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We study synchronization functions in basic examples of discontinuous forced systems with contractive response and chaotic driving. The forcing is given by baker-type maps and the response is assumed to depend monotonically on the drive. The resulting synchronization functions have dense sets of discontinuities and their graphs appear to be extremely choppy. We show that these functions have bounded variation when the contraction is strong, and conversely, that their total variation is infinite when the contraction becomes weak. In the first case, we also analyze in detail smoothness properties of the corresponding continuous component.

Introduction

Analyzing the asymptotic response to a random or erratic stimulus is a ubiquitous problem in Nonlinear Dynamics. The archetypical example is given by synchronization phenomena in directionally coupled systems [START_REF] Pecora | Synchronization in chaotic systems[END_REF]. (For convenience, focus will be on discrete time dynamics throughout this paper). When an autonomous forcing x t+1 = f (x t ) compels the iterations of a dissipative factor z t+1 = g(x t , z t ), the dynamics is known to be attracted by the invariant graph z = h(x) of an associated synchronization function h [START_REF] Afraimovich | Stochastic synchronization of oscillations in dissipative systems[END_REF][START_REF] Kocarev | Generalized synchronization, predictability, and equivalence of unidirectionally coupled dynamical systems[END_REF][START_REF] Rulkov | Generalized synchronization of chaos in directionally coupled chaotic systems[END_REF]. In brief, the response z is asymptotically locked (viz. conjugated) to the drive x.

In this context, the regularity and smoothness of h -which depend on f and g -prescribe those drive features (such as e.g. Lyapunov exponents, fractal dimensions, etc) that are conveyed to the factor. For instance, Lipschitz regularity implies some estimates on the attractor's dimension. Applications range from modeling of (low-pass) filters in signal analysis [START_REF] Kaplan | The Lyapunov dimension of a nowhere differentiable attracting torus[END_REF][START_REF] Badii | Dimension function and phase transition-like behavior in strange attractors[END_REF][START_REF] Broomhead | Linear filters and nonlinear systems[END_REF][START_REF] Hunt | Differentiable generalized synchronization of chaos[END_REF][START_REF] Carroll | Detecting recursive and nonrecursive filters using chaos[END_REF] to damage detection in material science [START_REF] Nichols | Use of fiber-optic strain sensors and Holder exponents for detecting and localizing damage in an experimental plate structure[END_REF].

The mathematical theory of synchronization functions is part of the broader study of inertial manifolds in dynamical systems. It goes back to the seminal work of Hirsch, Pugh and Shub [START_REF] Hirsch | Stable Manifolds and Hyperbolic Sets in Global Analysis[END_REF][START_REF] Hirsch | Invariant Manifolds[END_REF] who proved existence and continuity under the assumption that f is a homeomorphism and g is contracting for z. They also evaluated the Hölder continuity and showed Lipschitz regularity when the contraction of g is stronger than the stronger contraction rate of f (and additional mild assumptions on f and g). These results were perfected later on [START_REF] Campbell | The existence of inertial functions in skew product systems[END_REF][START_REF] Afraimovich | Synchronization in unidirectionally coupled systems: some rigorous results[END_REF][START_REF] Urias | Filters display inverse limit spaces[END_REF], especially by Stark [START_REF] Stark | Invariant graphs for forced systems[END_REF][START_REF] Stark | Regularity of invariant graphs for forced systems Ergod[END_REF] who established smoothness and extended them to non-uniform contractive responses (see also [START_REF] Singh | Scenarios for generalized synchronization with chaotic driving[END_REF][START_REF] Hu | Holder continuity of three types of generalized synchronization manifolds of non-autonomous systems[END_REF] for recent developments).

Studies of continuity have been pursued beyond the homeomorphic case, not only when the response function g remains blind to drive discontinuities, but also when f is not invertible [START_REF] Rulkov | Detectability of nondifferentiable generalized synchrony[END_REF][START_REF] Barreto | The geometry of chaos synchronization[END_REF]. However, continuity may not always hold in applications [START_REF] Badii | Dimension function and phase transition-like behavior in strange attractors[END_REF][START_REF] Broomhead | Linear filters and nonlinear systems[END_REF][START_REF] Hunt | Differentiable generalized synchronization of chaos[END_REF] and sensitive response functions also have to be considered.

To that aim, this paper considers discontinuous synchronization graphs in basic examples of skew-products (f, g) with chaotic driving f and contractive response g i.e.

|g(x, z) -g(x, z )| ≤ λ|z -z | (1) 
where 0 < λ < 1. As noticed in the literature [START_REF] Afraimovich | Synchronization in unidirectionally coupled systems: some rigorous results[END_REF][START_REF] Stark | Invariant graphs for forced systems[END_REF][START_REF] Stark | Regularity of invariant graphs for forced systems Ergod[END_REF], the response h lacks monotonicity and may have infinitely many discontinuity points that generate a dense subset in phase space of the forcing. The appropriate notion to investigate in this case is the overall graph "length" (i.e. total variation of h), together with properties of the continuous and discontinuous components. We proceed to a thorough analytic study in the case where f is an extension of the baker's map and g(x, z) = λz + (1 -λ)x is linear [START_REF] Badii | Dimension function and phase transition-like behavior in strange attractors[END_REF][START_REF] Hunt | Differentiable generalized synchronization of chaos[END_REF][START_REF] Afraimovich | Synchronization in unidirectionally coupled systems: some rigorous results[END_REF]. The total variation is shown to possibly diverge depending on the contraction parameter λ. When this quantity remains finite, an analysis of regularity and of the derivative of the continuous component is given. The specific form of h here allows for results well beyond the standard theory of real functions. The basic properties of the synchronization function however do not depend on the piecewise affine nature of the dynamical system under study. In the last section, we present results that hold for more general discontinuous skew-product systems (f, g).

Piecewise linear skew-products and synchronization graphs

As announced before, the autonomous forcing in this study materializes via the generalized baker's map (x, y) → f (x, y) = (T a,b (x, y), T b (y)) of the unit square [0, 1] 2 into itself [START_REF] Badii | Dimension function and phase transition-like behavior in strange attractors[END_REF][START_REF] Hunt | Differentiable generalized synchronization of chaos[END_REF]. Here 0 < a, b < 1 and the mapping components write

T a,b (x, y) = ax if 0 ≤ y < b (1 -a)x + a if b ≤ y ≤ 1 and T b (y) = y b if 0 ≤ y < b y-b 1-b if b ≤ y ≤ 1
Remark: These notations are generic and will often be used with other parameters/variables throughout the text. For instance, T a (x) denotes the interval map above with parameter a and variable x (instead of b and y respectively).

Due to the contraction 0 < λ < 1 the response system z t → z t+1 = g(x t , z t ) = λz t + (1 -λ)x t results to be asymptotically locked to the forcing term [START_REF] Afraimovich | Stochastic synchronization of oscillations in dissipative systems[END_REF][START_REF] Kocarev | Generalized synchronization, predictability, and equivalence of unidirectionally coupled dynamical systems[END_REF][START_REF] Rulkov | Generalized synchronization of chaos in directionally coupled chaotic systems[END_REF]. More precisely, the large time behavior of the sequence {z t } is independent of z 0 and approaches {h(x t )} where the synchronization function h is given by

h(x) = (1 -λ) ∞ t=0 λ t T t+1 a (x), ∀x ∈ [0, 1]. ( 2 
)
This property is a consequence of the equality z t -h(x t ) = λ t (z 0 -h(x 0 )).

The response h only depends on the first forcing variable because f is invertible and the first coordinate of the inverse f -1 (x, y) = (T a (x), T b,a (y, x)) only depends on x. (Besides, as a function of λ, the map h is smooth and strictly increasing and uniformly converges to T a when λ → 0.) Furthermore, this function solves the conjugacy equation

g(x, h(x)) = h • T a,b (x, y), ∀x, y ∈ [0, 1] 2 .
thanks to the property T a • T a,b (x, y) = x. When f is not invertible, h a priori depends on backward histories {x t } t≤0 , see e.g. [START_REF] Rulkov | Detectability of nondifferentiable generalized synchrony[END_REF][START_REF] Barreto | The geometry of chaos synchronization[END_REF]. Exponential convergence of the series (2) guarantees that h is welldefined on [0, 1]. The function can be viewed as a uniform limit of piecewise affine maps obtained by truncating the series to finite order (see equation [START_REF] Rulkov | Generalized synchronization of chaos in directionally coupled chaotic systems[END_REF] in the proof of Proposition 3.2 below). This comment provides a convenient way to numerically compute the graph of h with arbitrary accuracy, see Figure 1.

The map T a is right continuous and piecewise increasing. The same properties hold for all maps T t a . By uniform convergence, right continuity 4)). In the left pictures (λ < 1/2), h is of bounded variation; in the right ones (λ > 1/2), it has infinite variation. Notice the symmetry h

h(x) h(x) h(x) h(x) x x x = 0.4
(x) = 1 -h(1 -x -0) for a = 0.5 (bottom pictures).
transfers to h, viz. we have h(x + 0) = h(x) for all x. In addition, the maps T t a are all piecewise increasing; thus the left limit h(x -0) exists everywhere. This limit coincides with h(x) unless x is a pre-image of the discontinuity point a. More precisely, we have

h(x -0) > h(x) iff x ∈ D a := ∞ t=0 T -t a (a).
Since T a is expanding, D a is a dense subset of [0, 1]. To prove that all jump discontinuities are negative, we start to notice that uniform convergence yields

h(x -0) = (1 -λ) ∞ t=0 λ t T t+1 a (x -0), ∀x ∈ [0, 1].
By definition, for every point x ∈ D a there is a unique t 0 ≥ 0 such that T t 0 a (x) = a and T t a (x) = a when 0 ≤ t < t 0 . The map T a is continuous everywhere but at the point a; hence we have

T t+1 a (x -0) = T t+1 a (x), ∀0 ≤ t < t 0 . Using again T t 0 a (x) = a, we get T t 0 +1 a (x -0) = 1 and T t 0 +1 a (x) = 0.
However, these points 0 and 1 are fixed points; hence the same values hold for subsequent iterates. Altogether we obtain explicit estimates for jump discontinuities at every point of

D a h(x -0) -h(x) = (1 -λ) ∞ t=t 0 λ t > 0.
On the other hand, if x lies outside D a , we have lim y→x T t (y) = T t (x) for all t ≥ 0. Uniform convergence then implies that lim y→x h(y) = h(x) as claimed.

Beside negative jump discontinuities, the function h has positive increments in arbitrary small left-neighborhoods of every point outside D a . More precisely, for every x ∈ D c a and > 0 there exists y ∈ (x -, x) such that h(y) < h(x). Therefore, h is 'nowhere monotonous' (i.e. there is no interval on which h is monotonous) and its graph must be extremely wrinkled and choppy as Figure 1 indicates.

Proof that for every x ∈ D c a , there exists y < x and arbitrarily close such that h(y) < h(x). Given x ∈ D c a and > 0, let

t 0 = min{t ≥ 0 : ∃ n : x -< x n t < x},
where x n t is defined by T t a (x n t ) = a. The number t 0 exists because D a is dense. By definition of t 0 , all iterates of x n t 0 and x up to t 0 -1 must lie on the same side of the discontinuity point. By strict monotonicity of T t a this implies T t a (x n t 0 ) < T t a (x) when 0 ≤ t ≤ t 0 . Moreover, we have T t a (x n t 0 ) = 0 when t > t 0 and T t a (x) > 0 for all t since x ∈ D c a . It easily follows that h(x n t 0 ) < h(y).

Finally, uniform convergence and right continuity allow one to prove that the range of h is an entire interval, the unit interval indeed because of normalization, i.e. we have h([0, 1]) = [0, 1], see Figure 1.

Proof that Ran(h) = [0, 1]. The crucial point is to show that for every n we have h n ([0, 1]) = [0, 1 -λ n+1 ]
where the approximations h n are defined in the relation (4) below.

Consider the cylinder sets [θ 0 • • • θ n ] that are associated with the usual symbolic dynamics of (T a , [0, 1]), i.e. θ t ≡ H(T t a (x) -a) where H is the Heaviside function. Cylinder sets are intervals and their union (with length fixed) covers [0, 1].

The iterates T t+1 a are piecewise bijections and we have The previous property immediately implies that Ran(h) is dense in [0, 1]. Indeed for any strict sub-interval I in this set, there must be at least one point of h([0, 1]). To see this, it suffices to take n such that |h(x) -h n (x)| is uniformly smaller than |I|/2. Assume also that n is sufficiently large so that I is contained in [0, 1 -λ n+1 ]. Choose x such that h n (x) is the middle of I. Then h(x) must belong to I. Now, by continuity we know that every h(x) for x ∈ D c a can be realized as a limit lim y→x h(y). For points in D a , we similarly take right limits. This shows that h([0, 1]) is the right closure of a dense subset in [0, 1], namely it consists of this entire interval excepted the right boundary 1. But h(1) = 1, thus the proof is complete. measures the integral of the modulus of the derivative. As formally claimed in the next statement, the finiteness of the total variation depends on the contraction factor λ. When the variation is finite, we also simultaneously provide the decomposition into the difference h c -h d of two increasing functions and the one into the sum h c + (-h d ) of a continuous function h c and a step function -h d (both decompositions are granted by standard theorems on BV-functions [START_REF] Kolmogorov | Elements of the theory of functions and functional analysis[END_REF]). Some illustrations are given in Figure 2.

T t+1 a ([θ 0 • • • θ n ]) = [θ t+1 • • • θ n ] for 0 ≤ t ≤ n (where [θ n+1 • • • θ n ] should be understood as [0, 1]). This yields h n ([θ 0 • • • θ n ]) = (1 -λ) n t=0 λ t [θ t+1 • • • θ n ] which is an interval. Moreover, given two adjacent cylinders [θ 0 • • • θ n ] ≤ [ θ0 • • • θn ], their images [θ t+1 • • • θ n ]
Theorem 3.1 h is of bounded variation iff λ < 1 2 . Under this condition, the function h d given by

h d (x) = y∈Da : y≤x h(y -0) -h(y), ∀x ∈ [0, 1]
is well-defined (and is increasing) and the function h c defined by h c = h + h d is continuous and strictly increasing on [0, 1] with range [0, 2-2λ 1-2λ ].

Proof. We begin to prove that the variation of h is infinite when λ ≥ 1 2 . Since all discontinuities of h are negative jumps, the total variation is at least x∈Da h(x -0) -h(x). There are 2 n points in D a for which T n a (x) = a and the corresponding difference

h(x -0) -h(x) is equal to (1 -λ) ∞ t=n λ t .
Therefore the variation of h is at least

x∈Da h(x -0) -h(x) = ∞ n=0 (2λ) n . (3) 
It easily follows that the total variation is infinite when λ ≥ 1 2 . To continue, we assume that λ < 1 2 . Relation (3) implies that the function h d is well-defined (increasing and bounded) on [0, 1]. Moreover

h d (x-0) = y∈Da : y<x h(y-0)-h(y), hence h d (x)-h d (x-0) = h(x-0)-h(x).
All discontinuities of h are contained in h d and thus the map h c defined by

h c = h + h d is continuous.
We now show that h c is strictly increasing and bounded, and as a consequence, that h is of bounded variation. Assume that x < y and using the same notations as in the proof above that h is nowhere monotonous, let t 0 = min{t ≥ 0 : ∃ n : x < x n t ≤ y}, where x n t is defined by T t a (x n t ) = a. We have

T t a (x) < T t a (x n t 0 ) ≤ T t a (y), 0 ≤ t ≤ t 0 . Hence h(x) < (1 -λ) t 0 -1 t=0 λ t T t+1 a (x n t 0 ) + ∞ t=t 0 λ t = h(x n t 0 -0) and (1 -λ) t 0 -1 t=0 λ t T t+1 a (x n t 0 ) = h(x n t 0 ) ≤ h(y)
(The sum from 0 to t 0 -1 equals 0 if t 0 = 0.) Using also the definition of h d and h c , we obtain

h c (x) = h(x) + h d (x) < h(x n t 0 -0) + h d (x) ≤ h(x n t 0 -0) + h d (x n t 0 -0) = h c (x n t 0 ), and 
h c (y) = h(y) + h d (y) ≥ h(x n t 0 ) + h d (y) ≥ h(x n t 0 ) + h d (x n t 0 ) = h c (x n t 0 ), i.e. h c (x) < h c (y).
Finally we have h c (0) = 0 and h c (1) = h(1)+h d (1) < +∞ and the proof is complete.

We now study in detail smoothness properties of the continuous component h c . In a general setting, Kolmogorov's theorem says that monotonicity implies the existence of a finite derivative almost everywhere. In our case, the derivative h c (x) of the continuous component h c turns out to exist everywhere outside the countable set D a , provided that λ is further restricted. Proposition 3.2 If λ < min{a, 1 -a}, then the map h c is differentiable with bounded derivative at any point in the complement D c a . The derivative can be written

h c (x) = (1 -λ) ∞ t=0 λ t (T t+1 a (x)) , ∀x ∈ D c a .
In addition for any λ ≥ min{a, 1 -a}, there are points in D c a where h c (x) diverges.

Proof. The map h can be regarded as the uniform limit of the sequence {h n } where

h n (x) = (1 -λ) n t=0 λ t T t+1 a (x), ∀x ∈ [0, 1]. ( 4 
)
Each map h n is right continuous and with negative jump discontinuities in the set

D n a = n t=0
T -t a (a). As expected, the map h n,d defined by

h n,d (x) = y∈D n a : y≤x h n (y -0) -h n (y), ∀x ∈ [0, 1]
is an increasing step function that contains all discontinuities of h n . Consequently, the subsequent map h n,c = h n +h n,d is a piecewise affine continuous map with finitely many affine parts. As such, it is absolutely continuous and hence differentiable almost everywhere in [0, 1] [START_REF] Kolmogorov | Elements of the theory of functions and functional analysis[END_REF]. The derivative h n,c is a summable function. The fundamental theorem of calculus then yields

h n,c (x) -h n,c (0) = x 0 h n,c (y)dy, ∀x ∈ [0, 1] (5) 
The map h n,c is actually differentiable on [0, 1] \ D n a . Letting T a (a) = 1 1-a , the derivative h n,c can be uniquely continued to the following step function on [0, 1]

h n,c (x) = (1 -λ) n t=0 λ t (T t+1 a (x))
Since T a (x) ∈ { 1 a , 1 1-a }, when λ < min{a, 1 -a}, the sequence {h n,c } uniformly converges to a bounded map, say h c . Applying Lebesgue's dominated convergence theorem, one can take the limit n → ∞ in (5) to obtain the following equality

h c (x) -h c (0) = x 0 h c (y)dy, ∀x ∈ [0, 1]
Now, the map h c is uniformly approximated by step functions and is continuous at every point of [0, 1] \ D a . A standard result [START_REF]Theorem 6.1[END_REF] states that the map x → x 0 h c (y)dy is differentiable at every point of [0, 1] \ D a and with derivative h c . We conclude from the previous equality that h c is differentiable on [0, 1] \ D a with derivative h c .

The function h c can not be differentiable in D a when a = 1 2 because the right and left derivatives of T a are unequal at x = a. However, by artificially setting T a (a) = 1 1-a for the derivative at the discontinuity point, the domain of h c extends to the entire interval [0, 1] when λ ≤ min{a, 1 -a}.

Alternatively, the map h c can be regarded as the (well-defined) right derivative on [0, 1]. The extended map h c intriguingly shares several properties with the original function h. Assuming a = 1 2 , this map is right continuous with jump discontinuities at every point in D a . (This map is constant when a = 1 2 .) Unlike for h however, the signs of h c jumps do depend on parameters. The analysis reveals that all quantities

h c (• -0) -h c (•) are positive if (a - 1 
2 )(λ -a(1 -a)) > 0 and negative otherwise. Moreover we have the following statement analogous to Theorem 3.1.

Proposition 3.3 Assume a = 1 2 .
The function h c is of bounded variation iff λ < a(1 -a). Under this condition, the map (h c ) d defined by

(h c ) d (x) = y∈Da : y≤x h c (y -0) -h c (y)
is well-defined on [0, 1] (and non-increasing or non-decreasing depending on the sign of a -1 2 ). In addition the function defined by (h c ) c = h c + (h c ) d is continuous and strictly increasing if a < 1 2 (resp. strictly decreasing if a > 1 2 ). It is differentiable at any x ∈ D c a and the derivative identically vanishes.

Proof. To begin, each map x → (T t+1 a (x)) is piecewise constant and right continuous; hence h c is also right continuous. As before, the set D a collects all discontinuity points. A similar calculation to that in the proof of [START_REF] Afraimovich | Stochastic synchronization of oscillations in dissipative systems[END_REF] shows that if x ∈ D a is such that T t 0 a (x) = a for some t 0 ≥ 0, then we have

h c (x -0) -h c (x) = C a,λ λ t 0 (T t 0 a (x))
where

C a,λ = (1 -λ) 1 a(1 -λ 1-a ) - 1 (1 -a)(1 -λ a )
.

In particular, the sign of h c (x -0) -h c (x) is independent of x. However, it depends on parameters via the constant C a,λ . The latter is positive iff (a -1 2 )(λ -a(1 -a)) > 0. Now in order to estimate the total variation, as before, we have to sum up all contributions from discontinuities. Given x such that T t 0 a (x) = a for some t 0 ≥ 0, the derivative (T t 0 a (x)) can be written

a -k (1 -a) -(t 0 -k)
where k is the number of those iterates {T t a (x)} t 0 -1 t=0 that are smaller than a. Up to few sequences, the symbolic dynamics of T a is the full shift on two symbols. Thus, for every 0 ≤ k ≤ t 0 , there are t 0 k points with k iterates lying below a. Consequently, the total variation of h c /C a,λ is bounded below by

(1 -λ) ∞ t=0 λ t t k=0 t k 1 a k (1 -a) t-k = 1 -λ λ ∞ t=0 λ a(1 -a) t+1 which is infinite when λ ≥ a(1 -a).
To prove bounded variation when λ < a(1 -a), we again proceed as before. Assume that a < 1 2 and consider the non-decreasing step function (h c ) d associated with h c , viz.

(h c ) d (x) = y∈Da : y≤x h c (y -0) -h c (y), ∀x ∈ [0, 1]
and also the continuous component defined by (h c ) c = h c + (h c ) d . Similar arguments to those in the proof of Theorem 3.1 show that the map (h c ) c is strictly increasing and bounded on [0, 1]. It follows that the variation of h c is finite when λ < a(1 -a). An analogous construction applies when a > 1 2 . As in the proof of Proposition (3.2), the proof that (h c ) c is differentiable proceeds by considering a sequence of uniform approximations of h c by piecewise affine functions with finitely many branches.

Extensions to Nonlinear Systems

The basic results on synchronization functions in piecewise monotonous forced systems actually do not rely on the affine assumption. They extend to more general systems. To present extensions, we start by introducing nonlinear generalized baker's maps with finitely many pieces.

Let N > 1 be an arbitrary integer and consider the finite collections {I i } N i=1 and {J i } N i=1 of intervals defined by

I i = [x i , x i+1 ) where 0 = x 1 < x 2 < • • • < x N +1 = 1 and J i = [y i , y i+1 ) where 0 = y 1 < y 2 < • • • < y N +1 = 1 for i = 1, • • • , N -1, together with I N = [x N , 1] and J N = [y N , 1]
. Consider two mappings T and S on [0, 1] defined by

T | I i ≡ T i and S| J i ≡ S i , i = 1, • • • , N
where each T i : I i → [0, 1) (and T N :

I N → [0, 1]
) is a C 1 increasing, one-toone and onto function and similarly for S i . Now define the map f on [0, 1] 2 by f (x, y) = (T (x, y), S(y)) where

T (x, y) = T -1 i (x) if y ∈ J i
The map f is easily checked to be invertible with inverse given by f -1 (x, y) = (T (x), S(y, x)) where

S(y, x) = S -1 i (y) if x ∈ I i
As in the piecewise affine case, the dynamics of the skew-product (f, g) (where g(x, z) = λz + (1 -λ)x still remains unchanged) is attracted by the graph of a function h defined by equation ( 2) where T a is replaced by T . The new synchronization function h shares several properties with the original one. It is piecewise increasing, right continuous with negative jump discontinuities at every point of the set D defined by

D = ∞ t=0 T -t ({x 2 , • • • , x N }) (6) 
and h([0, 1]) = [0, 1]. Moreover, the conclusions of Theorem 3.1 equally repeat in this case provided that 1 2 is replaced by 1 N in the condition on the contraction parameter λ. Indeed, the only novelty sits in the number of t-preimages of discontinuity point {x 2 , • • • , x N } (where h(x-0)-h(x) = λ t ) which is now given by (N -1)N t .

If, in addition the map T is piecewise affine, then analogous to statements of Propositions 3.2 and 3.3 hold for arbitrary N > 2.

Next, we consider the case where the response g is also nonlinear, i.e. we assume -relation (1) holds for some 0 < λ < 1, -the maps g(•, z) are all strictly increasing and the family is equicontinuous.

In such cases, the existence of a globally attracting synchronization function has previously been established [START_REF] Afraimovich | Synchronization in unidirectionally coupled systems: some rigorous results[END_REF][START_REF] Stark | Regularity of invariant graphs for forced systems Ergod[END_REF]. Here, we complete this result by specifying some properties of this function.

Proposition 4.1 For any f (x, y) = (T (x, y), S(y)) and g(x, z) as above, there exists a function h whose graph z = h(x) attracts all sequences {(x t , z t )} of the skew-product (f, g). The function h has the following properties:

• it is right continuous,

• it is continuous in D c and h(x -0) > h(x) if x ∈ D,

• it is nowhere monotonous,

• it has bounded variation if λ < 1 N and writes h c -h d in this case, where h c is strictly increasing and continuous and h d is an increasing step function.

• it has infinite variation if λ > 1 N where λ := inf • The estimates on the bounded variation follow directly from the fact that if T t 0 (x) ∈ D, then (λ ) t 0 (h(1) -h(0)) ≤ h(x -0) -h(x) ≤ λ t 0 (h(1) -h(0))

Finally the properties of the components h c and h d can be obtained in a similar way as in the proof of Theorem 3.1.
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 1 Figure 1: Examples of graph of h (of the function h 14 indeed -see equation (4)). In the left pictures (λ < 1/2), h is of bounded variation; in the right ones (λ > 1/2), it has infinite variation. Notice the symmetry h(x) = 1 -h(1 -x -0) for a = 0.5 (bottom pictures).

  and [ θt+1 • • • θn ] are either equal or adjacent. As a result, the intervals h n ([θ 0 • • • θ n ]) and h n ([ θ0 • • • θn ]) must intersect; hence h n ([0, 1]) must be an interval. Computing its extrema gives h n ([0, 1]) = [0, 1 -λ n+1 ].
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 2 Figure 2: Examples of graphs of h c (blue dots -upper continuous curve) and h d (red dots -lower discontinuous curve) when h is of bounded variation (λ = 0.4); Left a = 0.2; Right a = 0.5.

x

  ,z-z =0 |g(x,z)-g(x,z )| |z-z |.

Total variation and component regularity of the response functionWith such an irregular graph for the synchronization function, the appropriate characteristic to evaluate is the total variation[START_REF] Kolmogorov | Elements of the theory of functions and functional analysis[END_REF]; this quantity
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Proof. Existence proofs in the nonlinear case have already been published in the literature [START_REF] Afraimovich | Synchronization in unidirectionally coupled systems: some rigorous results[END_REF][START_REF] Stark | Regularity of invariant graphs for forced systems Ergod[END_REF]. We provide another proof here that is more suitable to the present framework.

Let g x (y) := g(x, y) and M = sup

where M λ = M 1-λ . Given an arbitrary pair (x, z) and t ≥ 0, define the tth iterate h t (x, z) as follows

By refining the arguments above, one shows that the interval [-M λ , M λ ] is not only invariant for h t but it is also absorbing. In particular every sequence {h t (x, z)} must be bounded.

Next choose two integers t > s. We have

which implies that {h t (x, z)} is a Cauchy sequence; hence the following limit exists for all

and is independent of z. Moreover, the continuous dependence on z implies the following conjugacy equation, i.e.

g(x, h(x)) = g x ( lim

for any y ∈ [0, 1]. Global attraction easily follows by using contraction once again.

The arguments for properties of h are very similar to those in the linear case:

• Right continuity follows from both the fact that all h t (x, y) are right continuous and uniform convergence in the definition of h.

• The existence of left limit h(x-0) and the continuity in D c are obtained similarly by using also the monotonicity of the g(•, z). Now, if T t 0 (x) ∈ D, then by continuity outside D, we have

and thus h(x -0) -h(x) > 0 by strict monotonicity.