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Abstract

We study synchronization functions in basic examples of discontinuous
forced systems with contractive response and chaotic driving. The forcing
is given by baker-type maps and the response is assumed to depend mono-
tonically on the drive. The resulting synchronization functions have dense
sets of discontinuities and their graphs appear to be extremely choppy. We
show that these functions have bounded variation when the contraction is
strong, and conversely, that their total variation is infinite when the contrac-
tion becomes weak. In the first case, we also analyze in detail smoothness
properties of the corresponding continuous component.
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1 Introduction

Analyzing the asymptotic response to a random or erratic stimulus is a
ubiquitous problem in Nonlinear Dynamics. The archetypical example is
given by synchronization phenomena in directionally coupled systems [1].
(For convenience, focus will be on discrete time dynamics throughout this
paper). When an autonomous forcing xt+1 = f(xt) compels the iterations of
a dissipative factor zt+1 = g(xt, zt), the dynamics is known to be attracted
by the invariant graph z = h(x) of an associated synchronization function h
[2, 3, 4]. In brief, the response z is asymptotically locked (viz. conjugated)
to the drive x.
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In this context, the regularity and smoothness of h - which depend on f
and g - prescribe those drive features (such as e.g. Lyapunov exponents, frac-
tal dimensions, etc) that are conveyed to the factor. For instance, Lipschitz
regularity implies some estimates on the attractor’s dimension. Applications
range from modeling of (low-pass) filters in signal analysis [5, 6, 7, 8, 9] to
damage detection in material science [10].

The mathematical theory of synchronization functions is part of the
broader study of inertial manifolds in dynamical systems. It goes back to
the seminal work of Hirsch, Pugh and Shub [11, 12] who proved existence
and continuity under the assumption that f is a homeomorphism and g is
contracting for z. They also evaluated the Hölder continuity and showed
Lipschitz regularity when the contraction of g is stronger than the stronger
contraction rate of f (and additional mild assumptions on f and g). These
results were perfected later on [13, 14, 15], especially by Stark [16, 17] who
established smoothness and extended them to non-uniform contractive re-
sponses (see also [18, 19] for recent developments).

Studies of continuity have been pursued beyond the homeomorphic case,
not only when the response function g remains blind to drive discontinuities,
but also when f is not invertible [20, 21]. However, continuity may not
always hold in applications [6, 7, 8] and sensitive response functions also
have to be considered.

To that aim, this paper considers discontinuous synchronization graphs
in basic examples of skew-products (f, g) with chaotic driving f and con-
tractive response g i.e.

|g(x, z)− g(x, z′)| ≤ λ|z − z′| (1)

where 0 < λ < 1. As noticed in the literature [14, 16, 17], the response h
lacks monotonicity and may have infinitely many discontinuity points that
generate a dense subset in phase space of the forcing. The appropriate
notion to investigate in this case is the overall graph ”length” (i.e. total
variation of h), together with properties of the continuous and discontinuous
components. We proceed to a thorough analytic study in the case where f
is an extension of the baker’s map and g(x, z) = λz + (1 − λ)x is linear
[6, 8, 14]. The total variation is shown to possibly diverge depending on the
contraction parameter λ. When this quantity remains finite, an analysis of
regularity and of the derivative of the continuous component is given. The
specific form of h here allows for results well beyond the standard theory of
real functions.

The basic properties of the synchronization function however do not de-
pend on the piecewise affine nature of the dynamical system under study. In
the last section, we present results that hold for more general discontinuous
skew-product systems (f, g).
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2 Piecewise linear skew-products and synchroniza-
tion graphs

As announced before, the autonomous forcing in this study materializes via
the generalized baker’s map (x, y) 7→ f(x, y) = (Ta,b(x, y), Tb(y)) of the unit
square [0, 1]2 into itself [6, 8]. Here 0 < a, b < 1 and the mapping components
write

Ta,b(x, y) =

{
ax if 0 ≤ y < b

(1− a)x+ a if b ≤ y ≤ 1

and

Tb(y) =

{ y
b if 0 ≤ y < b
y−b
1−b if b ≤ y ≤ 1

Remark: These notations are generic and will often be used with other
parameters/variables throughout the text. For instance, Ta(x) denotes the
interval map above with parameter a and variable x (instead of b and y
respectively).

Due to the contraction 0 < λ < 1 the response system zt 7→ zt+1 =
g(xt, zt) = λzt + (1 − λ)xt results to be asymptotically locked to the forc-
ing term [2, 3, 4]. More precisely, the large time behavior of the sequence
{zt} is independent of z0 and approaches {h(xt)} where the synchronization
function h is given by

h(x) = (1− λ)

∞∑
t=0

λtT t+1
a (x), ∀x ∈ [0, 1]. (2)

This property is a consequence of the equality zt − h(xt) = λt(z0 − h(x0)).
The response h only depends on the first forcing variable because f is invert-
ible and the first coordinate of the inverse f−1(x, y) = (Ta(x), Tb,a(y, x)) only
depends on x. (Besides, as a function of λ, the map h is smooth and strictly
increasing and uniformly converges to Ta when λ → 0.) Furthermore, this
function solves the conjugacy equation

g(x, h(x)) = h ◦ Ta,b(x, y), ∀x, y ∈ [0, 1]2.

thanks to the property Ta ◦ Ta,b(x, y) = x. When f is not invertible, h a
priori depends on backward histories {xt}t≤0, see e.g. [20, 21].

Exponential convergence of the series (2) guarantees that h is well-
defined on [0, 1]. The function can be viewed as a uniform limit of piecewise
affine maps obtained by truncating the series to finite order (see equation
(4) in the proof of Proposition 3.2 below). This comment provides a conve-
nient way to numerically compute the graph of h with arbitrary accuracy,
see Figure 1.

The map Ta is right continuous and piecewise increasing. The same
properties hold for all maps T ta. By uniform convergence, right continuity
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Figure 1: Examples of graph of h (of the function h14 indeed - see equation
(4)). In the left pictures (λ < 1/2), h is of bounded variation; in the right
ones (λ > 1/2), it has infinite variation. Notice the symmetry h(x) =
1− h(1− x− 0) for a = 0.5 (bottom pictures).
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transfers to h, viz. we have h(x+ 0) = h(x) for all x. In addition, the maps
T ta are all piecewise increasing; thus the left limit h(x−0) exists everywhere.
This limit coincides with h(x) unless x is a pre-image of the discontinuity
point a. More precisely, we have

h(x− 0) > h(x) iff x ∈ Da :=
∞⋃
t=0

T−ta (a).

Since Ta is expanding, Da is a dense subset of [0, 1]. To prove that all jump
discontinuities are negative, we start to notice that uniform convergence
yields

h(x− 0) = (1− λ)
∞∑
t=0

λtT t+1
a (x− 0), ∀x ∈ [0, 1].

By definition, for every point x ∈ Da there is a unique t0 ≥ 0 such that
T t0a (x) = a and T ta(x) 6= a when 0 ≤ t < t0. The map Ta is continuous
everywhere but at the point a; hence we have

T t+1
a (x− 0) = T t+1

a (x), ∀0 ≤ t < t0.

Using again T t0a (x) = a, we get T t0+1
a (x − 0) = 1 and T t0+1

a (x) = 0. How-
ever, these points 0 and 1 are fixed points; hence the same values hold
for subsequent iterates. Altogether we obtain explicit estimates for jump
discontinuities at every point of Da

h(x− 0)− h(x) = (1− λ)
∞∑
t=t0

λt > 0.

On the other hand, if x lies outside Da, we have lim
y→x

T t(y) = T t(x) for all

t ≥ 0. Uniform convergence then implies that lim
y→x

h(y) = h(x) as claimed.

Beside negative jump discontinuities, the function h has positive incre-
ments in arbitrary small left-neighborhoods of every point outside Da. More
precisely, for every x ∈ Dc

a and ε > 0 there exists y ∈ (x − ε, x) such that
h(y) < h(x). Therefore, h is ’nowhere monotonous’ (i.e. there is no interval
on which h is monotonous) and its graph must be extremely wrinkled and
choppy as Figure 1 indicates.

Proof that for every x ∈ Dc
a, there exists y < x and arbitrarily close such

that h(y) < h(x). Given x ∈ Dc
a and ε > 0, let

t0 = min{t ≥ 0 : ∃ n : x− ε < xnt < x},

where xnt is defined by T ta(x
n
t ) = a. The number t0 exists because Da is

dense. By definition of t0, all iterates of xnt0 and x up to t0 − 1 must lie on
the same side of the discontinuity point. By strict monotonicity of T ta this
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implies T ta(x
n
t0) < T ta(x) when 0 ≤ t ≤ t0. Moreover, we have T ta(x

n
t0) = 0

when t > t0 and T ta(x) > 0 for all t since x ∈ Dc
a. It easily follows that

h(xnt0) < h(y). �

Finally, uniform convergence and right continuity allow one to prove
that the range of h is an entire interval, the unit interval indeed because of
normalization, i.e. we have h([0, 1]) = [0, 1], see Figure 1.

Proof that Ran(h) = [0, 1]. The crucial point is to show that for every n we
have hn([0, 1]) = [0, 1 − λn+1] where the approximations hn are defined in
the relation (4) below.

Consider the cylinder sets [θ0 · · · θn] that are associated with the usual
symbolic dynamics of (Ta, [0, 1]), i.e. θt ≡ H(T ta(x) − a) where H is the
Heaviside function. Cylinder sets are intervals and their union (with length
fixed) covers [0, 1].

The iterates T t+1
a are piecewise bijections and we have T t+1

a ([θ0 · · · θn]) =
[θt+1 · · · θn] for 0 ≤ t ≤ n (where [θn+1 · · · θn] should be understood as [0, 1]).
This yields

hn([θ0 · · · θn]) = (1− λ)
n∑
t=0

λt[θt+1 · · · θn]

which is an interval. Moreover, given two adjacent cylinders [θ0 · · · θn] ≤
[θ̄0 · · · θ̄n], their images [θt+1 · · · θn] and [θ̄t+1 · · · θ̄n] are either equal or ad-
jacent. As a result, the intervals hn([θ0 · · · θn]) and hn([θ̄0 · · · θ̄n]) must in-
tersect; hence hn([0, 1]) must be an interval. Computing its extrema gives
hn([0, 1]) = [0, 1− λn+1].

The previous property immediately implies that Ran(h) is dense in [0, 1].
Indeed for any strict sub-interval I in this set, there must be at least one
point of h([0, 1]). To see this, it suffices to take n such that |h(x) − hn(x)|
is uniformly smaller than |I|/2. Assume also that n is sufficiently large so
that I is contained in [0, 1− λn+1]. Choose x such that hn(x) is the middle
of I. Then h(x) must belong to I.

Now, by continuity we know that every h(x) for x ∈ Dc
a can be realized

as a limit lim
y→x

h(y). For points in Da, we similarly take right limits. This

shows that h([0, 1]) is the right closure of a dense subset in [0, 1], namely it
consists of this entire interval excepted the right boundary 1. But h(1) = 1,
thus the proof is complete. �

3 Total variation and component regularity of the
response function

With such an irregular graph for the synchronization function, the appro-
priate characteristic to evaluate is the total variation [22]; this quantity
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Figure 2: Examples of graphs of hc (blue dots - upper continuous curve) and
hd (red dots - lower discontinuous curve) when h is of bounded variation
(λ = 0.4); Left a = 0.2; Right a = 0.5.

measures the integral of the modulus of the derivative. As formally claimed
in the next statement, the finiteness of the total variation depends on the
contraction factor λ. When the variation is finite, we also simultaneously
provide the decomposition into the difference hc−hd of two increasing func-
tions and the one into the sum hc+ (−hd) of a continuous function hc and a
step function −hd (both decompositions are granted by standard theorems
on BV-functions [22]). Some illustrations are given in Figure 2.

Theorem 3.1 h is of bounded variation iff λ < 1
2 . Under this condition,

the function hd given by

hd(x) =
∑

y∈Da : y≤x
h(y − 0)− h(y), ∀x ∈ [0, 1]

is well-defined (and is increasing) and the function hc defined by hc = h+hd
is continuous and strictly increasing on [0, 1] with range [0, 2−2λ1−2λ ].

Proof. We begin to prove that the variation of h is infinite when λ ≥ 1
2 .

Since all discontinuities of h are negative jumps, the total variation is at
least

∑
x∈Da

h(x − 0) − h(x). There are 2n points in Da for which Tna (x) = a

and the corresponding difference h(x − 0) − h(x) is equal to (1 − λ)
∞∑
t=n

λt.

Therefore the variation of h is at least∑
x∈Da

h(x− 0)− h(x) =

∞∑
n=0

(2λ)n. (3)

It easily follows that the total variation is infinite when λ ≥ 1
2 .

To continue, we assume that λ < 1
2 . Relation (3) implies that the

function hd is well-defined (increasing and bounded) on [0, 1]. Moreover
hd(x−0) =

∑
y∈Da : y<x

h(y−0)−h(y), hence hd(x)−hd(x−0) = h(x−0)−h(x).

7



All discontinuities of h are contained in hd and thus the map hc defined by
hc = h+ hd is continuous.

We now show that hc is strictly increasing and bounded, and as a con-
sequence, that h is of bounded variation. Assume that x < y and using the
same notations as in the proof above that h is nowhere monotonous, let

t0 = min{t ≥ 0 : ∃ n : x < xnt ≤ y},

where xnt is defined by T ta(x
n
t ) = a. We have

T ta(x) < T ta(x
n
t0) ≤ T ta(y), 0 ≤ t ≤ t0.

Hence

h(x) < (1− λ)

(
t0−1∑
t=0

λtT t+1
a (xnt0) +

∞∑
t=t0

λt

)
= h(xnt0 − 0)

and

(1− λ)

t0−1∑
t=0

λtT t+1
a (xnt0) = h(xnt0) ≤ h(y)

(The sum from 0 to t0 − 1 equals 0 if t0 = 0.) Using also the definition of
hd and hc, we obtain

hc(x) = h(x) + hd(x)

< h(xnt0 − 0) + hd(x)

≤ h(xnt0 − 0) + hd(x
n
t0 − 0) = hc(x

n
t0),

and

hc(y) = h(y) + hd(y)

≥ h(xnt0) + hd(y)

≥ h(xnt0) + hd(x
n
t0) = hc(x

n
t0),

i.e. hc(x) < hc(y). Finally we have hc(0) = 0 and hc(1) = h(1)+hd(1) < +∞
and the proof is complete. �

We now study in detail smoothness properties of the continuous compo-
nent hc. In a general setting, Kolmogorov’s theorem says that monotonicity
implies the existence of a finite derivative almost everywhere. In our case,
the derivative h′c(x) of the continuous component hc turns out to exist ev-
erywhere outside the countable set Da, provided that λ is further restricted.

Proposition 3.2 If λ < min{a, 1 − a}, then the map hc is differentiable
with bounded derivative at any point in the complement Dc

a. The derivative
can be written

h′c(x) = (1− λ)
∞∑
t=0

λt(T t+1
a (x))′, ∀x ∈ Dc

a.
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In addition for any λ ≥ min{a, 1 − a}, there are points in Dc
a where h′c(x)

diverges.

Proof. The map h can be regarded as the uniform limit of the sequence {hn}
where

hn(x) = (1− λ)

n∑
t=0

λtT t+1
a (x), ∀x ∈ [0, 1]. (4)

Each map hn is right continuous and with negative jump discontinuities in

the set Dn
a =

n⋃
t=0

T−ta (a). As expected, the map hn,d defined by

hn,d(x) =
∑

y∈Dn
a : y≤x

hn(y − 0)− hn(y), ∀x ∈ [0, 1]

is an increasing step function that contains all discontinuities of hn. Conse-
quently, the subsequent map hn,c = hn+hn,d is a piecewise affine continuous
map with finitely many affine parts. As such, it is absolutely continuous and
hence differentiable almost everywhere in [0, 1] [22]. The derivative h′n,c is a
summable function. The fundamental theorem of calculus then yields

hn,c(x)− hn,c(0) =

∫ x

0
h′n,c(y)dy, ∀x ∈ [0, 1] (5)

The map hn,c is actually differentiable on [0, 1] \Dn
a . Letting T ′a(a) = 1

1−a ,
the derivative h′n,c can be uniquely continued to the following step function
on [0, 1]

h′n,c(x) = (1− λ)

n∑
t=0

λt(T t+1
a (x))′

Since T ′a(x) ∈ { 1a ,
1

1−a}, when λ < min{a, 1 − a}, the sequence {h′n,c} uni-
formly converges to a bounded map, say h′c. Applying Lebesgue’s dominated
convergence theorem, one can take the limit n → ∞ in (5) to obtain the
following equality

hc(x)− hc(0) =

∫ x

0
h′c(y)dy, ∀x ∈ [0, 1]

Now, the map h′c is uniformly approximated by step functions and is con-
tinuous at every point of [0, 1] \Da. A standard result [23] states that the
map x 7→

∫ x
0 h
′
c(y)dy is differentiable at every point of [0, 1] \Da and with

derivative h′c. We conclude from the previous equality that hc is differen-
tiable on [0, 1] \Da with derivative h′c. �

The function hc can not be differentiable in Da when a 6= 1
2 because the

right and left derivatives of Ta are unequal at x = a. However, by artifi-
cially setting T ′a(a) = 1

1−a for the derivative at the discontinuity point, the
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domain of h′c extends to the entire interval [0, 1] when λ ≤ min{a, 1 − a}.
Alternatively, the map h′c can be regarded as the (well-defined) right deriva-
tive on [0, 1]. The extended map h′c intriguingly shares several properties
with the original function h. Assuming a 6= 1

2 , this map is right continuous
with jump discontinuities at every point in Da. (This map is constant when
a = 1

2 .) Unlike for h however, the signs of h′c jumps do depend on param-
eters. The analysis reveals that all quantities h′c(· − 0) − h′c(·) are positive
if (a− 1

2)(λ− a(1− a)) > 0 and negative otherwise. Moreover we have the
following statement analogous to Theorem 3.1.

Proposition 3.3 Assume a 6= 1
2 . The function h′c is of bounded variation

iff λ < a(1− a). Under this condition, the map (h′c)d defined by

(h′c)d(x) =
∑

y∈Da : y≤x
h′c(y − 0)− h′c(y)

is well-defined on [0, 1] (and non-increasing or non-decreasing depending on
the sign of a− 1

2).
In addition the function defined by (h′c)c = h′c + (h′c)d is continuous

and strictly increasing if a < 1
2 (resp. strictly decreasing if a > 1

2). It is
differentiable at any x ∈ Dc

a and the derivative identically vanishes.

Proof. To begin, each map x 7→ (T t+1
a (x))′ is piecewise constant and right

continuous; hence h′c is also right continuous. As before, the set Da collects
all discontinuity points. A similar calculation to that in the proof of (2)
shows that if x ∈ Da is such that T t0a (x) = a for some t0 ≥ 0, then we have

h′c(x− 0)− h′c(x) = Ca,λλ
t0(T t0a (x))′

where

Ca,λ = (1− λ)

(
1

a(1− λ
1−a)

− 1

(1− a)(1− λ
a )

)
.

In particular, the sign of h′c(x − 0) − h′c(x) is independent of x. However,
it depends on parameters via the constant Ca,λ. The latter is positive iff
(a− 1

2)(λ− a(1− a)) > 0.
Now in order to estimate the total variation, as before, we have to sum

up all contributions from discontinuities. Given x such that T t0a (x) = a for
some t0 ≥ 0, the derivative (T t0a (x))′ can be written a−k(1−a)−(t0−k) where
k is the number of those iterates {T ta(x)}t0−1t=0 that are smaller than a. Up to
few sequences, the symbolic dynamics of Ta is the full shift on two symbols.
Thus, for every 0 ≤ k ≤ t0, there are

(
t0
k

)
points with k iterates lying below

a. Consequently, the total variation of h′c/Ca,λ is bounded below by

(1− λ)
∞∑
t=0

λt
t∑

k=0

(
t

k

)
1

ak(1− a)t−k
=

1− λ
λ

∞∑
t=0

(
λ

a(1− a)

)t+1

10



which is infinite when λ ≥ a(1− a).
To prove bounded variation when λ < a(1 − a), we again proceed as

before. Assume that a < 1
2 and consider the non-decreasing step function

(h′c)d associated with h′c, viz.

(h′c)d(x) =
∑

y∈Da : y≤x
h′c(y − 0)− h′c(y), ∀x ∈ [0, 1]

and also the continuous component defined by (h′c)c = h′c + (h′c)d. Similar
arguments to those in the proof of Theorem 3.1 show that the map (h′c)c is
strictly increasing and bounded on [0, 1]. It follows that the variation of h′c
is finite when λ < a(1− a). An analogous construction applies when a > 1

2 .
As in the proof of Proposition (3.2), the proof that (h′c)c is differen-

tiable proceeds by considering a sequence of uniform approximations of h′c
by piecewise affine functions with finitely many branches. �

4 Extensions to Nonlinear Systems

The basic results on synchronization functions in piecewise monotonous
forced systems actually do not rely on the affine assumption. They extend
to more general systems. To present extensions, we start by introducing
nonlinear generalized baker’s maps with finitely many pieces.

Let N > 1 be an arbitrary integer and consider the finite collections
{Ii}Ni=1 and {Ji}Ni=1 of intervals defined by

Ii = [xi, xi+1) where 0 = x1 < x2 < · · · < xN+1 = 1

and
Ji = [yi, yi+1) where 0 = y1 < y2 < · · · < yN+1 = 1

for i = 1, · · · , N − 1, together with IN = [xN , 1] and JN = [yN , 1]. Consider
two mappings T and S on [0, 1] defined by

T |Ii ≡ Ti and S|Ji ≡ Si, i = 1, · · · , N

where each Ti : Ii → [0, 1) (and TN : IN → [0, 1]) is a C1 increasing, one-to-
one and onto function and similarly for Si. Now define the map f on [0, 1]2

by f(x, y) = (T (x, y), S(y)) where

T (x, y) = T−1i (x) if y ∈ Ji

The map f is easily checked to be invertible with inverse given by f−1(x, y) =
(T (x),S(y, x)) where

S(y, x) = S−1i (y) if x ∈ Ii

11



As in the piecewise affine case, the dynamics of the skew-product (f, g)
(where g(x, z) = λz + (1− λ)x still remains unchanged) is attracted by the
graph of a function h defined by equation (2) where Ta is replaced by T .

The new synchronization function h shares several properties with the
original one. It is piecewise increasing, right continuous with negative jump
discontinuities at every point of the set D defined by

D =

∞⋃
t=0

T−t({x2, · · · , xN}) (6)

and h([0, 1]) = [0, 1]. Moreover, the conclusions of Theorem 3.1 equally
repeat in this case provided that 1

2 is replaced by 1
N in the condition on

the contraction parameter λ. Indeed, the only novelty sits in the number of
t-preimages of discontinuity point {x2, · · · , xN} (where h(x−0)−h(x) = λt)
which is now given by (N − 1)N t.

If, in addition the map T is piecewise affine, then analogous to statements
of Propositions 3.2 and 3.3 hold for arbitrary N > 2.

Next, we consider the case where the response g is also nonlinear, i.e. we
assume

- relation (1) holds for some 0 < λ < 1,

- the maps g(·, z) are all strictly increasing and the family is equi-
continuous.

In such cases, the existence of a globally attracting synchronization function
has previously been established [14, 17]. Here, we complete this result by
specifying some properties of this function.

Proposition 4.1 For any f(x, y) = (T (x, y), S(y)) and g(x, z) as above,
there exists a function h whose graph z = h(x) attracts all sequences {(xt, zt)}
of the skew-product (f, g). The function h has the following properties:

• it is right continuous,

• it is continuous in Dc and h(x− 0) > h(x) if x ∈ D,

• it is nowhere monotonous,

• it has bounded variation if λ < 1
N and writes hc − hd in this case,

where hc is strictly increasing and continuous and hd is an increasing
step function.

• it has infinite variation if λ′ > 1
N where λ′ := inf

x,z−z′ 6=0

|g(x,z)−g(x,z′)|
|z−z′| .
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Proof. Existence proofs in the nonlinear case have already been published in
the literature [14, 17]. We provide another proof here that is more suitable
to the present framework.

Let gx(y) := g(x, y) and M = sup
x∈[0,1]

|gx(0)| <∞. Relation (1) results in

|gx(y)| ≤ |gx(0)|+ λ|y| which implies

gx([−Mλ,Mλ]) ⊂ [−Mλ,Mλ], ∀x ∈ [0, 1]

where Mλ = M
1−λ .

Given an arbitrary pair (x, z) and t ≥ 0, define the tth iterate ht(x, z)
as follows

ht(x, z) = gT (x) ◦ gT 2(x) ◦ · · · ◦ gT t(x)(z).

By refining the arguments above, one shows that the interval [−Mλ,Mλ]
is not only invariant for ht but it is also absorbing. In particular every
sequence {ht(x, z)} must be bounded.

Next choose two integers t > s. We have

|ht(x, z)− hs(x, z)| < λs|gT s+1(x) ◦ · · · ◦ gT t(x)(z)− z|

which implies that {ht(x, z)} is a Cauchy sequence; hence the following limit
exists for all x ∈ [0, 1]

h(x) ≡ lim
t→∞

ht(x, z)

and is independent of z. Moreover, the continuous dependence on z implies
the following conjugacy equation, i.e.

g(x, h(x)) = gx( lim
t→∞

ht(x, z))

= lim
t→∞

gx(ht(x, z)) = h ◦ T (x, y)

for any y ∈ [0, 1]. Global attraction easily follows by using contraction once
again.

The arguments for properties of h are very similar to those in the linear
case:

• Right continuity follows from both the fact that all ht(x, y) are right
continuous and uniform convergence in the definition of h.

• The existence of left limit h(x−0) and the continuity inDc are obtained
similarly by using also the monotonicity of the g(·, z). Now, if T t0(x) ∈
D, then by continuity outside D, we have

h(x− 0) = gT (x) ◦ gT 2(x) ◦ · · · ◦ gT t0 (x) ◦ h(1)

h(x) = gT (x) ◦ gT 2(x) ◦ · · · ◦ gT t0 (x) ◦ h(0)

and thus h(x− 0)− h(x) > 0 by strict monotonicity.

13



• The estimates on the bounded variation follow directly from the fact
that if T t0(x) ∈ D, then

(λ′)t0(h(1)− h(0)) ≤ h(x− 0)− h(x) ≤ λt0(h(1)− h(0))

Finally the properties of the components hc and hd can be obtained
in a similar way as in the proof of Theorem 3.1. �
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