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Abstract

We analyze discontinuous synchronization functions in basic examples of
forced systems with uniform contractive response and chaotic driving. The
forcing is given by generalized (linear and nonlinear) baker’s map and the
response depends monotonically on the drive. The resulting synchronization
graphs appear to be extremely wrinkled with dense sets of discontinuities.
We provide a criteria on the contraction rate for the associated total vari-
ation to be bounded and we study in detail smoothness properties of the
continuous component.
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1 Introduction

Analyzing the asymptotic response to a random or erratic stimulus is an
ubiquitous problem in Nonlinear Dynamics. The archetypical example is
given by synchronization phenomena in directionally coupled systems [1].
(For convenience, focus will be on discrete time dynamics throughout this
paper). When an autonomous forcing xt+1 = f(xt) compels iterations of a
dissipative factor zt+1 = g(xt, zt), the dynamics is known to be attracted by
an invariant graph z = h(x) [2, 3, 4]. In brief, the response z is asymptoti-
cally locked (viz. conjugated) to the drive x.
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In this context, regularity and smoothness of the synchronization func-
tion h - which depend on f and g - prescribe those drive features (such
as Lyapunov exponents, fractal dimensions, etc) that are conveyed to the
factor. For instance, Lipschitz regularity guarantees identical attractor di-
mensions. Applications range from modeling of low-pass filters in signal
analysis [5, 6, 7, 8] to damage detection in material science [9].

The mathematical analysis of synchronization function is part of the
broader study of inertial manifolds in dynamical systems. It goes back to
the seminal work of Hirsch, Pugh and Shub [10, 11] who proved existence
and continuity under the assumption that f is a homeomorphism and g is
contracting for z. They also showed Lipschitz regularity when g contraction
rate is smaller than f contraction rate (and additional mild assumptions
on f and g). These results were perfected later on [12, 13, 14], especially
by Stark [15, 16] who established smoothness and extended to non uniform
contractive responses.

Studies of continuity have been pursed beyond the homeomorphic case,
not only when the response function g remains blind to drive discontinuities,
but also when f is not invertible [17, 18]. However, continuity may not
always hold in applications [6, 7, 8] and sensitive response functions also
have to be considered.

To that aim, this paper considers discontinuous synchronization graphs
in basic examples of skew products (f, g) with chaotic driving f and con-
tractive response g i.e.

|g(x, z)− g(x, z′)| ≤ λ|z − z′| (1)

where 0 < λ < 1. As noticed in the literature [13, 15, 16], the response h
lacks monotonicity and may have infinitely many discontinuity points that
accumulate on a dense subset. Appropriate notions to investigate then are
overall graph ”length” (i.e. total variation of h) and continuous and discon-
tinuous component properties. We proceed to a thorough analytic study in
the case where f is an extension of the baker’s map and g(x, z) = λz + x
is linear [6, 8, 13]. The total variation is shown to possibly diverge depend-
ing on the contraction parameter λ. When this quantity remains finite, an
analysis of regularity and of the derivative of the continuous component is
given. The specific form of response function allows for results well beyond
the standard theory of real functions. Finally, mention is proffered of those
results that extend to more general nonlinear skew-product systems (f, g).
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2 Piecewise linear skew-products and synchroniza-
tion graphs

As announced before, autonomous forcing in this study materializes via
the generalized baker’s map (x, y) 7→ f(x, y) = (Ta,b(x, y), Tb(y)) of the unit
square [0, 1]2 into itself [6, 8]. Here 0 < a, b < 1 and the mapping components
write

Ta,b(x, y) =
{

ax if 0 ≤ y < b
(1− a)x + a if b ≤ y ≤ 1

and

Tb(y) =
{ y

b if 0 ≤ y < b
y−b
1−b if b ≤ y ≤ 1

Due to the contraction 0 < λ < 1 the response system zt 7→ zt+1 =
g(xt, zt) = λzt + xt results to be asymptotically locked to the forcing term
[2, 3, 4]. More precisely, the large time behavior of the sequence {zt} is
independent of z0 and approaches {h(xt)}. This is a consequence of the
equality zt−h(xt) = λt(z0−h(x0)) where the synchronization function h is
given by

h(x) =
∞∑

t=0

λtT t+1
a (x), x ∈ [0, 1]. (2)

The response h only depends on the first forcing variable because f turns
out to be invertible and the first coordinate of the inverse f−1(x, y) =
(Ta(x), Tb,a(y, x)) only depends on x. (Besides, as a function of λ, the map
h is smooth and strictly increasing and uniformly converges to Ta when
λ → 0.) Furthermore, this function solves the conjugacy equation

g(x, h(x)) = h ◦ Ta,b(x, y)

(thanks to the property Ta ◦ Ta,b(x, y) = x). When f is not invertible, h a
priori depends on backward histories {xt}t≤0 [17, 18].

Exponential convergence of the series (2) guarantees that h is well-
defined on [0, 1]. The function can be viewed as a uniform limit of piecewise
affine maps obtained by truncating the series to finite order (see equation (5)
below). This comment provides a convenient way to numerically compute
the graph up to arbitrary accuracy, see Figure 1.

The map Ta is right continuous and piecewise increasing. The same
properties hold for all maps T t

a. By uniform convergence, right continuity
therefore transfers to h, viz. we have h(x + 0) = h(x) for all x. In addition,
the maps T t

a are all piecewise increasing; thus the left limit h(x − 0) exists
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Figure 1: Examples of graph of h (of the function h14 indeed - see equation
(5)). In the left pictures, h is of bounded variation; in the right ones, it has
infinite variation. Notice the symmetry h(x) = 1− h(1− x− 0) for a = 0.5.
(Color online)
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everywhere. This limit coincides with h(x) unless x is a pre-image of the
discontinuity point a. More precisely, we have h(x − 0) > h(x) iff x ∈ Da

which is the dense subset of [0, 1] defined by

Da =
∞⋃

t=0

T−t
a (a).

To prove that all jump discontinuities are negative, we start to notice that
uniform convergence yields

h(x− 0) =
∞∑

t=0

λtT t+1
a (x− 0), ∀x ∈ [0, 1].

By definition, for every point x ∈ Da there is a unique t0 ≥ 0 such that
T t0

a (x) = a and T t
a(x) 6= a when 0 ≤ t < t0. The map Ta is continuous

everywhere but at the point a; hence we have

T t+1
a (x− 0) = T t+1

a (x), ∀0 ≤ t < t0.

Using again T t0
a (x) = a, we get T t0+1

a (x − 0) = 1 and T t0+1
a (x) = 0. How-

ever, these points 0 and 1 are fixed points; hence the same values hold
for subsequent iterates. Altogether we obtain explicit estimates for jump
discontinuities at every point of Da

h(x− 0)− h(x) =
∞∑

t=t0

λt > 0.

On the other hand, if x lies outside Da, we have lim
y→x

T t(y) = T t(x) for all

t ≥ 0. Uniform convergence then implies that lim
y→x

h(y) = h(x) as claimed.

Finally, uniform convergence and right continuity allow to prove that the
range of h is an entire interval, namely h([0, 1]) = 1

1−λ , a property clearly
suggested by the pictures in Figure 1.

3 Total variation and component regularity of the
response function

The graph of the response function h is extremely wrinkled because mono-
tonicity fails and discontinuity points are dense. The appropriate charac-
teristic to evaluate in this case is the total variation [19] which gives the
mean value of the modulus of derivative. As formally claimed in the next
statement, the finiteness of this quantity depends on the contraction factor
λ.
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Theorem 3.1 h is of bounded variation iff λ < 1
2 . Under this condition,

the function hd given by

hd(x) =
∑

y∈Da : y≤x

h(y − 0)− h(y)

is well-defined (and is increasing) on [0, 1] and the function hc defined by
hc = h + hd is continuous and strictly increasing.

Some illustrations are given in Figure 2. All proofs are postponed to the Ap-
pendix. A classical theorem states that every function of bounded variation
can be written as the difference of two increasing functions [19]. Another
non less standard statement claims that bounded variation implies unique
decomposition into the sum of a step function and of a continuous one. Inter-
estingly, the difference hc−hd here simultaneously proffers these alternative
breakdowns for h.

We now study in detail smoothness properties of the continuous compo-
nent hc. In a general setting, Kolmogorov’s theorem tells that monotonicity
implies the existence of a finite derivative almost everywhere. In our case,
the derivative h′c(x) turns out to exist everywhere out of the countable set
Da, provided that λ is further restricted.

Proposition 3.2 If λ ≤ min{a, 1−a} < 1
2 , then the map hc is differentiable

with bounded derivative at any point in the complement Dc
a. The derivative

can be written

h′c(x) =
∞∑

t=0

λt(T t+1
a (x))′, ∀x ∈ Dc

a.
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In addition for any λ ≥ min{a, 1 − a}, there are points in Dc
a where h′c(x)

diverges.

The function hc can not be differentiable in Da when a 6= 1
2 because the

right and left derivatives of Ta are unequal at x = a. However, by artificially
setting T ′a(a) = 1

1−a for the derivative at the discontinuity point, the domain
of h′c extends to the entire interval [0, 1] when λ ≤ min{a, 1 − a}. Alterna-
tively, the map h′c can be regarded as the (well-defined) right derivative on
[0, 1]. The extended map h′c intriguingly shares several properties with the
original function h. Assuming a 6= 1

2 , this map is right continuous with jump
discontinuities at every point in Da. (This map is constant when a = 1

2 .)
Unlike for h however, h′c jump signs do depend on parameters. The analysis
reveals that all signs h′c(x−0)−h′c(x) are positive if (a− 1

2)(λ−a(1−a)) > 0
and negative otherwise. Moreover we have the following statement that in
particular provides an example of a strictly increasing function with deriva-
tive well-defined and vanishing everywhere excepted in a countable set.

Proposition 3.3 Assume a 6= 1
2 . The function h′c is of bounded variation

iff λ < a(1− a). Under this condition, the map (h′c)d defined by

(h′c)d(x) =
∑

y∈Da : y≤x

h′c(y − 0)− h′c(y)

is well-defined on [0, 1] (and non-increasing or non-decreasing depending on
the sign of a− 1

2).
In addition the function defined by (h′c)c = h′c + (h′c)d is continuous

and strictly increasing if a < 1
2 (resp. strictly decreasing if a > 1

2). It is
differentiable at any x ∈ Dc

a and the derivative identically vanishes.

4 Extensions to Nonlinear Systems

Many results in this paper do not rely on the piecewise affine assumption.
They extend to more general nonlinear systems. To present extensions, we
start by introducing nonlinear generalized baker’s maps with finitely many
pieces.

Let N > 1 be an arbitrary integer and consider finite collections {Ii}N
i=1

and {Ji}N
i=1 of intervals defined by

Ii = [xi, xi+1) where 0 = x1 < x2 < · · · < xN+1 = 1

and
Ji = [yi, yi+1) where 0 = y1 < y2 < · · · < yN+1 = 1
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for i = 1, · · · , N − 1 by IN = [xN , 1] and JN = [yN , 1]. Consider two
mappings T and S on [0, 1] defined by

T |Ii ≡ Ti and S|Ji ≡ Si, i = 1, · · · , N

where each Ti : Ii → [0, 1) (and TN : IN → [0, 1]) is a C1 increasing, one-to-
one and onto function and similarly for Si. Now define the map f on [0, 1]2

by f(x, y) = (T (x, y), S(y)) where

T (x, y) = T−1
i (x) if y ∈ Ji

The map f is easily checked to be invertible with inverse given by f−1(x, y) =
(T (x),S(y, x)) where

S(y, x) = S−1
i (y) if x ∈ Ii

As in the piecewise affine case, the dynamics of the skew-product (f, g)
(where g(x, z) = λz + x still remains unchanged) is attracted by the graph
of a function h defined by equation (2) where Ta is replaced by T .

The new synchronization function h shares several properties with the
original one. It is piecewise increasing, right continuous with negative jump
discontinuities at every point of the set D defined by

D =
∞⋃

t=0

T−t({x2, · · · , xN}) (3)

and h([0, 1]) = [0, 1
1−λ ]. Moreover, the conclusions of the Theorem equally

repeat in this case provided that 1
2 is replaced by 1

N in the condition on the
contraction parameter λ. Indeed, the only novelty sits in the number of t-
preimages of discontinuity point {x2, · · · , xN} (where h(x−0)−h(x) = λt

1−λ)
which is now given by (N − 1)N t.

(Of note, analogous to statements of Propositions 3.2 and 3.3 hold for
maps f with N > 2 when one assumes that T and S are piecewise affine
maps.)

Next, we consider the case where the response g is also nonlinear, i.e. we
assume

- relation (1) holds for some 0 < λ < 1,

- the maps g(·, z) are all increasing and the family is equi-continuous.

In such cases, the existence of a globally attracting synchronization function
has previously been established [13, 16]. We complete this result here by
specifying some properties of this function.
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Proposition 4.1 For any f(x, y) = (T (x, y), S(y)) and g(x, z) as above,
there exists a function h whose graph z = h(x) attracts all sequences {(xt, zt)}
of the skew-product (f, g). Moreover, h is right continuous, with negative
jump discontinuities if any and, when λ < 1

N , is of bounded variation.

Acknowledgments I am grateful to G. Mantica for inspiring discussions
and especially to A. Quas for pointing out crucial errors in preliminary
versions of the manuscript. I thank the Courant Institute (New York Uni-
versity) for hospitality. Support was partly provided by CNRS and by the
EU Marie Curie fellowship PIOF-GA-2009-235741.

References

[1] L.M. Pecora and T.L. Caroll, Synchronization in chaotic systems, Phys.
Rev. Lett. 64 (1990) 821–824

[2] V.S. Afraimovich, N.N. Verichev, and M.I. Rabinovich, Stochastic syn-
chronization of oscillations in dissipative systems, Radiophys. Quantum
Electron. 29 (1986) 795–803

[3] L. Kocarev and U. Parlitz, Generalized synchronization, predictability,
and equivalence of unidirectionally coupled dynamical systems, Phys.
Rev. Lett. 76 (1996) 1816–1819

[4] N.F. Rulkov, M.M. Sushchik, L.S. Tsimring, and H.D.I. Abarbanel,
Generalized synchronization of chaos in directionally coupled chaotic
systems, Phys. Rev. E 51 (1996) 980–94

[5] J.L. Kaplan, J. Mallet-Paret and J.A. Yorke, The Lyapunov dimension
of a nowhere differentiable attracting torus, Ergod. Th. Dynam. Sys. 4
(1984) 261–281

[6] R. Badii and A. Politi, Dimension function and phase transition-like
behavior in strange attractors, Physica Scripta 35 (1987) 243–246

[7] D.S. Broomhead, J.P. Huke and M.R. Muldoon, Linear filters and non-
linear systems, J. Roy. Stat. Soc. B 54 373–382 (1992)

[8] B.R. Hunt, E. Ott, and J.A. Yorke, Differentiable generalized synchro-
nization of chaos, Phys. Rev. E 55 (1997) 4029–4034

9



[9] L. Moniz, J. Nichols, S. Trickey, M. Seaver, D. Pecora and L. Pecora,
Using chaotic forcing to detect damage in a structure Chaos 15 (2005)
023106

[10] M. Hirsch and C. Pugh, Stable Manifolds and Hyperbolic Sets in Global
Analysis, Amer. Math. Soc. Proc. Symp. Pure Math. 14 (1970) 133–164

[11] M. Hirsch, C. Pugh and M. Shub, Invariant Manifolds, Lec. Notes
Math. 583 (1977)

[12] K.M. Campbell and M.E. Davies, The existence of inertial functions in
skew product systems Nonlinearity 9 (1996) 801–817

[13] V.S. Afraimovich, J.-R. Chazottes and A. Cordonet, Synchronization
in unidirectionally coupled systems: some rigorous results, Discrete &
Cont. Dyn. Sys. Ser. B 1 (2001) 421–442

[14] J. Urias, Filters display inverse limit spaces, Chaos 14 (2004) 963–968

[15] J. Stark, Invariant graphs for forced systems, Physica D 109 (1997)
163–179

[16] J. Stark, Regularity of invariant graphs for forced systems Ergod. Th.
Dynam. Sys. 19 (1999) 155–199

[17] N.F. Rulkov and V.S. Afraimovich, Detectability of nondifferentiable
generalized synchrony, Phys. Rev. E 67 (2003) 066218

[18] E. Barreto, K. Josic, C.J. Morales, E. Sander, and P. So, The geometry
of chaos synchronization, Chaos 13 151–164 (2003)

[19] A.N. Kolmogorov and S.V. Fomin, Elements of the theory of functions
and functional analysis, Dover (1999)

[20] see e.g. Theorem 6.1, Chapter X in S. Lang, Undergraduate Mathemat-
ics, 2nd ed. Springer (1997)

A Proofs

Proof that Ran(h) = [0, 1
1−λ ]. The crucial point is to show that for every n

we have hn([0, 1]) = [0, 1−λn+1

1−λ ] where the approximations hn are defined in
the relation (5) below.
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Consider the cylinder sets [θ0 · · · θn] that are associated with the usual
symbolic dynamics of (Ta, [0, 1]), i.e. θt ≡ H(T t

a(x) − a) where H is the
Heaviside function. Cylinder sets are intervals and their union (with length
fixed) covers [0, 1].

The iterates T t+1
a are piecewise bijections and we have T t+1

a ([θ0 · · · θn]) =
[θt+1 · · · θn] for 0 ≤ t ≤ n (where [θn+1 · · · θn] should be understood as [0, 1]).
This yields

hn([θ0 · · · θn]) =
n∑

t=0

λt[θt+1 · · · θn]

which is an interval. Moreover, given two adjacent cylinders [θ0 · · · θn] ≤
[θ̄0 · · · θ̄n], their images [θt+1 · · · θn] and [θ̄t+1 · · · θ̄n] are either equal or ad-
jacent. As a result, the intervals hn([θ0 · · · θn]) and hn([θ̄0 · · · θ̄n]) must in-
tersect; hence hn([0, 1]) must be an interval. Computing its extrema gives
hn([0, 1]) = [0, 1−λn+1

1−λ ].
The previous property immediately implies that Ran(h) is dense in 1

1−λ .
Indeed for any strict sub-interval I in this set, there must be at least one
point of h([0, 1]). To see this, it suffices to take n such that |h − hn| is
(uniformly) smaller than |I|/2. Assume also that n is sufficiently large so
that I is contained in [0, 1−λn+1

1−λ ]. Choose x such that hn(x) is the middle of
I. Then h(x) must belong to I.

Now, by continuity we know that every h(x) for x ∈ Dc
a can be realized

as a limit lim
y→x

h(y). For points in Da, we similarly take right limits. This

shows that h([0, 1]) is the right closure of a dense subset in [0, 1
1−λ ], namely

it consists of this entire interval expected the right boundary 1
1−λ . But

h(1) = 1
1−λ , thus the proof is complete.

Proof of the Theorem. We begin to prove that the variation of h is infinite
when λ ≥ 1

2 . Since all discontinuities of h are negative jumps, the total
variation of h is at least

∑
x∈Da

h(x− 0)−h(x). There are 2n points in Da for

which Tn
a (x) = a and the corresponding difference h(x− 0)− h(x) is equal

to
∞∑

t=n
λt. Therefore the variation of h is at least

∑
x∈Da

h(x− 0)− h(x) =
∞∑

n=0

(2λ)n

1− λ
. (4)

It easily follows that the total variation is infinite when λ ≥ 1
2 .
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To continue, we assume that λ < 1
2 . Relation (4) implies that the

function hd is well-defined (increasing and bounded) on [0, 1]. Moreover
hd(x−0) =

∑
y∈Da : y<x

h(y−0)−h(y), hence hd(x)−hd(x−0) = h(x−0)−h(x).

All discontinuities of h are contained in hd and thus the map hc defined by
hc = h + hd is continuous.

We now show that hc is strictly increasing and bounded, and as a con-
sequence, that h is of bounded variation. Assume that x < y and let

t0 = min{t ≥ 0 : ∃ n x < xn
t ≤ y},

where xn
t is defined by T t

a(x
n
t ) = a. The number t0 exists because Da is a

dense subset. By definition of t0 all iterates of x and y up to t0 − 1 must
lie on the same side of the discontinuity point. By monotonicity of T t

a this
implies

T t
a(x) < T t

a(x
n
t0) ≤ T t

a(y), 0 ≤ t ≤ t0.

Hence

h(x) <

t0−1∑
t=0

λtT t+1
a (xn

t0) +
∞∑

t=t0

λt = h(xn
t0 − 0)

and
t0−1∑
t=0

λtT t
a(x

n
t0) = h(xn

t0) ≤ h(y)

(The sum from 0 to t0 − 1 equals 0 if t0 = 0.) Using also the definition of
hd and hc, we obtain

hc(x) = h(x) + hd(x)
< h(xn

t0 − 0) + hd(x)
≤ h(xn

t0 − 0) + hd(xn
t0 − 0) = hc(xn

t0),

and

hc(y) = h(y) + hd(y)
≥ h(xn

t0) + hd(y)
≥ h(xn

t0) + hd(xn
t0) = hc(xn

t0),

i.e. hc(x) < hc(y). Now we have hc(0) = 0 and hc(1) =
∞∑

t=0

λt +hd(1) < +∞

and the proof is complete.
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Proof of Proposition 3.2. The map h can be regarded as the uniform limit
of the sequence {hn} where

hn(x) =
n∑

t=0

λtT t+1
a (x), x ∈ [0, 1]. (5)

Each map hn is right continuous and with negative jump discontinuities in

the set Dn
a =

n⋃
t=0

T−t
a (a). As expected, the map hn,d defined by

hn,d(x) =
∑

y∈Dn
a : y≤x

hn(y − 0)− hn(y)

is an increasing step function that contains all discontinuities of hn. Conse-
quently, the subsequent map hn,c = hn+hn,d is a piecewise affine continuous
map with finitely many affine parts. As such, it is absolutely continuous and
hence differentiable almost everywhere in [0, 1] [19]. The derivative h′n,c is a
summable function. The fundamental theorem of calculus then yields

hn,c(x)− hn,c(0) =
∫ x

0
h′n,c(y)dy. (6)

The map hn,c is actually differentiable on [0, 1] \Dn
a . Letting T ′a(a) = 1

1−a ,
the derivative h′n,c can be uniquely continued to the following step function
on [0, 1]

h′n,c(x) =
n∑

t=0

λt(T t+1
a (x))′

Since T ′a(x) ∈ { 1
a , 1

1−a}, when λ < min{a, 1 − a}, the sequence {h′n,c} uni-
formly converges to a bounded map, say h′c. Applying Lebesgue’s dominated
convergence theorem, one can take the limit n → ∞ in (6) to obtain the
following equality

hc(x)− hc(0) =
∫ x

0
h′c(y)dy, ∀x ∈ [0, 1].

Now, the map h′c is uniformly approximated by step functions and is contin-
uous at every point of [0, 1]\Da. A standard results [20] states that the map
x 7→

∫ x
0 h′c(y)dy is differentiable at every point of [0, 1]\Da and with deriva-

tive h′c. We conclude from the previous equality that hc is differentiable on
[0, 1] \Da with derivative h′c.
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Proof of Proposition 3.3. To begin, each map x 7→ (T t+1
a (x))′ is piecewise

constant and right continuous; hence h′c is also right continuous. As before,
the set Da collects all discontinuity points. A similar calculation to as in the
proof of (2) shows that if x ∈ Da is such that T t0

a (x) = a for some (minimal)
t0 ≥ 0, then we have

h′c(x− 0)− h′c(x) = Ca,λλt0(T t0
a (x))′

where

Ca,λ =

(
1

a(1− λ
1−a)

− 1
(1− a)(1− λ

a )

)
.

In particular, the sign of h′c(x − 0) − h′c(x) is independent of x. However,
it depends on parameters via the constant Ca,λ. The latter is positive iff
(a− 1

2)(λ− a(1− a)) > 0.
Now in order to estimate the total variation, as before, we have to sum

up all contributions from discontinuities. Given x such that T t0
a (x) = a for

some t0 ≥ 0, the derivative (T t0
a (x))′ can be written a−k(1−a)−(t0−k) where

k is the number of those iterates {T t
a(x)}t0−1

t=0 that are smaller than a. Up to
few exceptional sequences, the symbolic dynamics of Ta is the full shift on
two symbols. Thus, for every 0 ≤ k ≤ t0, there are

(
t0
k

)
points with k iterates

lying below a. Consequently, the total variation of h′c/Ca,λ is bounded below
by

∞∑
t=0

λt
t∑

k=0

(
t

k

)
1

ak(1− a)t−k
=

1
λ

∞∑
t=0

(
λ

a(1− a)

)t+1

which is infinite when λ ≥ a(1− a).
To prove bounded variation when λ < a(1 − a), we again proceed as

before. Assume that a < 1
2 and consider the non-decreasing step function

(h′c)d associated with h′c, viz.

(h′c)d(x) =
∑

y∈Da : y≤x

h′c(y − 0)− h′c(y), x ∈ [0, 1].

and also the continuous component defined by (h′c)c = h′c + (h′c)d. Similar
arguments to as in the proof of the Theorem show that the map (h′c)c is
strictly increasing and bounded on [0, 1]. It results that the variation of h′c
is finite when λ < a(1− a). An analogous construction applies when a > 1

2 .
As in the proof of Proposition (3.2), the proof that (h′c)c is differen-

tiable proceeds by considering a sequence of uniform approximations of h′c
by piecewise affine functions with finitely many branches.
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Proof of Proposition 4.1. Existence proofs in the nonlinear case have already
been published in the literature [13, 16]. We provide another proof here that
is more suitable to the present framework.

Let M = sup
x∈[0,1]

|gx(0)| < ∞. Relation (1) results in |gx(y)| ≤ |gx(0)|+ |y|

which implies

gx([−Mλ,Mλ]) ⊂ [−Mλ,Mλ], ∀x ∈ [0, 1]

where Mλ = M
1−λ .

Given an arbitrary pair (x, z) and t ≥ 0, define the tth iterate ht(x, z)
as follows

ht(x, z) = gT (x) ◦ gT 2(x) ◦ · · · ◦ gT t(x)(z).

By refining the arguments above, one shows that the interval [−Mλ,Mλ]
is not only invariant for ht but it is also absorbing. In particular every
sequence {ht(x, z)} must be bounded.

Next choose two integers t > s. We have

|ht(x, z)− hs(x, z)| < λs|gT s+1(x) ◦ · · · ◦ gT t(x)(z)− z|

which implies that {ht(x, z)} is a Cauchy sequence; hence the following limit
exists for all x ∈ [0, 1]

h(x) ≡ lim
t→∞

ht(x, z)

and is independent of z. Moreover, the continuous dependence on z implies
the following conjugacy equation, i.e.

g(x, h(x)) = gx( lim
t→∞

ht(x, z))

= lim
t→∞

gx(ht(x, z)) = h ◦ T (x, y)

for some y ∈ [0, 1]. Global attraction easily follows by using contraction
once again.

The arguments for properties of h are very similar to as in the linear case.
By uniform convergence, and the fact that all ht(x, y) are right continuous,
the same property hold for h. That the limit h(x − 0) exists everywhere
and jump discontinuities are all negative follow from properties of the map
T t and monotonicity of the g(·, z). The sufficient condition for bounded
variation is obtained in the same way as before. The details are left to the
reader.
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