN] the ∂-equation for ∆ was derived. In variables λ, λ it is written as

∂ ln ∆(λ) ∂ λ = - πsgn(λ λ -1) λ a 1 λ -v(0) . (3.8) Equation (3.8) and properties (3.5), (3.7) imply that ∂ ln ∆ ∂ λ is an antiholomorphic function in U 0 ∪ U ∞ ,
where ∆ is close to 1 and, thus, ln ∆ is a well-defined one-valued function. As ∆ is a realvalued real analytic function, it follows that

ln ∆ = f (λ) + f (λ) (3.9)
for some holomorphic function f (λ), or

∆ = F (λ)F (λ) (3.10)
for some holomorphic function F (λ) on U 0 ∪ U ∞ . Now we will use the following lemma (the proof of this lemma is given in Section 4):

Lemma 3.2. Let ∆(λ) be real-analytic in D + = {λ ∈ C : 0 < |λ| ≤ 1}.
Suppose that ∆(λ) can be represented as

∆(λ) = F (λ)F (λ), λ ∈ U 0 , (3.11) 
for some function F (λ) holomorphic on U 0 , a neighborhood of zero. Then the representation (3.11) holds on D + , i.e. F (λ) can be extended analytically to D + .

Thus, the representation (3.10) is valid separately on D + and on D -, where we used also item 5 of Statement 2.2. As ∆(λ) ≡ 0 on T , it follows that F (λ) ≡ 0 on T and, further, F (λ) ≡ 0 on C. This contradicts with item 2 of Statement 2.2. Thus we have shown that under the assumptions of Proposition 3.2 the case ∆(λ) ≡ 0 on T cannot hold.

2. Our next step is to prove that ∆(λ) ≡ 1 for λ ∈ C.

Formula (3.5) states that a(0) = a(∞) = v(0). Thus from equation (3.8) it follows that ∂ ln ∆ ∂λ = 0, and ln ∆ is holomorphic in some neighborhood of 0 and ∞. As ∆(λ) is a real-valued function and item 2 of Statement 2.2 holds, we conclude that ∆ ≡ 1 in some neighborhood of 0 and ∞. Now using Statement 2.3, we obtain that ∆ ≡ 1 in C and, as a corollary, E = ∅.

3. From the previous item it follows that equation (2.21a) holds for ∀λ: λ ∈ C\0. Due to the assumptions of Proposition 3.2 and the property that E = ∅, we have that b ≡ 0 on C which means that µ(z, λ) is holomorphic on D + , D -. As it is also continuous on C and property (2.22) holds, we conclude that µ(z, λ) ≡ 1 and v(z) ≡ 0.

Proof of Theorem 1.1 for E = E f ixed < 0. The result follows immediately from Propositions 3.1, 3.2.

4 Proof of Lemma 3.2

As F (λ) is analytic in U 0 , it can be represented in this domain by a Taylor series. Let us consider the radius of convergence R of this Taylor series. Suppose that the statement of Lemma 3.2 is not true and R < 1.

Let us take a point λ 0 , such that |λ 0 | = R. In this point ∆(λ) can be represented by the following series

∆(λ) = ∞ k,j=0 b k,j (λ -λ 0 ) k ( λ -λ0 ) j (4.1)
uniformly convergent in U λ 0 , some neighborhood of λ 0 . We will prove that the coefficients b j,k satisfy the following properties:

b k,k ∈ R, b k,k ≥ 0; (a) b k,j = b j,k ; (b) b k,j b m,l = b k,l b m,j . (c) Indeed, (a) : b k,k = 1 (k!) 2 ∂ k λ ∂ k λ ∆(λ) λ=λ 0 = lim λ→λ 0 1 (k!) 2 ∂ k λ ∂ k λ ∆(λ) = lim λ→λ 0 1 (k!) 2 |∂ k λ F (λ)| 2 ∈ R, ≥ 0. (b) : b k,j = lim λ→λ 0 1 k!j! ∂ k λ F (λ)∂ j λ F (λ) = lim λ→λ 0 1 k!j! ∂ k λ F (λ)∂ j λ F (λ) = b j,k . (c) : b k,j b m,l = lim λ→λ 0 1 k!j!m!l! ∂ k λ F (λ)∂ j λ F (λ)∂ m λ F (λ)∂ l λ F (λ) = b k,l b m,j .
From properties (a)-(c) it follows that there exist such

a k ∈ C, k = 0, 1, . . ., that b k,j = a k āj . (4.2)
We will prove this statement by considering two different cases:

1. b k,k = 0 ∀k ∈ N ∪ 0
In this case from properties (b), (c) it follows that b k,j = 0 ∀k, j ∈ N∪0, and we can take a k = 0 ∀k ∈ N ∪ 0.

2. b k,k = 0 for some k ∈ N ∪ 0.

In this case we take l to be the minimal number such that b l,l = 0. Then we set a 0 = a 1 = . . . = a l-1 = 0 and we take an arbitrary From convergence of series (4.1) it follows that the following series The same reasoning can be applied to any point λ 0 on the boundary of the ball B R = {λ ∈ C : |λ| ≤ R}, i.e. F (λ) can be continued analytically to some larger domain. Hence we obtain a contradiction to the assumption that R < 1 is the radius of convergence of the Taylor series for F (λ). Thus R = 1 and F (λ) can be extended analytically to D + .
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 1 Let v(z) satisfy (2.2) and a(λ), b(λ) be the scattering data corresponding to v(z). Then the scattering data a ζ (λ), b ζ (λ) for the potential v ζ (z) = v(zζ) are related to a(λ), b(λ) by the formulas

  complex number a l satisfying |a l | 2 = b l,l . For the rest of the coefficients we set a n = b n,l āl , (4.3) where n = l + 1, l + 2, . . .. Now let us prove property (4.2). Let us suppose that k < l. Then a k = 0, b k,k = 0 and from properties (b), (c) it follows that b k,j = 0 ∀j ∈ N ∪ 0. Thus property (4.2) holds when k < l. A similar reasoning can be carried out when j < l. Now let us suppose that k ≥ l, j ≥ l. Then a k āj = b k,l bj,l āl a l = b k,l b l,j b l,l = b k,j . (4.4) Representation (4.2) is proved.

  U λ 0 (indeed, the case when b k,k = 0 ∀k ∈ N ∪ 0 is trivial, and in the case when ∃l : b l,l = 0 we take the sum of the members of series (4.1) with coefficients b k,l , k = 0, 1, . . ., and obtain series (4.5) multiplied by āl ( λ -λ0 ) l ). Thus there exists the function F 1 (λ) analytic in U 0 such that ∆(λ) = F 1 (λ)F 1 (λ). Consequently, we have two functions F (λ) and F 1 (λ) analytic in a common domain lying in {λ ∈ C : |λ| ≤ R} ∩ U λ 0 and such that |F (λ)| = |F 1 (λ)|. It means that F (λ) and F 1 (λ) are equal up to a constant factor: F (λ) = µF 1 (λ), |µ| = 1. It follows then that µF 1 (λ) is an analytic continuation of F (λ) to U λ 0 .
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