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We use replica exchange Monte-Carlo simulations to measure the equilibrium equation of state of
the disordered fluid state for a binary hard sphere mixture up to very large densities where standard
Monte-Carlo simulations do not easily reach thermal equilibrium. For the moderate system sizes we
use (up to N = 100), we find no sign of a pressure discontinuity near the location of dynamic glass
singularities extrapolated using either algebraic or simple exponential divergences, suggesting they
do not correspond to genuine thermodynamic glass transitions. Several scenarios are proposed for
the fate of the fluid state in the thermodynamic limit.

I. INTRODUCTION

Simple liquids, crystals, glasses, powders, and colloidal
dispersions are frequently modeled using hard spheres.
Although considered as one of the simplest models in
condensed matter physics, hard spheres exhibit a compli-
cated phase behavior that is not fully elucidated. In par-
ticular, a well-established first order fluid-solid transition
exists in three dimensions. For monodisperse systems, it
occurs from volume fractions ¢f = mpo3/6 ~ 0.492 to
s & 0.545 (p is the number density and o the particle
diameter) [1-5]. However, the metastable fluid branch
persists for ¢ > ¢, and its fate at large ¢ remains a de-
bated subject [6]. Since the fluid cannot exist above the
maximum density of the cubic centered crystal structure,
Yiee & 0.74, it may either go unstable, or it may exhibit
a singularity with a diverging (dimensionless) pressure,
7 = BP/p, and a vanishing (also dimensionless) isother-
mal compressibility, x = 6p/6(8P). Here 8 = (kgT)~!,
with T the temperature and kp the Boltzmann con-
stant. Additionally, a thermodynamic glass transition
could possibly occur along the way [6-11], characterized
by a diverging timescale for structural relaxation [12-15],
a change of slope in the equilibrium equation of state
Z(p), and a jump in the compressibility. These features
would be the analog, for hard spheres, of the glass tran-
sition observed in glassforming liquids, characterized in
particular by a diverging viscosity and a jump in the spe-
cific heat [16]. It is the aim of this work to scarch for a
thermodynamic signature of the glass transition in hard
spheres.

Studying the metastable fluid branch by simulations
is complicated since the system naturally tends to form
the crystal phase [17, 18], at least in three dimensions
[19]. Since pressure is very dependent on the existence of
small amounts of crystal nuclei, excluding ordered config-
urations from the sampling is critical to obtain the real
pressure-density relationship [17, 18]. An efficient way
to overcome the somewhat arbitrary exclusion of crys-
talline states from the sampling is to introduce size poly-

dispersity to avoid, or at least considerably delay, crystal
formation. One must then work between several con-
straints: polydispersity must be large enough to prevent
ordering, but small enough that a qualitatively different
physics, specific to very polydisperse systems, does not
set in. For instance, phase separation can occur in mix-
tures [20], or fractionation in systems with continuous
polydispersity [21]. These phenomena have counterparts
even for disordered states, since multiple glass transitions
might occur in polydisperse systems, where for instance
large particles are arrested in a sea of small ones that
still easily diffuse [22]. In this work we use a 50:50 binary
mixture of hard spheres with a diameter ratio 1.4, large
enough to efficiently prevent crystallization, but which
shows no sign of multiple glass transitions.

The final problem to be overcome is also the most dif-
ficult one: approaching the glass transition at thermal
equilibrium is hard in systems where the viscosity be-
comes large because the timescale to reach equilibrium is
simultaneously diverging. On this aspect, numerical sim-
ulations could potentially outperform experimental work
since it is possible, at least in principle, to imagine algo-
rithms that have no ‘physical’ counterpart but still allow
a proper exploration of the configuration space, and thus
of the thermodynamic properties of the system [23]. Sev-
eral such ‘smart’ algorithms exist in various context of
statistical mechanics, such as umbrella sampling which
makes use of biased statistical weights, replica exchange
or parallel tempering where copies of the system at var-
ious thermodynamic states are run in parallel to avoid
being trapped in free energy minima [24-26], or cluster
and swap algorithms which implement unphysical parti-
cle moves to speed up equilibration [27, 28].

Although commonly used and very successful in many
areas of condensed matter, such methods have compar-
atively been much less used in numerical studies of the
glass transition, for several reasons. Firstly, the glass
transition is mostly defined by, and studied via, dynamic
properties, and so it is vital to use physical microscopic
dynamics, which inevitably yields slow dynamics. There



are nevertheless interesting thermodynamic properties to
be investigated in glassforming materials, for which im-
plementation of particle swaps [29], cluster moves [30],
Wang-Landau sampling [31, 32], or parallel tempering
[33-36] have all been implemented. Of course these differ-
ent methods can be combined to improve further the effi-
ciency. This has led in particular to strong claims about
both the absence [30] and presence [29, 37] of thermo-
dynamic glass transitions in various glassy fluid models
(including hard spheres), but also raised debates about
the real efficiency of the various numerical algorithms to
study systems with slow dynamics [33-35, 38].

Here, we employ the replica exchange Monte-Carlo
(REMC) method [25, 26, 39, 40], as recently adapted
to systems composed of hard particles [5]. The idea is to
simulate several replicas of the same system at different
but close enough thermodynamic states to allow efficient
exchanges between the replicas [23]. For soft interpar-
ticle potentials, the most common ensemble expansion
is that performed in temperature where each replica fol-
lows a canonical ensemble simulation and the ensembles
are set at different temperatures. To take advantage of
the REMC algorithm for hard spheres, one needs to ex-
pand the isobaric-isothermal ensemble in pressure [41],
each replica evolving at a different pressure [5]. Repli-
cas having the larger pressures can escape from locally
stable free energy minima through successive exchanges
with replicas at lower pressures [42].

Using REMC, we have been able to reach thermal equi-
librium for hard spheres up to very large densities where
standard Monte-Carlo algorithms do not allow proper
sampling of the configuration space [15, 43, 44]. We were
thus able to study the thermodynamic properties of the
disordered fluid branch of a binary hard sphere mixture
over a broad density range which includes both the mode-
coupling, @mct, and Vogel-Fulcher-Tamman, @y > Omct,
dynamic singularities finding no thermodynamic signa-
ture for any of them, at least for the moderate system
sizes we used, up to N = 100. While the absence of a
genuine transition at ¢mct can be established by standard
numerical methods [15, 43, 44], it is the main new result
of this work that the same phenomenon seems to occur
also at yft.

The paper is organized as follows. In Sec. II we
describe in more detail the model we use, and review
the various ‘critical’ volume fractions that have been re-
ported in previous work. In Sec. III we provide details
about the REMC simulations. In Sec. IV we perform
several tests to ensure that a proper sampling of config-
uration space has been done. In Sec. V we describe our
equilibrium results for the thermodynamics of the sys-
tem. In Sec. VI we investigate even higher densities, for
which thermal equilibration could not be reached. Fi-
nally, we discuss our results in Sec. VII.

Definition Volume fraction

Onset of glassy dynamics Ponset ~ 0.56

Mode-coupling theory, Eq. (1) @met = 0.592
Vogel-Fulcher-Tamman, Eq. (2) |pvw = 0.615
Dynamic scaling, Eq. (3) wo = 0.635

Diverging pressure (lower bound)|piow = 0.662

TABLE I: Values of the relevant volume fractions character-
izing the physical behaviour of the fluid for the binary hard
sphere mixture studied in this work.

II. CRITICAL DENSITIES IN A BINARY HARD
SPHERE MIXTURE MODEL

Previous work on binary mixtures suggests that a 50:50
binary mixture of hard spheres with a diameter ratio of
1.4 is a very efficient way to prevent crystalline ordering
even at large densities [7, 44, 45]. We will use N =
N4 + Np particles, N4 and Np denoting the number of
small and large particles in the mixture, respectively. We
work in units where the diameter of the small particles
is unity, o444 = 1.

Moreover, the dynamics of small and large particles is
strongly coupled so that the slow relaxation and location
of the putative dynamic glass singularities yields consis-
tent results for both components of the mixture [15, 46].
Thus, this model seems well-suited for investigating the
existence of a thermodynamic glass transition of hard
spheres. In a previous (bidimensional) study where effi-
cient cluster Monte-Carlo moves were used [30], a very
large polydispersity was introduced, with the unwanted
result that large particles seemed to arrest at a density
where small particles could still easily diffuse, making the
identification of dynamic singularities somewhat ambigu-
ous [38].

Previous numerical explorations of the dynamics of the
present binary mixture revealed the existence of very slow
dynamics and possible dynamic singularities at large vol-
ume fraction, with no interference from the crystalline
phase [15]. Several relevant values of the packing frac-
tions have been reported using different definitions and
theoretical approaches, and we summarize them in Table
I

First, the dynamics of the system slows down and
starts to become non-exponential above @onget = 0.56,
which can thus be seen as the onset density for slow dy-
namics in this system.

Second, the location of several dynamic ‘singularities’
can be defined and have been numerically studied. An
algebraic divergence of the relaxation time,

T~ (‘Pmct - @)—77 (1)

as predicted by mode-coupling theory [47], can be located
near @met = 0.592. However, simulations also revealed
this density to be a crossover since the equilibrium re-
laxation time can be measured at and above ¢4 where
it remains finite [15, 46]. This suggests that a different



functional form should be used to extrapolate a possible
divergence of the relaxation time.

A popular functional form for 7(p) is the so-called
Vogel-Fulcher-Tamman (VFT) expression [16],

L) , (2)

T ~ Too EXP (
Pvit — @

which yields, for the present system, the value wy g =~
0.615, A and 7o, being additional fitting parameters [15].
As opposed to the mode-coupling singularity, standard
simulations fail to access such a large packing fraction
in equilibrium conditions, since the largest state point
investigated in Ref. [15] is ¢ = 0.597 < pyg.

Using a combination of scaling arguments involving
both direct simulations of hard particles, and a soft har-
monic repulsion at very low temperatures, recent numer-
ical work provided support for the existence of a slightly
different, stronger dynamic divergence [15, 44, 46, 48],

with the preferred values § ~ 2.2 and ¢y ~ 0.635.

Finally, taking the view that no thermodynamic glass
transition occurs, one must conclude that dynamics
should arrest when particles come into contact and no
particle move can take place. In this perspective, 7 must
diverge simultaneously with the pressure Z at the ran-
dom close packing or jamming density, ¢rcp, which can
then be empirically defined as the end point of the equi-
librium equation of state of the fluid branch [49]. In prac-
tice this is hard to measure because the system falls out of
equilibrium and becomes a nonergodic hard sphere glass
much before getting to jamming, such that only lower
bounds to the location of the diverging pressure can be
numerically determined. For the present system, previ-
ous work reported the value oy = 0.662 as the tightest
lower bound on ¢.p,, obtained by rapid compressions of
carefully equilibrated fluid states [44, 50]. This result
indicates that the putative end point of the metastable
fluid branch for this system is above ¢ = 0.662.

III. THE REPLICA EXCHANGE
MONTE-CARLO METHOD

The partition function in the extended ensemble stud-
ied in the replica exchange Monte-Carlo method we use
is given by [5, 41]

Ny

Qextended = H QNTPm (4)
=1

where Qnrp, is the partition function of the isobaric-
isothermal ensemble of the system at pressure P;, tem-
perature T', particle number N. The important new pa-
rameter is n,, the considered number of replicas of the
system.

This extended ensemble is sampled by combining stan-
dard NTP; simulations on each replica (involving both
trial displacements of single particles and trial volume
changes) and replica exchanges (swap moves at the
replica level). To satisfy detailed balance, these swap
moves are performed by setting equal all a priory prob-
abilities for choosing adjacent pairs of replicas and using
the following acceptance probability [5, 41]

Poce=min(1, exp[B(F; — P;)(Vi — V})]), (5)

where V; — Vj is the volume difference between replicas
i and j. Adjacent pressures should be close enough to
provide nonnegligible exchange acceptance rates between
neighboring ensembles. In order to take good advantage
of the method, the ensemble at the smaller pressure must
also ensure large jumps in configuration space, so that the
larger pressure ensembles can be efficiently sampled.

The probability for selecting a particle displacement
trial, Py, for selecting a volume change trial, P,, and a
swap trial, Py, are fixed to

P; = n.N/(n.(N +1) +w),
= n./(n.(N+1)+w), (6)
P, = w/(n(N+1)+w),

v
|

where w < 1 is a weight factor. Note that P;+ P, + Ps =
1, as it should. The probability density function to have
the next swap trial move at the trial n; is given by

P(n;) = Psexp(—Psny). (7

Hence, one may obtain the next swap trial move from
ne = —In(§)/Ps, with £ being a random number uni-
formly distributed in the interval |0, 1] [51, 52]. We set
all particles of a given replica to have the same a priori
probability of being selected to perform a displacement
trial. The same is true for selecting a replica for perform-
ing a volume change trial.

The trials [1,n: — 1] are displacements and volume
changes, and so, they can be independently performed on
the replicas. This has the advantage of being easily par-
allelized. The algorithm is parallelized in four threads,
since quad core desktops are used, but could be more ef-
ficiently parallelized in n, threads. Since all swap trials
are performed in a single core, the efficiency of the par-
allelization increases with decreasing w. We employed
w = 1/100. Verlet lists are used for saving CPU time,
which can be quite large for the replicas evolving with
the highest pressure values.

Our simulations are performed in two steps. All simu-
lations are started by randomly placing particles (avoid-
ing overlaps), so that the initial volume fraction is ¢ =
0.30. We first perform about 2 x 10'3 trial moves at the
desired state points, during which we observe that the
replicas reach a stationary state. We then perform more
2 x 10'3 additional trials during which various measure-
ments are performed, with results described in the fol-
lowing sections.
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FIG. 1: a) gaa(caa) (squares), gas(cap) (diamonds), and
geB(oBB) (circles) as a function of ¢. The total pressure,
Eq. (8), is shown as triangles. It agrees well with the set pres-
sure values (light bullets). b) The number of AA (squares),
AB (diamonds), and BB (circles) neighbors as a function of
@ with bullets indicating the total number of neighbors per
particle. All data correspond to N = 100.

The maximum particle displacements and volume
changes for trial moves are adapted for each pressure to
yield acceptance rates close to 0.3. Thus, particle dis-
placements and volume changes of ensembles having high
pressures are smaller than those associated to ensembles
having low pressures. An optimal allocation of the repli-
cas should lead to a constant swap acceptance rate for
all pairs of adjacent ensembles. For a temperature ex-
pansion, the efficiency of the method peaks at swap ac-
ceptance rates close to 20% [53]. In this work, we use
instead a geometric progression of the pressure with the
replica index. In Sec. V we report results for various
system sizes, N = 60, 80, and 100 using n, = 14, with
BP varying from 38 to approximately 5.8, the geometri-
cal factor being 0.865. In Sec. VI we present additional
results where the largest pressure is P = 100, N = 60,
n, = 18, and the geometrical factor is 0.840.

IV. THERMALIZATION TESTS

The aim of this work is to provide new, reliable thermo-
dynamic information at large densities where thermaliza-
tion becomes a severe issue for standard algorithms. This
means in particular that the algorithm must be able to
sample accurately a phase space where ergodicity is po-
tentially broken in the thermodynamic limit. Such severe
sampling conditions are also met for instance in systems
such as spin glasses [40]. It is crucial to establish whether
the produced results are indeed representative of thermal
equilibrium, as we now discuss.

As a first check we verify that the pressure measured
from the configurations sampled by the replicas in each
ensemble yield results consistent with the values set nu-
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FIG. 2: Random walk in pressure space for N = 100 and
n, = 14 for three arbitrarily chosen replicas. Thermodynamic
state ‘1’ corresponds to the highest pressure and ‘14’ to the
lowest. All replica visit several times both lowest and highest
pressure states.

merically. Pressure and structure are related by [20]

8P 27p
= 1+ == SN wawy05,gar(0ar)  (8)
a vy

where o and « run over species A and B, and x4, 0a~,
and g., respectively being the fraction of particles in
species «, the contact distance between « and +, and
the partial radial distribution functions of species a and
. Note that gay(0ay) must be evaluated using a careful
extrapolation of ga(r) towards contact. Thus, we may
split the excess pressure into three contributions, corre-
sponding to the AA, AB, and BB interactions. These
contributions are shown in Fig. 1-a together with the to-
tal pressure obtained from Eq. (8). As can be seen, the
measured pressure agrees very well with the values im-
posed numerically. Furthermore, a smooth behavior is
obtained for all go,(0ay) as a function of ¢ suggesting
that adequate sampling has been performed.

For all ¢ the largest contribution to the excess pres-
sure is that of the large-large pairs (BB), followed by
the large-small (AB) and the small-small (AA) pairs, in
that order. In the right panel of Fig. 1 the evolution of
the average number of neighbors is shown, obtained by
integration of the partial pair correlation functions in a
spherical shell of constant thickness 0.2044. The total
number of neighbors per particle is also shown. The num-
bers of neighbors are consistent with the contributions to
the excess pressure, i. e., they increase following the or-
der AA, AB, and BB at all ¢ and they increasing with
@, albeit more slowly than the pressure. This satura-
tion is physically expected since the number of neighbors
remains finite even when the pressure diverges near jam-
ming.

We mentioned in the introduction that preventing crys-
tallization is in principle dealt with by using a binary
mixture. Since evidence for this stems from standard nu-
merical approaches, it remains to be seen whether REMC
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FIG. 3: Probability distribution functions (PDFs) of volume
fraction fluctuations for ecach of the n, = 14 pressure val-
ues, N = 100. All distributions are stationary, featureless,
and symmetric and have sufficient overlap to allow for replica
exchanges.

finds more easily the crystalline phase or not. Indeed pre-
vious work on the monodisperse system showed that the
REMC algorithm is not only capable of forming the crys-
tal phase but also to accurately predict the liquid-solid
transition [5]. Thus, if a crystal is the preferred state,
we expect to see signs of local orientational order. We
checked this by computing the well-known order param-
eter Qg, as defined for instance in Refs. [5, 18, 54], which
is very sensitive to any trace of local angular order [18].
We evaluate it separately for AA, BB, and AB pairs. In
all cases and at all densities, Qg is very close to the value
of a completely random system of points [18]. Moreover,
the three Qg values do not evolve significantly during
the runs. Thus, we can safely conclude that if the crystal
phase corresponds to the equilibrium state of this partic-
ular binary mixture, it is sufficiently metastable not to
affect our results regarding the disordered state.

For replica exchange methods to provide an efficient
sampling of phase space, it is important to check whether
all simulated replicas visit the entire set of thermody-
namic conditions several times. This is a necessary con-
dition for thermalization because this ensures that the
configurations contributing to the thermodynamic aver-
ages are very different as the low pressure replicas evolve
rapidly and have large displacements in configuration
space. In Fig. 2 we show the evolution of three randomly
selected replicas making a random walk among the dif-
ferent pressure states. We observe that all replicas con-
tribute several times during the course of the production
run to both the highest and the lowest pressure states.
With the imposed geometric progression of the pressure,
we find that the acceptance rate has a small drop near
@ ~ 0.58, which suggests that thermalization becomes
much harder above these densities. It is intriguing that
this corresponds roughly to @mct, above which it also be-
comes hard to reach thermal equilibrium using standard
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FIG. 4: a) Equation of state, Z = SP/p = Z(p), for N = 60
and increasing number of replicas from n, = 1 to n, = 14.
Only data for n, > 8 are reproducible, while data for a
smaller n, are not thermalized. b) Checking the FDT re-
lation, Eq. (9), for density fluctuations. The lines show 1/x
obtained from taking the derivative of the equation of state,
while symbols are direct evaluation using spontaneous fluctua-
tions of the density. The FDT holds with good accuracy both
for equilibrated systems (n, = 14, bottom) and for nearly
frozen ones (n. = 6, top).

numerical tools. This numerical bottleneck suggests a
faster decrease of the number of accessible configurations
as pressure increases, or a faster increase of the barriers
separating long-lived metastable states.

Each replica evolves at a given predefined pressure
P;. Therefore, the volume V; of replica i is a fluctuat-
ing quantity, and it is interesting to focus on the prob-
ability density functions (PDFs) of the volumes V;, or
equivalently of the corresponding volume fractions ;.
In cases where the system remains trapped in long-lived
metastable states, the PDFs may be distorted or may
contain peaks or shoulders which help detecting a lack of
thermalization. Additionally, these features of the PDFs
typically disappear as time increases and thus help re-
vealing whether measurements are performed in station-
ary states. We observe that the PDFs evolve in the first
simulation steps but they then become both symmetric
and take a Gaussian shape. The resulting functions are
shown in Fig. 3 for N = 100 with low volume fractions
PDF's correspond to low pressures. Notice that the PDF's
have a larger peak and become narrower as pressure in-
creases, which reflects the fact that the compressibility
decreases.

Ergodicity implies that the same results should be ob-
tained independently of the set initial conditions and of
the parameters of the simulation. We checked the re-
producibility of our results by running simulations with
n, =1, 2, 4, 6, 8, 10, 12, and 14, for N = 60, for the
same highest pressure (P = 38) and geometrical fac-
tor of 0.865. Three independent runs were carried out
with n,, = 1, having all different initial conditions. For a
fair comparison, all simulations lasted four weeks running



on identical single cores and no parallelization was imple-
mented for this particular test. From the measured PDF's
at each pressure, we measure the averaged density to cal-
culate the equation of state Z(¢), which are reported in
Fig. 4. We observe that results become reproducible only
when n, > 8, which corresponds to simulations where
the lowest pressure is below ¢ = 0.58 and yields ther-
malized results. For smaller n,, Z is always larger than
that obtained for n, > 8, suggesting that thermal equi-
librium had not been reached. In particular, the three
independent runs with n,, = 1 are well above the equili-
brated curve and distinct from one another. This implies
that runs with n, < 8 are nonergodic and do not sample
the configuration space accurately at large densities even
with a large number of trials. In particular, this means
that a standard Monte-Carlo algorithm would not yield
equilibrium results at large density, and that it is clearly
outperformed by the REMC simulation scheme we use in
this work.

A final test for equilibrium was suggested by Santen
and Krauth [30]. At thermal equilibrium the sponta-
neous fluctuations of density are related to the isother-
mal compressibility, which is defined from the response
of the pressure to an infinitesimal change in density in
the linear response regime. This relation is thus a form
of fluctuation-dissipation theorem (FDT), which is de-
rived using the hypothesis that states are sampled with
the equilibrium Gibbs measure:

_ (P —(p?*\ _ dp
X‘N( PE >_5(6P)' ®)

Checking whether this relation is satisfied by the data
is therefore in principle a good way to check thermali-
sation. In practice, this means checking the existence of
a quantitative relationship between the broadness of the
PDFs in Fig. 3 and the location of their averages.

We followed these two routes for obtaining x. The
fluctuations are directly measured from the simulations,
while the response function is obtained by first fitting the
pressure locally to a smooth polynomial function before
taking the derivative with respect to density. In Fig. 4
we present our results showing 1/x as a function of den-
sity using both methods. When n, = 14 and results are
reproducible, we find that the FDT relative to fluctua-
tion density is well satisfied, which comes as an additional
proof that our data are representative of thermal equilib-
rium. However we note that for runs with a small num-
ber of replica all concentrated in the high density regime
which appeared far from equilibrium in the left panel
of Fig. 4, the FDT is also satisfied with a good accu-
racy. In that case, all replicas belong to the glassy state
and are basically frozen in a single ‘basin’ where they
sample quasi-equilibrium short-lived fluctuations. Stud-
ies of FDT violations in aging glasses have indeed shown
that deviations from FDT appear only when considering
those degrees of freedom that relax very slowly in the
glass [55]. This suggests that the FDT test suggested
in Ref. [30] is only effective in a narrow density regime

where a complete separation of timescale does not make
Eq. (9) valid even very far from equilibrium. That is, the
test seems useful to detect a slow evolution and thus, the
consistency of both y determinations only guarantees a
stationary state has been reached. This is a necessary
but insufficient condition for equilibrium.

V. THERMODYNAMIC RESULTS AT
EQUILIBRIUM

In previous sections, we provided evidence that the
REMC algorithm is properly implemented, and that it
might give thermalized results for N = 100, n,, = 14 up
the pressure S P = 38. In this section we study more care-
fully the outcome of this study, starting with the equation
of state Z(yp).

Using the PDFs shown in Fig. 3 it is easy to deduce
the average volume fraction for each pressure, and thus
to obtain Z(y). The results are shown in Fig. 5-a for
three different systems sizes N = 60, 80 and 100. A
comparison of the three system sizes shows that finite size
effects appear to be very small for the equation of state as
the data obtained with different system sizes practically
coincide. Nevertheless, larger system sizes produce a very
small but apparently systematic decrease of the volume
fraction at a given pressure, for all . As a further check,
we report the results of an independent study using a
standard Monte-Carlo approach which used N = 1000,
but covers a smaller range of pressures [44]. Up to ¢ =
0.595 where both data sets can be compared, the data
agree very well, confirming the validity of our algorithm,
at least up to this density.

A first quantitative result from our study stems from
data at volume fractions larger than the ones studied
in Ref. [44], which were all accurately described using
the Boublik-Mansoori-Carnahan-Starling-Leland (BM-
CSL) equation of state [56, 57], which is the extension
for mixtures of the Carnahan-Starling equation of state.
The data in Fig. 5-a follow the BMCSL equation up to
@ = 0.59, but clearly deviate from it at larger volume
fractions, the deviations becoming very large at large ¢
where BMCSL clearly underestimates the pressure. A
similar deviation was recently reported from molecular
dynamics simulations of a hard sphere system with con-
tinuous polydispersity [58].

As a better description of the data at large ¢ we used
the fitting formula suggested from free volume consider-
ations [59],

d o,
z=2%%
Pe — @

) (10)

where d' and . are free fitting parameters. Although
the prefactor d’ should in principle be constrained within
free volume theory to be equal to the spatial dimension
d, we find that its value must be adjusted to describe
our data. In Fig. 5-a we show the best fit to the data
¢ > 0.61 to Eq. (10) as a full line, using d' = 2.82 and
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FIG. 5: a- Equation of state Z(p) for different system sizes,
N = 60 (open squares), N = 80 (circles), and N = 100
(diamonds). Light bullets are N = 1000 data taken from
Ref. [44]. The black solid line is the BMCSL equation of
state, the dashed line an empirical polynomial form, and the
light line a simple pole divergence, Eq. (10). b- Isothermal
compressibility obtained from density fluctuations (symbols)
or by derivative of the fits shown in panel a. The vertical
dotted line is at pys, where no thermodynamic signature of
a glass transition is found.

@ = 0.669. This value of ¢, should be compared to the
lower bound for the diverging pressure discussed above
in Sec. IT (see Table I) which was ¢jow = 0.662 [50]. The
large difference between the two values is a direct sign
that the REMC algorithm has been able to thermalize
the system much more efficiently. Note also that the fit
in Eq. (10) only works at large volume fractions, while at
low ¢ values it clearly deviates from the simulation data.

Finally to account for the crossover region ¢ =~ 0.58 —
0.61 between the BMCSL and free volume fits, we use an
empirical high order polynomial fit, shown with a dashed
line. We give no particular emphasis on a physical inter-
pretation of this fit, which we simply use as a fitting tool
to obtain the numerical derivative of the pressure, and
thus the compressibility, in this intermediate Range of
volume fractions.

A second important result of our study is obtained
by considering the vertical line which corresponds to the
volume fraction @y = 0.615. While an extrapolation of
the relaxation time divergence using Eq. (2) indicates the
possibility of a glass transition occurring at @y, there is
no corresponding thermodynamic signature in the equa-
tion of state, in particular no sign that a kink develops
as the system size increases, at least for the modest N
values we have been able to study, see Sec. VII.

These results are confirmed in Fig. 5-b which shows the
evolution of the isothermal compressibility as a function
of ¢ for the different system sizes. These data are directly
obtained from the spontaneous density fluctuations, i. e.,
from x = N({p?) — (p)?)/{p)?, and they directly confirm
the absence of any jump in the compressibility over this

range of volume fractions and system sizes, in particular
near Qyf.

We also show in this figure the compressibility values
as obtained from dp/d(Zp), using the three fits described
above, namely using the BMCSL equation of state at
low ¢ (black line), the polynomial fit at intermediate ¢
(dashed line) and the free volume fit at high ¢ (light line).
There is excellent agreement between both sets of data
showing that Eq. (9) is well satified at over the entire
range of volume fractions.

The compressibility data simply amplify the results
obtained for Z(p). In particular, the good agreement
between the BMCSL equation of state and the numer-
ical data is very good up to ¢ =~ 0.56, but deviations
in fact already appear at moderate volume fractions
¢ ~ 0.57 — 0.59, that are not obvious from the pressure
itself (see Fig. 5-a). Similarly, the free volume description
of the data is only adequate above ¢ = 0.61. These two
limits make evident the existence of a crossover regime
¢ ~ 0.56 — 0.61 where neither approaches work, and the
only description we have is an empirical polynomial func-
tion, which, interestingly, shows two changes of the con-
cavity but no jump.

To sum up, our simulation data at low and interme-
diate densities agree with the BMCSL equation of state,
while at large densities they are much better described
by a simple divergence at ¢. = 0.669. The data show no
jump of x in the studied range of ¢ values, which encom-
passes both ¢met and @y fitted dynamic singularities.

VI. INCREASING THE PRESSURE FURTHER:
NONEQUILIBRIUM EFFECTS

In the previous section we found the unexpected result
that, for modest system sizes, equilibrium data could be
produced even beyond the fitted location of the VFT
singularity. In this section we ask whether it is possible
to go to even larger volume fractions and cross ¢y =
0.635, the putative location of the thermodynamic glass
transition estimated in Ref. [44].

To start answering this question we run a simulation
with N = 60 and a larger number of replicas, n, = 18
setting the maximum pressure to SP = 100 and a ge-
ometric factor of 0.84. As before, we discard the first
2 x 10'3 trials, and use 2 x 10'3 trial moves to perform
measurements.

The results for Z(¢) and x(y¢) are shown in Fig. 6,
while the pressure, contact values of the radial distribu-
tion functions, and number of neighbors are shown in
Fig. 7. The data shown in Fig. 6 are consistent with
those found previously with n,, = 14. There is not only a
good agreement with the data obtained for n, = 14 and
N =100, but also with the free volume extrapolation to-
wards larger ¢. Additionally, for ¢ < 0.63, the measured
pressure shown in Fig. 7-a matches the imposed pressure
and all structural quantities display a smooth evolution
with ¢, see Fig. 7-b. Unfortunately, this smooth behavior
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FIG. 6: Same as Fig. 5 comparing runs with (N = 100, n, =
14, maximum pressure SP = 38, filled circles) to (N = 60,
n, = 18, maximum pressure 3P = 100, open circles). Black
lines correspond to the BMCSL equation of state, light lines to
free volume fit Eq. (10), the vertical line denotes ¢v¢ = 0.615.
While both data sets coincide below ¢ ~ 0.63, the n, = 18
data at large pressures have not reached thermal equilibrium.
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FIG. 7: Same as Fig. 1 for the run with N = 60 and n, = 18.
The data scatter at large volume fraction, ¢ > 0.63 indicates
nonergodic effects.

is lost for ¢ 2 0.63, see Fig. 7, suggesting that inadequate
sampling is performed.

This conclusion is further supported by the data shown
in Fig. 8 which shows the path in the pressure space
of three chosen replicas. Despite an acceptance rate for
replica exchanges being close to 10%, the replicas clearly
do not sample all thermodynamic states with equal prob-
ability. In particular, it is clear that the averages at large
pressure are performed over a very limited number of
independent configurations, suggesting that an ergodic
sampling of the phase space is not achieved. Note that
the third replica, before getting arrested at large pres-
sure near the end of the run, smoothly travels among the
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FIG. 8: Same as Fig. 2 for the run with N = 60 and n, = 18.
Thermodynamic state ‘1’ corresponds to the highest pressure
and ‘18’ to the lowest. Contrary to Fig. 2 here the replica do
not appropriately visit all thermodynamic states in an ergodic
manner.

highest 14 pressures, which probably explains why the
two data sets with n,, = 14 and n, = 18 produce con-
sistent results below ¢ = 0.63, despite the fact that the
latter run is clearly not producing fully thermalized data.

Therefore, we conclude that much longer simulations
would be needed to reach thermal equilibrium above
¢ ~ 0.63, presumably with a larger number of repli-
cas to allow a more extensive sampling of the configura-
tion space. Unfortunately, this implies that despite our
numerical effort we cannot discuss the possibility raised
in Ref. [44] that a thermodynamic glass transition takes
place near ¢g = 0.635 in the present binary hard sphere
mixture.

VII. DISCUSSION

In this work, we have demonstrated that the replica ex-
change Monte-Carlo method recently adapted to improve
the sampling of hard sphere systems is a useful new tool
to investigate the thermodynamic behaviour of the disor-
dered fluid state in a binary mixture of hard spheres up to
very large volume fractions. We found that reproducible,
thermalized results could be obtained up to ¢ ~ 0.63 at
least for moderate system sizes, N < 100. This vol-
ume fraction is beyond two important ‘critical’ packing
fractions defined dynamically, namely the mode-coupling
transition ¢ = 0.592 and the divergence extrapolated
using a Vogel-Fulcher-Tamman expression, @y = 0.615.
Following the equation of state for the pressure Z(p) and
the isothermal compressibility x(¢) we found no signa-
ture of a thermodynamic glass transition up to ¢ = 0.63
for the system sizes we use. Additionally, we have pushed
the lower bound for the location of the divergence of the
pressure of the fluid branch up to ¢ = 0.669, much above
the previous determination ¢ = 0.662.

For computational reasons our study was limited both



in the range of system sizes and of volume fractions for
which thermal equilibrium could be reached. Thus, our
results leave open the existence of (at least) three differ-
ent scenarios for the behaviour of the fluid of hard spheres
at large volume fractions in the thermodynamic limit.

In a first scenario, we assume that finite size effects are
small and that our data at large pressure above ¢ = 0.63
are nevertheless indicative that no change of behaviour
is to be expected for Z and x even at larger volume frac-
tions, such that Eq. (10) will continue to hold up to some
¢e. In this view, @, would represent the end point of the
fluid branch where the equilibrium pressure of the fluid
would diverge, while the region ¢ = 0.56 — 0.61 rep-
resents a crossover from the BMCSL equation of state
to a free volume-like divergence. To prove or disprove
this scenario is nearly impossible, as one should establish
that no thermodynamic singularity occurs up to ¢. in
the thermodynamic limit. It is also natural to expect,
in this perspective, that the equilibrium relaxation time
of the fluid would also diverge at (.. This was termed
the “jamming” scenario in Ref. [44] because it is the di-
verging pressure that controls the divergence of the vis-
cosity. Note that our results imply that this divergence
will in any case occur above ¢ = 0.669, which is much
above the location of the jamming transition (‘point J’)
at ¢; = 0.648 obtained using purely athermal packing
preparation protocols [60]. Thus, even in the absence of
a thermodynamic glass transition, point J does not con-
trol the glass transition of hard spheres.

A second scenario could be that finite size effects are
severe, that our checks with different system sizes are in-
sufficient, and that N = 100 is still very far away from
the thermodynamic limit even in the crossover regime
¢ = 0.58—0.62. In that case, the crossover region we have
described could potentially become sharper, in the ther-

modynamic limit, yielding a discontinuity of the pressure
and a jump of the compressibility. This scenario is poten-
tially simpler to study numerically based on our work, as
one should attempt to increase further the range of sys-
tem sizes studied while maintaining thermal equilibrium
in the crossover regime, an objective that does appear
numerically realistic.

In a third scenario, our conclusions would continue to
hold in the thermodynamic limit up to ¢ = 0.63, con-
firming in particular that nothing special happens near
oyt = 0.615. However, a thermodynamic transition
could still take place at larger density, as suggested for
instance in Refs. [15, 44, 46, 48] where a dynamic singu-
larity was located near ¢y = 0.635. Although we found
no thermodynamic signature of ¢q in Sec. VI we also no-
ticed that our data at these large volume fraction were
not thermalized leaving open the possibility that a pres-
sure discontinuity exists at equilibrium. Exploring this
third scenario would be quite demanding, as one would
need to cross g at thermal equilibrium for larger sys-
tems.

To conclude, it should come as no surprise that pro-
viding solid conclusions regarding the existence of a ther-
modynamic liquid-glass transition in the thermodynamic
limit is a difficult numerical task. However, we have pro-
vided evidence that replica exchange Monte-Carlo sim-
ulations can be used to study this issue in hard sphere
systems, and we have suggested that drawing some firm
conclusions is perhaps not completely out of reach. In
particular, it would be interesting to study larger system
sizes, together with a larger number of replicas to main-
tain the acceptance rates for replica exchanges at an ac-
ceptable level. This implies using larger computational
resources.
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