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Abstract

We extend the optimal control of direction of reflection problem introduced in Bouchard [4] to

the jump diffusion case. In a Brownian diffusion framework with jumps, the controlled process is

defined as the solution of a stochastic differential equation (SDE) reflected at the boundary of a

domain along oblique directions of reflection which are controlled by a predictable process which

may have jumps. We also provide a version of the weak dynamic programming principle of Bouchard

and Touzi [5] adapted to our context and which is sufficient to provide a viscosity characterization

of the associated value function without requiring the usual heavy measurable selection arguments

nor the a-priori continuity of the value function.

Key words : Optimal control, Dynamic programming, Skorokhod problem, discontinuous viscosity

solutions.
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1 Introduction

The aim of this paper is to study a class of optimal control problem for reflected processes on the

boundary of a bounded domain O, whose direction of reflection can be controlled. When the direction

of reflection γ is not controlled, the existence of a solution to reflected SDEs was studied in the case

where the domain O is a half space by El Karoui and Marchan [6], and, Ikeda and Watanabe [10].

Tanaka [18] considered the case of convex sets. More general domains have been discussed by Dupuis

and Ishii [8], where they proved the strong existence and uniqueness of solutions in two cases. In the

first case, the direction of reflection γ at each point of the boundary is single valued and varies smoothly,

even if the domain O may be non smooth. In the second case, the domain O is the intersection of a

finite number of domains with relatively smooth boundaries. Motivated by applications in financial

mathematics, Bouchard [4] then proved the existence of a solution to a class of reflected SDEs, in which

the oblique direction of reflection is controlled. This result is restricted to Brownian SDEs and to the

case where the control is a deterministic combination of an Itô process and a continuous process with

bounded variation. In this paper, we extend Bouchard’s result to the case of jump diffusion and allow

the control to have discontinuous paths.
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As a first step, we start with an associated deterministic Skhorokhod problem:

ϕ(t) = ψ(t) +

∫ t

0

γ(ϕ(s), ε(s))1ϕ(s)∈∂Odη(s), ϕ(t) ∈ O, (1.1)

where η is a non decreasing function and γ is controlled by a control process ε taking values in a given

compact set E of Rl. Bouchard [4] proved the strong existence of a solution for such problems in the

family of continuous functions when ε is a continuous function with bounded variation. Extending

this result, we consider the Skhorokhod problem in the family of càdlàg functions with finite number of

points of discontinuity. The difficulty comes from the way the solution map is defined at the jump times.

In this paper, we will investigate on a particular class of solutions, which is parameterized through the

choice of a projection operator π. If the value ϕ(s−) + ∆ψ(s) is out of the closure of the domain at

a jump time s, we simply project this value on the boundary ∂O of the domain along the direction γ.

The value after the jump of ϕ is chosen as π(ϕ(s−) + ∆ψ(s), ε(s)), where the projection π along the

oblique direction γ satisfies

y = π(y, e)− l(y, e)γ(π(y, e), e), for all y /∈ Ō and e ∈ E,

for some suitable positive function l. This leads to

ϕ(s) = (ϕ(s−) + ∆ψ(s)) + γ(ϕ(s), ε(s))∆η(s),

with ∆η(s) = l(ϕ(s−) + ∆ψ(s), ε(s)). When the direction of reflection is not oblique and the domain

O is convex, the function π is just the usual projection operator and l(y) coincides with the distance to

the closure of the domain Ō.

We next consider the stochastic case. Namely, we prove the existence of an unique pair formed by a

reflected process Xε and a non decreasing process Lε satisfying{
X(r) = x+

∫ r

t
F (X(s−))dZs +

∫ r

t
γ(X(s), ε(s))1X(s)∈∂OdL(s),

X(r) ∈ Ō, for all r ∈ [t, T ]
(1.2)

where Z is the sum of a drift term, a Brownian stochastic integral and an adapted compound Poisson

process, and the control process ε belongs to the class E of E-valued càdlàg predictable processes with

bounded variation and finite activity. As in the deterministic case, we only study a particular class of

solutions, which is parameterized by π. This means that whenever X is not in the domain O because

of a jump, it is projected on the boundary ∂O along the direction γ and the value after the jump is

also chosen as π (X(s−) + F (X(s−))∆Zs, ε(s)).

In section 3, we then introduce an optimal control problem, which extends the framework of [4] to the

jump diffusion case,

v(t, x) = sup
ε∈E

J(t, x; ε) (1.3)

where the cost function J(t, x; ε) is defined as E
[
βε
t,x(T )g(X

ε
t,x(T )) +

∫ T

t
βε
t,x(s)f(X

ε
t,x(s))ds

]
with

βε
t,x(s) = e−

∫ s
t
ρ(Xε

t,x(r−))dLε
t,x(r), f, g, ρ are some given functions, and the subscript t, x means that

the solution of (1.2) is considered from time t with the initial condition x. As usual, the technical key

for deriving the associated PDEs is the dynamic programming principle (DPP). The formal statement

of the DPP may be written as follows, for τ in the set T (t, T ) of stopping times taking values in [t, T ],

v(t, x) = ṽ(t, x), (1.4)
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where

ṽ(t, x) := sup
ε∈E

E
[
βε
t,x(τ)v(τ,X

ε
t,x(τ)) +

∫ τ

t

βε
t,x(s)f(X

ε
t,x(s))ds

]
,

see [4], Fleming and Soner [9] and Lions [13]. Bouchard and Touzi [5] recently discussed a weaker

version of the classical DPP (1.4), which is sufficient to provide a viscosity characterization of the

associated value function, without requiring the usual heavy measurable selection argument nor the a

priori continuity on the associated value function. In this paper, we apply their result to our context:

v(t, x) ≤ sup
ε∈E

E
[
βε
t,x(τ)[v

∗, g](τ,Xε
t,x(τ)) +

∫ τ

t

βε
t,x(s)f(X

ε
t,x(s))ds

]
, (1.5)

and, for every upper semi-continuous function φ such that φ ≤ v∗,

v(t, x) ≥ sup
ε∈E

E
[
βε
t,x(τ)[φ, g](τ,X

ε
t,x(τ)) +

∫ τ

t

βε
t,x(s)f(X

ε
t,x(s))ds

]
, (1.6)

where v∗ (resp. v∗) is the upper (resp. lower) semi-continuous envelope of v, and [w, g](s, x) :=

w(s, x)1s<T + g(x)1s=T for any map w define on [0, T ] × Ō. This allows us to provide a PDE charac-

terization of the value function v in the viscosity sense. We finally extend the comparison principle of

Bouchard [4] to our context.

Following are some notations that will be used through out this paper.

Notations. For T > 0 and a Borel set K of Rd, Df ([0, T ],K) is the set of càdlàg functions from [0, T ]

into K with a finite number of discontinuous points, and BV f ([0, T ],K) is the subset of elements in

Df ([0, T ],K) with bounded variation. For ε ∈ BV f ([0, T ],K), we set |ε| :=
∑

i≤n |εi|, where |εi| is the
total variation of εi. We denote by Nε

[t,T ] the number of jump times of ε on the interval [t, T ]. In the

space Rd, we denote by ⟨·, ·⟩ natural scalar product and by ∥ · ∥ the associated norm. Any element of

Rd is viewed as a column vector. For x ∈ Rd, we denote by B(x, r) the open ball of radius r > 0 and

center x. Md is the set of square matrices of dimension n, Trace [M ] is the trace of M ∈ Md and M∗ is

its transposition. For a set K ⊂ Rd, we note Kc its complement and ∂K its boundary. Given a smooth

map φ on [0, T ]× Rd, we denote by ∂tφ its partial derivatives with respect to its first variable, and by

Dφ and D2φ the partial gradient and Hessian matrix with respect to its second variable. If nothing

else is specified, identities involving random variables have to be taken in the a.s. sense.

2 The SDEs with controlled oblique reflection

2.1 The deterministic problem.

For sake of simplicity, we first explain how we construct a class of solutions for the deterministic

Skorokhod problem (SP), given an open domain O ⊂ Rd and a continuous deterministic map ψ:

ϕ(t) = ψ(t) +

∫ t

0

γ(ϕ(s), ε(s))1ϕ(s)∈∂Odη(s) , ϕ(t) ∈ Ō ∀ t ≤ T . (SP)

In the case where the direction of reflection γ is not controlled, i.e. γ is a smooth function from Rd to

Rd satisfying |γ| = 1 which does not depend on ε, Dupuis and Isshi [8] proved the strong existence of a

solution to the SP when O is a bounded open set and there exists r ∈ (0, 1) such that∪
0≤λ≤r

B(x− λγ(x), λr) ⊂ Oc, ∀x ∈ ∂O. (2.1)
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In the case of controlled directions of reflection, Bouchard [4] showed that the existence holds whenever

the condition (2.1) is imposed uniformly in the control variable:

G1. O is a bounded open set, γ is a smooth function from Rd × E to Rd satisfying |γ| = 1, and there

exists some r ∈ (0, 1) such that∪
0≤λ≤r

B(x− λγ(x, e), λr) ⊂ Oc, ∀(x, e) ∈ ∂O × E. (2.2)

In all this paper, E denotes a given compact subset of Rl for some l ≥ 1.

In order to extend this result to the case where ψ is a deterministic càdlàg function with finite number

of points of discontinuity, we focus on the definition of the solution value at the jump times. At each

jump time s, the value after the jump of ϕ is chosen as π(ϕ(s−) + ∆ψ(s), ε(s)), where π is the image

of a projection operator on the boundary ∂O along the direction γ satisfying following conditions:

G2. For any y ∈ Rd and e ∈ E, there exists (π(y, e), l(y, e)) ∈ Ō × R+ satisfying{
if y ∈ Ō, π(y, e) = y, l(y, e) = 0,

if y /∈ Ō, π(y, e) ∈ ∂O and y = π(y, e)− l(y, e)γ(π(y, e), e)
,

Moreover, π and l are Lipchitz continuous functions with respect to their first variable and uniformly in

the second one.

This means that the value of ϕ just after the jump at time s is defined as

ϕ(s) = (ϕ(s−) + ∆ψ(s)) + γ(ϕ(s), ε(s))∆η(s),

where ∆η(s) = l(ϕ(s−) + ∆ψ(s), ε(s)), or equivalently

∆ϕ(s) = ∆ψ(s) + γ(ϕ(s), ε(s))∆η(s).

In view of the existence result of Bouchard [4], we already know that the existence of a solution to

(SP) is guaranteed between the jump times and that the uniqueness between the jump times holds

if (ψ, ε) ∈ BV f ([0, T ],Rd) × BV f ([0, T ],Rl). By pasting together the solutions at the jumps times

according to the above rule, we clearly obtain an existence on the whole time interval [0, T ] when ψ and

ε have only a finite number of discontinuous points.

Lemma 2.1 Assume that G1 and G2 hold and fix ψ, ε ∈ Df ([0, T ],Rd). Then, there exists a solution

(ϕ, η) to (SP) associated to (π, l), i.e. there exists (ϕ, η) ∈ Df ([0, T ],Rd)×Df ([0, T ],R) such that

(i) ϕ(t) = ψ(t) +

∫ t

0

γ(ϕ(s), ε(s))1ϕ(s)∈∂Odη(s),

(ii) ϕ(t) ∈ Ō for t ∈ [0, T ],

(iii) η is a non decreasing function,

(iv) ϕ(s) = π(ϕ(s−) + ∆ψ(s), ε(s)) and ∆η(s) = l(ϕ(s−) + ∆ψ(s), ε(s)) for s ∈ [0, T ].

Moreover, the uniqueness holds if (ψ, ε) ∈ BV f ([0, T ],Rd)×BV f ([0, T ],Rl).

Remark 2.1 (i) When the domain O is convex and the reflection is not oblique, i.e. γ(x, e) ≡ n(x)

for all x ∈ ∂O with n(x) standing for the inward normal vector at the point x ∈ ∂O, then the usual

projection operator together with the distance function to the boundary ∂O satisfies assumption G2.

(ii) Clearly, the Lipschitz continuity conditions of π and l are not necessary for proving the existence of a

solution to (SP). They will be used later to provide some technical estimates on the controlled processes,

see Proposition 3.1 below.
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2.2 SDEs with oblique reflection.

We now consider the stochastic version of (SP). Let W be a standard n-dimensional Brownian motion

and µ be a Poisson random measure on Rd, which are defined on a complete probability space (Ω,F ,P),
such that W and µ are independent. We denote by F := {Ft}0≤t≤T the P-complete filtration generated

by (W,µ). We suppose that µ admits a deterministic (P,F)-intensity kernel µ̃(dz)ds which satisfies∫ T

0

∫
Rd

µ̃(dz)ds <∞ . (2.3)

The aim of this section is to study the existence and uniqueness of a solution (X,L) to the class of

reflected SDEs with controlled oblique reflection γ:

X(t) = x+

∫ t

0

Fs(X(s−))dZs +

∫ t

0

γ(X(s), ε(s))1X(s)∈∂OdL(s), (2.4)

where (Fs)s≤T is a predictable process with values in the set of Lipchitz functions from Rd to Md such

that F (0) is essentially bounded, and Z is a Rd-valued càdlàg Lévy process defined as

Zt =

∫ t

0

bsds+

∫ t

0

σsdWs +

∫ t

0

∫
Rd

βs(z)µ(dz, ds), (2.5)

where (t, z) ∈ [0, T ]×Rd 7→ (bt, σt, βt(z)) is a deterministic bounded map with values in Rd ×Md ×Rd.

As already mentioned, an existence of solutions was proved for Itô processes, i.e. β = 0, and the controls

ε with continuous path and essentially bounded variation in [4]. In this paper, we extend this result

to the case of jump diffusion and to the case where the controls ε can have discontinuous paths with

a.s. finite activity. As in the deterministic case, we only consider a particular class of solutions which is

parameterized by the projection operator π. Namely, X is projected on the boundary ∂O through the

projection operator π whenever it is out of the domain because of a jump. The value after the jump of

X is chosen as π(X(s−) + Fs(X(s−))∆Zs, ε(s)).

In order to state rigorously the main result of this section, we first need to introduce some additional

notations and definitions. For any Borel set K, we denote by DF([0, T ],K) the set of K-valued adapted

càdlàg semimartingales with finite activity and BVF([0, T ],K) the set of processes in DF([0, T ],K) with

a.s. bounded variation on [0, T ]. We set E := BFF([0, T ], E) for case of our notations.

Definition 2.1 Given x ∈ O and ε ∈ E, we say that (X,L) ∈ DF([0, T ],Rd)×DF([0, T ],R) is a solution

of the reflected SDEs with direction of reflection γ, projection operator (π, l) and initial condition x, if
X(t) = x+

∫ t

0
Fs(X(s−))dZs +

∫ t

0
γ(X(s), ε(s))1X(s)∈∂OdL(s),

X(s) ∈ Ō ∀ s ≤ T, L is a non decreasing process,

X(s) = π(X(s−) + Fs(X(s−))∆Zs, ε(s)) , ∆L(s) = l(X(s−) + Fs(X(s−))∆Zs, ε(s)) ∀ s ≤ T .

(2.6)

We now state the main result of this section.

Theorem 2.1 Fix x ∈ O and ε ∈ E, and assume that G1 and G2 hold. Then, there exists an unique

solution (X,L) ∈ DF([0, T ],Rd) × DF([0, T ],R) of the reflected SDEs (2.6) with oblique direction of

reflection γ, projection operator (π, l) and initial condition x.
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Proof. Let {Tk}k≥1 be the jump times of (Z, ε). Assume that (2.6) admits a solution on [T0, Tk−1] for

k ≥ 1, with T0 = 0. It then follows from Theorem 2.2 in [4] that there exists an unique solution (X,L)

of (2.6) on [Tk−1, Tk). We set

X(Tk) = π(X(Tk−) + FTk
(X(Tk−))∆ZTk

, ε(Tk))

so that

X(Tk) = X(Tk−) + FTk
(X(Tk−))∆ZTk

+ γ(X(Tk), ε(Tk))1X(Tk)∈∂O∆L(Tk),

with ∆L(Tk) = l(X(Tk−) + FTk
(X(Tk−))∆ZTk

, ε(Tk)). Since N
(Z,ε)
[0,T ] < ∞ P− a.s, an induction leads

to an existence result on [0, T ]. Uniqueness follows from the uniqueness of the solution on each interval

[Tk−1, Tk), see Theorem 2.2 in [4]. 2

3 The optimal control problem

3.1 Definitions.

We now introduce the optimal control problem which extends the one considered in [4]. The set of control

processes ζ := (α, ε) is defined as A × E , where A is the set of predictable processes taking values in

a given compact subset A of Rm, for some m ≥ 1. The family of controlled processes (Xα,ε
t,x , L

α,ε
t,x )

is defined as follows. Let b, σ and χ be continuous maps on Ō × A and O × A × Rd with values in

Rd, Md and Rd respectively. We assume that they are Lipchitz continuous with respect to their first

variable, uniformly in the others, and that χ is bounded with respect to its last component. It then

follows from Theorem 2.1 that, for (t, x) ∈ [0, T ] × O and (α, ε) ∈ A × E , there exists an unique pair

(Xα,ε
t,x , L

α,ε
t,x ) ∈ DF([0, T ],Rd)×DF([0, T ],R) which satisfies

X(r) = x+

∫ r

t

b(X(s), α(s))ds+

∫ r

t

σ(X(s), α(s))dWs

+

∫ r

t

∫
Rd

χ(X(s−), α(s), z)µ(dz, ds) +

∫ r

t

γ(X(s), ε(s))1X(s)∈∂OdL(s),∀t ≤ r ≤ T,(3.1)

X(s) ∈ Ō ∀s ∈ [t, T ], L is non decreasing, (3.2)

(X(s),∆L(s)) =

∫
Rd

(π, l) (X(s−) + χ(X(s−), α(s), z), ε(s))µ(dz, {s}), for s ∈ [t, T ]. (3.3)

Let ρ, f, g be bounded Borel measurable real valued maps on Ō × E, Ō × A and Ō, respectively. We

assume that g is Lipchitz continuous and ρ ≥ 0. The functions ρ and f are also assumed to be Lipchitz

continuous in their first variable, uniformly in their second one. We then define the cost function

J(t, x; ζ) := E

[
βζ
t,x(T )g(X

ζ
t,x(T )) +

∫ T

t

βζ
t,x(s)f(X

ζ
t,x(s), α(s))ds

]
, (3.4)

where βζ
t,x(s) := e−

∫ s
t
ρ(Xζ

t,x(r−),ε(r))dLζ
t,x(r), for ζ = (α, ε) ∈ A× E .

The aim of the controller is to maximize J(t, x; ζ) over the set At × Et of controls in A × E which are

independent on Ft, compare with [5]. The associated value function is then defined as

v(t, x) := sup
ζ∈At×Et

J(t, x; ζ).
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3.2 Dynamic programming.

In order to provide a PDE characterization of the value function v, we shall appeal as usual to the

dynamic programming principle. The classical DPP (1.4) relates the time-t value function v(t, ·) to

the later time-τ value v(τ, ·), for any stopping time τ ∈ T (t, T ). Recently Bouchard and Touzi [5]

provided a weaker version of the DPP, which is sufficient to provide a viscosity characterization of v.

This version allows us to avoid the technical difficulties related to the use of non-trivial measurable

selection arguments or the a-priori continuity of v.

From now, for t ≤ T , we denote by Tt(τ1, τ2) the set of elements in T (τ1, τ2) which are independent on

Ft. The weak version of the DPP reads as follows:

Theorem 3.1 Fix (t, x) ∈ [0, T ]× Ō and τ ∈ Tt(t, T ), then

v(t, x) ≤ sup
ζ∈At×Et

E
[
βζ
t,x(τ)[v

∗, g](τ,Xζ
t,x(τ)) +

∫ τ

t

βζ
t,x(s)f(X

ζ
t,x(s))ds

]
, (3.5)

and

v(t, x) ≥ sup
ζ∈At×Et

E
[
βζ
t,x(τ)[φ, g](τ,X

ζ
t,x(τ)) +

∫ τ

t

βζ
t,x(s)f(X

ζ
t,x(s))ds

]
, (3.6)

for any upper semi continuous function φ such that v ≥ φ.

Arguing as in [5], the result follows once J(·; ζ) is proved to be lower semicontinuous for all ζ ∈ A× E .
In our setting, one can actually prove the continuity of the above map.

Proposition 3.1 Fix (t0, x0) ∈ [0, T ]× Ō and ζ ∈ A× E. Then, we have

lim
(t,x)→(t0,x0)

J(t, x; ζ) = J(t0, x0; ζ). (3.7)

Proposition 3.1 will be proved later in the Subsection 3.3. Before providing the proof of the DPP, we

verify the consistency with deterministic initial data assumption, see Assumption A4 in [5].

Lemma 3.1 (i) Fix (t, x) ∈ [0, T ] × Ō, (ζ, θ) ∈ At × Et × Tt(t, T ). For P-a.e ω ∈ Ω, there exists

ζ̃ω ∈ Aθ(ω) × Eθ(ω) such that

E

[
βζ
t,x(T )g(X

ζ
t,x(T )) +

∫ T

t

βζ
t,x(s)f(X

ζ
t,x(s), α(s))ds|Fθ

]
(ω)

= βζ
t,x(θ(ω))J(θ(ω), X

ζ
t,x(θ)(ω); ζ̃ω) +

∫ θ(ω)

t

βζ
t,x(s)(ω)f(X

ζ
t,x(s)(ω), α(s)(ω))ds.

(ii) For t ≤ s ≤ T, θ ∈ Tt(t, s), ζ̃ ∈ As × Es and ζ̄ := ζ1[t,θ) + ζ̃1[θ,T ], we have, for P-a.e. ω ∈ Ω,

E

[
βζ̄
t,x(T )g(X

ζ̄
t,x(T )) +

∫ T

t

βζ̄
t,x(s)f(X

ζ̄
t,x(s), α(s))ds|Fθ

]
(ω)

= βζ
t,x(θ(ω))J(θ(ω), X

ζ
t,x(θ)(ω); ζ̃) +

∫ θ(ω)

t

βζ
t,x(s)(ω)f(X

ζ
t,x(s)(ω), α(s)(ω))ds.

Proof. In this proof, we consider the space (Ω,F,P) as being the product space C([0, T ],Rd) ×
S([0, T ],Rd), where S([0, T ],Rd) := {(ti, zi)i≥1 : ti ↑ T, zi ∈ Rd}, equipped with the product measure

P induced by the Wiener measure and the Poisson random measure µ. We denote by ω or ω̃ a generic
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point. We also define the stopping operator ωr
· := ωr∧· and the translation operator Tr(ω) := ω·+r−ωr.

We then obtain from direct computations that, for ζ = (α, ε) ∈ At × Et:

E

[
βζ
t,x(T )g(X

ζ
t,x(T )) +

∫ T

t

βζ
t,x(s)f(X

ζ
t,x(s), α(s))ds|Fθ

]
(ω)

= βζ
t,x (θ) (ω)

∫ [
β
ζ(ωθ(ω)+Tθ(ω)(ω))

θ(ω),Xζ
t,x(θ)(ω)

(T ) g

(
X

ζ(ωθ(ω)+Tθ(ω)(ω))

θ(ω),Xζ
t,x(θ)(ω)

(T )

)
+

∫ T

θ(ω)

β
ζ(ωθ(ω)+Tθ(ω)(ω))

θ(ω),Xζ
t,x(θ)(ω)

(s)f

(
X

ζ(ωθ(ω)+Tθ(ω)(ω))

θ(ω),Xζ
t,x(θ)(ω)

(s), α(ωθ(ω) + Tθ(ω)(ω))(s)

)
ds

]
dP(Tθ(ω)(ω))

+

∫ θ(ω)

t

βζ
t,x(s)(ω)f(X

ζ
t,x(s)(ω), α(s)(ω))ds

= βζ
t,x(θ)(ω)J(θ(ω), X

ζ
t,x(θ)(ω); ζ̃ω) +

∫ θ(ω)

t

βζ
t,x(s)(ω)f(X

ζ
t,x(s)(ω), α(s)(ω))ds,

where ω̃ ∈ Ω 7→ ζ̃ω(ω̃) := ζ(ωθ(ω) + Tθ(ω)(ω̃)) ∈ Aθ(ω) × Eθ(ω).

This leads proves (i). The assertion (ii) is proved similarly by using the fact that θ(ω) ∈ [t, s] for P-a.e.
ω ∈ Ω. 2

Proof of Theorem 3.1

The inequality (3.5) is clearly a consequence of (i) in Lemma 3.1. So it remains to prove the inequality

(3.6). Fix ϵ > 0. In view of definition of J and v, there exists a family {ζ(s, y)}(s,y)∈[0,T ]×Ō such that

J(s, y; ζ(s, y)) ≥ v(s, y)− ϵ/3, for all (s, y) ∈ [0, T ]× Ō.

Using Proposition 3.1 and the upper semi continuity of φ, we can choose a family {r(s, y)}(s,y)∈[0,T ]×Ō ⊂
(0,∞) such that

J(s, y; ζ(s, y))− J(·; ζ(s, y)) ≤ ϵ/3 and φ− φ(s, y) ≤ ϵ/3 on U(s, y; r(s, y)), (3.8)

where U(s, y; r) := [(s− r) ∨ 0, s]×B(y, r). Hence,

J(·; ζ(s, y)) ≥ φ− ϵ on U(s, y; r(s, y)).

Note that {U(s, y; r) : (s, y) ∈ [0, T ] × Ō, 0 < r < r(s, y)} is a Vitali covering of [0, T ] × Ō. It then

follows from the Vitali’s covering Theorem that there exists a countable sequence {ti, xi}i∈N so that

[0, T ]× Ō ⊂ ∪i∈NU(ti, xi; ri) with ri := r(ti, xi). We can then extract a partition {Bi}i∈N of [0, T ]× Ō
and a sequence {ti, xi}i≥1 satisfying (ti, xi) ∈ Bi for each i ∈ N, such that (t, x) ∈ Bi implies t ≤ ti,

and

J(·; ζi)− φ ≥ ε on Bi, for some ζi ∈ Ati × Eti . (3.9)

We now fix ζ ∈ Et ×At and τ ∈ Tt(t, T ) and set

ζ̄ := ζ1[t,τ) + 1[τ,T ]

∑
n≥1

ζn1{(τ,Xζ
t,x(τ))∈Bn}.

Note that ζ̄ ∈ At × Et since τ , (ζn)n≥1 and Xζ
t,x are independent of Ft. It then follows from (ii) of

Lemma 3.1 and (3.9) that

J(t, x, ζ̄)− E[g(Xζ
t,x(T ))1{τ=T}]− E[

∫ τ

t

βζ
t,x(s)f(X

ζ
t,x(s))ds]

≥ E
[
βζ
t,x(τ)J(τ,X

ζ
t,x(τ); ζ̄)1{τ<T}

]
≥ E

[
βζ
t,x(τ)φ(τ,X

ζ
t,x(τ))1{τ<T}

]
− ϵ.
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This implies that

v(t, x) ≥ E
[
βζ
t,x(τ)[φ, g](τ,X

ζ
t,x(τ)) +

∫ τ

t

βζ
t,x(s)f(X

ζ
t,x(s))ds

]
.

2

3.3 Proof of Proposition 3.1.

In this section, we prove the continuity of the cost function in the (t, x)-variable as follows.

1. We first show that the map J(·;α, ε) is continuous if µ and ε are such that

Nµ
[t,T ] ≤ m P− a.s and ε ∈ Eb

k, for some m, k ≥ 1,

where Eb
k is defined as the set of ε ∈ E such that |ε| ≤ k and the number of jump times of ε is a.s smaller

than k, and Nµ
[t,T ] := µ(Rd, [t, T ]). This result is proved as a consequence of the estimates of X and β

in Lemma 3.2 presented below together with the Lipchitz continuity conditions on f, g and ρ.

Lemma 3.2 Fix k,m ∈ N. Assume that G1 and G2 hold, Nµ
[t,T ] ≤ m P−a.e and ε ∈ Eb

k. Then, there

exist a constant M > 0 and a function λ so that, for all t ≤ t′ ≤ T and x, x′ ∈ Ō, we have

E
[

sup
t′≤s≤T

|Xα,ε
t,x (s)−Xα,ε

t′,x′(s)|4
]
≤M |x− x′|4 + λ(|t− t′|), (3.10)

E
[

sup
t′≤s≤T

| lnβα,ε
t,x (s)− lnβα,ε

t′,x′(s)|
]
≤M |x− x′|+ λ(|t− t′|), (3.11)

where lima→0 λ(a) = 0.

Proof. In order to prove the result, we use a similar argument as in Proposition 3.1 [4] on the

time intervals where (Z, ε) is continuous. We focus on the differences which come from the points of

discontinuity of (Z, ε). From now, we denote (X,L) := (Xα,ε
t,x , L

α,ε
t,x ) and (X ′, L′) := (Xα,ε

t′,x′ , L
α,ε
t′,x′). We

only prove the first assertion, the second one follows from the same line of arguments.

Let {Ti}i≥1 be the sequence of jump times on [t′, T ] of (Z, ε) and T0 := t′. By the same argument as in

Proposition 3.1 of [4] we obtain that

E[ sup
r∈[Ti,Ti+1)

|X(r)−X ′(r)|4] ≤ C1E[|X(Ti)−X ′(Ti)|4], for some C1 > 0. (3.12)

It follows from (3.3) that

E[|X(Ti+1)−X ′(Ti+1)|4]

≤ E[|
∫
Rd

[π(χ(X(Ti+1−), α(Ti+1), z), ε(Ti+1))− π(χ(X ′(Ti+1−), α(Ti+1), z), ε(Ti+1))]µ(dz, {Ti+1})|4]

This, together with (2.3) and the Lipschitz continuity assumption on χ and π, implies that

E[|X(Ti+1)−X ′(Ti+1)|4] ≤ C2E[|X(Ti+1−)−X ′(Ti+1−)|4], for some C2 > 0 . (3.13)

Using the previous inequality and (3.12), we deduce that there exists C > 0 s.t

E[ sup
r∈[Ti,Ti+1]

|X(r)−X ′(r)|4] ≤ CE[|X(Ti)−X ′(Ti)|4].
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Applying an induction argument, it implies to

E[ sup
r∈[Ti,Ti+1]

|X(r)−X ′(r)|4] ≤ CiE[|X(t′)−X ′(t′)|4].

Since Nµ
[t,T ] ≤ m and Nε

[t,T ] ≤ k, we have

E[ sup
t′≤s≤T

|X(s)−X ′(s)|4] ≤ Cm+kE[|X(t′)− x′|4], for some C > 1. (3.14)

It remains to estimate E[|X(t′) − x′|4]. Let {T̄i}i≥1 be the sequence of jump times on [t, t′] and set

T̄0 := t. Using a similar argument as in Proposition 3.1 [4], we deduce that there exists C̄1 > 0 such

that

E[ sup
r∈[T̄i,T̄i+1)

|X(r)− x′|4] ≤ C̄1E[|X(T̄i)− x′|4 + |T̄i+1 − T̄i|]. (3.15)

Recalling (3.3) and the Lipschitz continuity assumption on π, we deduce that there exists C̄2 > 0 so

that

E[|X(T̄i+1)− x′|4]

= E
[
|
∫
Rd

[π(X(T̄i+1−) + χ(X(T̄i+1−), α(T̄i+1), z), ε(T̄i+1))− x]µ(dz, {T̄i+1})|4
]

= E
[
|
∫
Rd

[π(X(T̄i+1−) + χ(X(T̄i+1−), α(T̄i+1), z), ε(T̄i+1))− π(x, ε(T̄i+1))]µ(dz, {T̄i+1})|4
]

≤ C̄2E
[
|X(T̄i+1−)− x′|4 +

∫
Rd

|χ(X(T̄i+1−), α(T̄i+1), z)|4µ(dz, {T̄i+1})
]
.

The previous inequality together with (3.15) leads to

E[ sup
r∈[T̄i,T̄i+1]

|X(r)−x′|4] ≤ CE
[
|X(T̄i)− x′|4 + |T̄i+1 − T̄i|+

∫
Rd

|χ(X(T̄i+1−), α(T̄i+1), z)|4µ(dz, {T̄i+1})
]
,

for some C > 0.

Then,

E[ sup
t≤r≤t′

|X(r)− x′|4] ≤ Cm+k|x− x′|4 + C|t′ − t|+ CE[
∫ t′

t

∫
Rd

|χ(X(s−), α(s), z)|4µ̃(dz)ds],

for some C > 1.

Since χ is bounded with respect to z, we then conclude that

E[ sup
t≤r≤t′

|X(r)− x′|4] ≤M ′|x− x′|4 + λ(|t′ − t|),

for some M ′ > 0 and a function λ satisfying lima→0 λ(a) = 0. 2

2. We now provide the proof of Proposition 3.1 in the general case. Fix (α, ε) ∈ A× E . We denote by

{Tm}m≥1 the sequence of jump times of µ on the interval ]t, T ] of (Z, ε), T0 := t and

µ(m)(A,B) := µ(A,B ∩ [t, Tm]) for A ∈ BRd , B ∈ B[0,T ]

where BRd and B[0,T ] denote the Borel tribes of Rd and [0, T ] respectively. Let (X
(m)
t,x , L

(m)
t,x , β

(m)
t,x , Jm(t, x;α, ε(m)))

be defined as (Xα,ε
t,x , L

α,ε
t,x , β

α,ε
t,x , J(t, x;α, ε)) in (3.1), (3.1),(3.3) and (3.4) with µ(m) in place of µ and

ε(m) := ε1[t,T ′
m) + ε(T ′

m)1[T ′
m,T ] in place of ε, where

T ′
m := sup{s ≥ t : Nε

[t,s] ≤ m, |ε|(s) ≤ m} ∧ Tm.
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Since f, g and β are bounded on the domain O, there exists a constant M > 0 such that, for all

(t, x) ∈ [0, T ]× Rd, we have

|Jm(t, x;α, ε(m))− J(t, x, y;α, ε)| ≤ E
[
|β(m)(T )g(X(m)(T ))− βα,ε

t,x (T )g(X
α,ε
t,x,y(T ))|1A(m) c

t

]
+E

[
|
∫ T

t

β(m)(u)f(X(m)(u))− βα,ε
t,x (u)f(X

α,ε
t,x (u))du|1

A
(m) c
t

]
≤ MP

{
A

(m) c
t

}
≤MP

{
A

(m) c
0

}
.

where A
(m)
t := {ω ∈ Ω : Nµ

[t,T ] ≤ m, Nε
[t,T ] ≤ m, |ε|(T ) ≤ m}. Since Nµ

[0,T ] ≤ ∞ P−a.s and ε is a

process with bounded variation and finite activity, then P{A(m) c
0 } converges to 0 when m goes to ∞.

Hence,

sup
(t,x)∈[0,T ]×Ō

|Jm(·;α, ε(m))− J(·;α, ε)| → 0, when m→ ∞. (3.16)

It then follows the first part of proof that Jm(·;α, ε(m)) is continuous map. This leads to the required

result (3.7). 2

3.4 The PDE characterization.

We are now ready to provide a PDE characterization for v. Note that the fact that the process Xζ
t,x is

projected through the projection operator π whenever it exists the domain O because of a jump implies

that the associated Dynkin operator is given, for values (a, e) of the control process, by

La,eφ(s, x) := ∂tφ(s, x) + ⟨b(x, a), Dφ(s, x)⟩+ 1

2
Trace

[
σ(x, a)σ∗(x, a)D2φ(s, x)

]
+

∫
Rd

[e−ρ(x,e)la,e
x (z)φ(s, πa,e

x (z))− φ(s, x)]µ̃(dz),

for smooth functions φ, where

(πa,e
x (z), la,ex (z)) := (π, l)(x+ χ(x, a, z), e).

Also note that the probability of having a jump at the time where the boundary is reached is 0. It follows

that the reflection terms does not play the same role, from the PDE point of view, depending whenever

the reflection operate at a point of continuity or at a jump time. In the first case, it corresponds to a

Neumman type boundary condition, while, in the second case, it only appears in the Dynkin operator

which drives the evolution of the value function in the domain as described above. This formally implies

that v should be a solution of

Bφ = 0, (3.17)

where

Bφ :=


min

(a,e)∈A×E
{−La,eφ− f(·, a)} on [0, T )×O

min
e∈E

Heφ on [0, T )× ∂O

φ− g on {T} × Ō

,

and, for a smooth function φ on [0, T ]× Ō and (a, e) ∈ A× E,

He(x, y, p) := ρ(x, e)y − ⟨γ(x, e), p⟩ and Heφ(t, x) := He(x, φ(t, x), Dφ(t, x)).
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Since v is not known to be smooth a-priori, we shall appeal as usual to the notion of viscosity solutions.

Also note that the above operator B is not continuous, so that we have to consider its upper- and lower-

semicontinuous envelopes to properly define the PDE. From now, given a function w on [0, T ]× Ō, we

set 
w∗(t, x) = lim inf

(t′,x′)→(t,x), (t′,x′)∈[0,T )×O
w(t′, x′)

w∗(t, x) = lim sup
(t′,x′)→(t,x), (t′,x′)∈[0,T )×O

w(t′, x′)
, for (t, x) ∈ [0, T ]× Ō.

Definition 3.1 A lower semicontinuous (resp. upper semicontinuous ) function w on [0, T ] × Ō is a

viscosity super-solution (resp. sub-solution )of (3.17) if, for any test function φ ∈ C1,2([0, T ]× Ō) and

(t0, x0) ∈ [0, T ]×Ō that achieves a local minimum (resp. maximum) of w−φ so that (w−φ)(t0, x0) = 0,

we have B+φ ≥ 0 (resp. B−φ ≤ 0), where

B+φ :=


Bφ on [0, T ]×O

min
(a,e)∈A×E

max {−La,eφ− f(·, a), Heφ} on [0, T )× ∂O

φ− g on {T} × ∂O

,

B−φ :=


Bφ on [0, T ]×O

min

{
min

(a,e)∈A×E
{−La,eφ− f(·, a)}, min

e∈E
Heφ

}
on [0, T )× ∂O

min{φ− g, min
e∈E

Heφ} on {T} × ∂O

,

A local bounded function w is a discontinuous viscosity solution of (3.17) if w∗ (resp. w∗) is a super-

solution (resp. sub-solution) of (3.17).

We can now state our main result.

Theorem 3.2 Assume that G1 and G2 hold. Then, v is a discontinuous viscosity solution of (3.17).

The proof of this result is reported in the subsequent sections.

3.4.1 The super-solution property.

Let φ ∈ C1,2([0, T ]× Ō) and (t0, x0) ∈ [0, T ]× Ō be such that

min(strict)[0,T ]×Ō(v∗ − φ) = (v∗ − φ)(t0, x0) = 0.

1. We first prove the required result in the case where (t0, x0) ∈ [0, T )× ∂O.

Then, arguing by contradiction, we suppose that

min
(a,e)∈A×E

max{−La,eφ(t0, x0)− f(x0, a), Heφ(t0, x0)} ≤ −2ϵ < 0.

Define ϕ(t, x) := φ(t, x)− |t− t0|2 − η|x− x0|4, so that, for η > 0 small enough, we have

min
(a,e)∈A×E

max{−La,eϕ(t0, x0)− f(x0, a), Heϕ(t0, x0)} ≤ −2ϵ,

recall (2.3). This implies that there exists (a0, e0) ∈ A× E and δ > 0 such that t0 + δ < T and

max{−La0,e0ϕ(t, x)− f(x, a0), He0ϕ(t, x)} ≤ −ϵ on B̄ ∩ [0, T ]× Ō, (3.18)
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where B := [t0 − δ, t0 + δ)×B(x0, δ).

Let (tn, xn)n be a sequence in [0, T )×O converging to (t0, x0) such that

v(tn, xn) → v∗(t0, x0) ,

and set (Xn, Ln, βn) := (Xa0,e0
tn,xn

, La0,e0
tn,xn

, βa0,e0
tn,xn

). Obviously, we can assume that (tn, xn) ∈ B. Let τn

and θn be the first exit times of (s,Xn(s))s≥tn and (Xn(s))s≥tn from B and O, respectively.

Using Itô’s Lemma, we have

E [βn(τn)ϕ (τn, Xn(τn))] = ϕ(tn, xn) + E
[∫ τn

tn

βn(s−)La0,e0ϕ(s,Xn(s−))ds

]
−E

[∫ τn

tn

βn(s)He0ϕ(s,Xn(s))dL
c
n(s)

]
,

where Lc
n denotes the continuous part of Ln. It follows from (3.18) that

E[βn(τn)ϕ (τn, Xn(τn))] ≥ ϕ(tn, xn)− E
[∫ τn

tn

βn(s)f(Xn(s), a0)ds

]
+ E

[∫ τn

tn

ϵβn(s)dL
c
n(s)

]
.

Since ρ ≥ 0, the function βn(·) is non increasing. Hence

E
[
βn(τn)ϕ (τn, Xn(τn)) +

∫ τn

tn

βn(s)f(Xn(s), a0)ds

]
≥ ϕ(tn, xn) + E[ϵβn(τn)Lc

n(τn)].

Since Ō is bounded,

φ− ϕ ≥ ζ on ∂cpB for some ζ > 0,

where ∂cpB := [t0 − δ, t0 + δ]× (B(x0, δ)
c ∩ Ō) ∪ {t0 + δ} × Ō.

This, together with the fact that βn(τn) = 1, Ln(τn) = 0 on {τn < θn} , leads to

E
[
βn(τn)φ (τn, Xn(τn)) +

∫ τn

tn

βn(s)f(Xn(s), a0)ds

]
≥ ϕ(tn, xn) + E [ζ1τn<θn + βn(τn)(ζ + ϵLc

n(τn))1τn≥θn ] .

Let c > 0 be a positive constant satisfying |ρ| ≤ c, we have

E
[
βn(τn)φ (τn, Xn(τn)) +

∫ τn

tn

βn(s)f(Xn(s), a0)ds

]
≥ ϕ(tn, xn) + E[ζ1τn<θn + e−cLn(τn)(ζ + ϵLc

n(τn))1τn≥θn ]

≥ ϕ(tn, xn) + min{ζ;E[e−cΣs≤τn∆Ln(s)] inf
k≥0

(
e−ck(ζ + ϵk)

)
}.

It follows from Jensen’s inequality, the Lipschitz property of l, (2.3) and the fact that l(·, e0) = 0 on O

13



that

lnE
[
e−c

∑
s≤T ∆Ln(s)

]
≥ −cE

∑
s≤T

∆Ln(s)


≥ −cE

∑
s≤T

l(Xn(s−) + χ(Xn(s−), a0,∆Z(s)), e0)


≥ −cE

[∫ T

0

∫
Rd

l(Xn(s−) + χ(Xn(s−), a0, z), e0)µ̃(dz)ds

]

≥ −cE

[∫ T

0

∫
Rd

[l(Xn(s−) + χ(Xn(s−), a0, z), e0)− l(Xn(s−), e0)]µ̃(dz)ds

]

≥ −c′
∫ T

0

sup
Ō×E

|χ|
∫
Rd

µ̃(dz)ds > −∞.

Then, there exists ϵ0 > 0 so that

E
[
βn(τn)φ (τn, Xn(τn)) +

∫ τn

tn

βn(s)f(Xn(s), a0)ds

]
≥ ϕ(tn, xn) + ϵ0.

For n large enough, this leads to a contradiction to the statement (3.6) of Theorem 3.1.

2. The proof is similar for (t0, x0) ∈ [0, T )×O. Indeed, by a similar localization as above, we can restrict

to the case where Xn does not escape the domain O, expect possible by a jump, i.e. Lc
n(τn) = 0. It

follows that a contradiction can be obtained by exactly the same argument as step 1. by only assuming

min
(a,e)∈A×E

(−La,eφ(t0, x0)− f(x0, a)) < 0.

When (t0, x0) ∈ {T} × Ō, it follows from Proposition 3.1 and the fact that At × Et ⊃ AT × ET for all

t ≤ T that v is lower-semicontinuous at the points of {T}×Ō. This leads clearly to v∗ ≥ g on {T}×Ō.

2

3.4.2 The sub-solution property.

Let (t0, x0) ∈ [t, T ]× Ō and φ ∈ C1,2([0, T ]× Ō) such that

max(strict)[0,T ]×Ō(v
∗ − φ) = (v∗ − φ)(t0, x0) = 0.

1. We first consider the case where (t0, x0) ∈ {T} × ∂O.

We argue by contradiction and suppose that

min{min
e∈E

Heφ(t0, x0), (φ− g)(t0, x0)} =: 2ϵ > 0.

Since A is compact, after replacing φ by (t, x) 7→ φ(t, x) +
√
T − t+ ι, with ι > 0 small, we can assume

that lim
t→T

∂tφ(t, x) = −∞. Then, there exists δ > 0 such that

min{ min
(a,e)∈A×E

{−La,eφ− f(·, a)}, min
e∈E

Heφ,φ− g} ≥ ϵ on B̄ ∩ [T − δ, T ]× Ō, (3.19)

where B := [T − δ, T )×B(x0, δ).

It follows from the fact that v∗ − φ achieves a strict local maximum at (t0, x0) and the fact that the

domain O is bounded that

sup
∂c
pB

(v∗ − φ) =: −η < 0, (3.20)
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where ∂cpB := [T − δ, T ]× (B(x0, δ)
c ∩ Ō) ∪ {T} ×B(x0, δ).

Let (tn, xn)n be a sequence in [0, T )×O converging to (t0, x0) such that

v(tn, xn) → v∗(t0, x0) .

Obviously, we can assume that (tn, xn) ∈ B. Fix (ε, α) ∈ Etn ×Atn and define

(Xn, Ln, βn) := (Xε,α
tn,xn

, Lε,α
tn,xn

, βε,α
tn,xn

),

together with τn and θn, the first exit times of (s,Xn(s))s≥tn and (Xn(s))s≥tn from B and O, respec-

tively.

Using Itô’s Lemma and (3.19), we deduce that

E
[
βn(τn)φ (τn, Xn(τn)) 1{τn<T}

]
+ E[βn(T ) (g(Xn(T )) + ϵ) 1{τn=T}]

≤ φ(tn, xn)− E
[∫ τn

tn

βn(s)f(Xn(s), αs)ds

]
− E

[∫ τn

tn

ϵβn(s)dL
c
n(s)

]
≤ φ(tn, xn)− E

[∫ τn

tn

βn(s)f(Xn(s), αs)ds

]
− E[ϵβn(τn)Lc

n(τn)].

This, together with (3.20), implies that

E[βn(τn)[v∗, g] (τn, Xn(τn))]

≤ φ(tn, xn)− E
[∫ τn

tn

βn(s)f(Xn(s), αs)ds

]
− E[(ϵ ∧ η)βn(τn)]− E[ϵβn(τn)Lc

n(τn)].

Recalling that |ρ| ≤ c for some c > 0, we deduce that

E[βn(τn)[v∗, g] (τn, Xn(τn))] ≤ φ(tn, xn)− E
[∫ τn

tn

βn(s)f(Xn(s), αs)ds

]
−E[(ϵ ∧ η)1τn≤θn + e−cLn(τn)(ϵLc

n(τn) + ϵ ∧ η)1τn>θn ].

Then,

E
[
βn(τn)[v

∗, g] (τn, Xn(τn)) +

∫ τn

tn

βn(s)f(Xn(s), αs)ds

]
≤ φ(tn, xn)−min{ϵ, η, νE[e−cΣs≤τn∆L(s)]},

where ν := infk≥0(e
−ck(εk+ ζ ∧ ϵ)). Note that the same argument as in the proof of section 3.4.1 shows

that E[e−cΣs≤τn∆L(s)] ≥ κ > 0, for some κ independent on n and ζ.

Using the fact that limn→∞(v−φ)(tn, xn) = 0 and (2.3), we may then find η′ > 0, which is independent

on ε, α and n, such that

v(tn, xn)− η′ ≥ E
[
βn(τn)[v

∗, g] (τn, Xn(τn)) +

∫ τn

tn

βn(s)f(Xn(s), αs)ds

]
,

for n large enough. This leads to a contradiction to (3.5) in Theorem 3.1.

2. The case where (t0, x0) ∈ [0, T ) × ∂O can be treated similarly by similar argument as in previous

step, see (3.19). We can indeed use a localization in order to assume that τn ≤ T − ϵ for some ϵ > 0.

Therefore, we do not need to compare the values of v∗ with g.

The case (t0, x0) ∈ [0, T ] × O is also treated similarly by using a localization argument as in step 2 of

the proof in section 3.4.1. 2
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3.5 The comparison theorem.

We now prove a comparison result for B+φ ≥ 0 and B−φ ≤ 0 on [0, T ] × Ō, which implies that v

is continuous on [0, T ) × O, admits a continuous extension to [0, T ] × Ō, and is the unique viscosity

super-solution (resp. sub-solution) of B+φ ≥ 0 (resp. B−φ ≤ 0) on [0, T ]× Ō.

We first introduce an equivalent definition of viscosity solutions, which eliminates the appearance of

test function in the integral associated to the measure of jumps. Let us denote by Ga,e the operator

from [0, T ]× Ō × R× Rd ×Md to R parameterized by a smooth function φ as

Ga,e(x, q, p,M ;φ) := q + ⟨b(x, a), p⟩+ f(x, a) +
1

2
Trace [σ(x, a)σ∗(x, a)M ]

+

∫
Rd

[e−ρ(x,e)la,e
x (z)φ(πa,e

x (z))− φ(x)]µ̃(dz)

so that

La,eφ(t, x) + f(x, a) = Ga,e(x, ∂tφ(t, x), Dφ(t, x), D
2φ(t, x);φ(t, ·)).

We also define F± as the operator associated to B± by the implicit relation:

F±(x, ∂tφ(t, x), Dφ(t, x), D
2φ(t, x);φ(t, ·)) = B±φ(t, x).

Note that, for (a, e) ∈ A× E, Ga,e is a continuous function satisfying the elliptical condition, i.e. it is

non increasing with respect to M ∈ Md and I. In view of Definition 4 in [1] and the fact that A and E

are compact, we can provide the following equivalent definition of viscosity solutions:

Definition 3.2 A lower semicontinuous (resp. upper semicontinuous ) function w on [0, T ] × Ō is

a viscosity super-solution (resp. sub-solution ) of (3.17) if, for (t0, x0) ∈ [0, T ] × Ō, (q0, p0,M0) ∈
P̄−
Ōw(t, x) (resp. P̄+

Ōw(t, x)) and φ ∈ C1,2([0, T ]× Ō) so that

(t0, x0) is a maximum (resp. minimum) point of w − φ, w(t0, x0) = φ(t0, x0),

and

q0 = ∂tφ(t0, x0), p0 = Dφ(t0, x0), M0 ≥ D2φ(t0, x0) (resp. M0 ≤ D2φ(t0, x0)),

we have

F+(x0, q0, p0,M0;w(t0, ·)) ≥ 0 ( resp. F−(x0, q0, p0,M0;w(t0, ·)) ≤ 0).

See [7] for the standard notations P̄+
Ō and P̄−

Ō .

Motivated by the comparison result of Proposition 3.4 in [4], we add some assumptions:

G3.

(i) There exists b > 0 such that

B(x− bγ(x, e), b) ∩ O = ∅, for all (x, e) ∈ ∂O × E. (3.21)

(ii) There exists a C2(Ō) function h̃ such that

⟨γ(x, e), Dh̃(x)⟩ ≥ 1, for all x ∈ ∂O and e ∈ E. (3.22)

(iii) For all x ∈ ∂O, we have

inf
e∈E

⟨γ(x, e), γ(x, ēx)⟩ > 0,

where ēx ∈ argmax{ρ(x, e) : e ∈ E}. Note that G3(iii) is weaker than the corresponding assumption

(3.17) in [4]. We now prove a comparison result:
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Theorem 3.3 Suppose that G3 holds. Let V (resp. U) be a lower-semicontinuous (resp. upper-

semicontinuous) locally bounded map on [0, T ] × Ō. Assume that V is a viscosity supersolution of

B+φ ≥ 0 on [0, T ] × Ō and U is a viscosity subsolution of B−φ ≤ 0 on [0, T ] × Ō. Then, V ≥ U on

[0, T ]× Ō.

Proof. Fix κ > 0 and set Ũ(t, x) := eκtU(t, x), Ṽ (t, x) := eκtV (t, x), f̃(t, x) := eκtf(t, x) and

g̃(t, x) := eκtg(x). Here, κ is chosen such that

−f̃(·, a)− La,eH ≥ 0, for all (a, e) ∈ A× E, (3.23)

where H(t, x) := e−κt−h̃(x).

We argue by contradiction, and therefore assume that

sup
[0,T ]×Ō

(
Ũ − Ṽ

)
> 0. (3.24)

It follows from the fact that the domain O is bounded that Φη := Ũ − Ṽ − 2ηH achieves its maximum

at (tη, xη) on [0, T ]× Ō and satisfies

Φη(tη, xη) =: m > 0, for η > 0 small enough . (3.25)

1. We first study the case U(tη, xη) ≥ 0, up to a subsequence. We define the function Ψη
n on [0, T ]×Ō2

as

Ψη
n(t, x, y) := Θ(t, x, y)− |x− xη|4 − |t− tη|2 − n

2
|x− y|2 − ρ(xη, eη)Ũ(tη, xη)⟨γ(xη, eη), x− y⟩ ,

where

Θ(t, x, y) := Ũ(t, x)− Ṽ (t, y)− η (H(t, x) +H(t, y)) ,

and eη ∈ argmin{ρ(xη, e) : e ∈ E}.
Assume that Ψη

n achieves its maximum at some (tηn, x
η
n, y

η
n) ∈ [0, T ]×Ō2. The inequality Ψη

n(t
η
n, x

η
n, y

η
n)

≥ Ψη
n(t

η, xη, xη) implies that

Θ(tηn, x
η
n, y

η
n) ≥ Θ(tη, xη, xη) + ρ(xη, eη)Ũ(tη, xη)⟨γ(xη, eη), xηn − yηn⟩

+|xηn − xη|4 + |tηn − tη|2 + n

2
|xηn − yηn|2.

We deduce that the term on the second line is bounded in n so that, up to a subsequence, xηn, y
η
n −−−−→

n→∞
x̄η ∈ Ō and tηn −−−−→

n→∞
t̄η ∈ [0, T ] . Sending n → ∞ in the previous inequality and using the maximum

property of Φη at (tη, xη), we obtain

0 ≥ Φη(t̄η, x̄η)− Φη(tη, xη)

≥ lim sup
n→∞

(|xηn − xη|4 + |tηn − tη|2 + n

2
|xηn − yηn|2) ,

This, together with (3.25), implies that

(a) xηn, y
η
n −−−−→

n→∞
xη and tηn −−−−→

n→∞
tη ,

(b) |xηn − xη|4 + |tηn − tη|2 + n

2
|xηn − yηn|2 −−−−→

n→∞
0 ,

(c) Ũ(tηn, x
η
n)− Ṽ (tηn, y

η
n) −−−−→

n→∞

(
Ũ − Ṽ

)
(tη, xη) ≥ m+ 2ηH(tη, xη) > 0 .
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In view of Ishii’s Lemma, see Theorem 8.3 in [7], we deduce that, for each λ > 0, there are real

coefficients bη1,n, b
η
2,n and symmetric matrices X η,λ

n and Yη,λ
n such that(

bη1,n, p
η
n,X η,λ

n

)
∈ P̄+

Ō Ũ(tηn, x
η
n) and

(
−bη2,n, qηn,Yη,λ

n

)
∈ P̄−

Ō Ṽ (tηn, y
η
n) ,

where

pηn := 4|xηn − xη|2(xηn − xη) + n(xηn − yηn) + ρ(xη, eη)Ũ(tη, xη)γ(xη, eη) + ηDH(tηn, x
η
n)

qηn := n(xηn − yηn) + ρ(xη, eη)Ũ(tη, xη)γ(xη, eη)− ηDH(tηn, y
η
n) ,

bη1,n, b
η
2,n, X η,λ

n and Yη,λ
n satisfy

bη1,n + bη2,n = 2(tηn − tη)− κη (H(tηn, x
η
n) +H(tηn, y

η
n))(

X η,λ
n 0

0 −Yη,λ
n

)
≤ (Aη

n +Bη
n) + λ(Aη

n +Bη
n)

2
(3.26)

with

Aη
n := η

(
D2H(tηn, x

η
n) 0

0 D2H(tηn, y
η
n)

)
+

(
12(xηn − xη)⊗ (xηn − xη) 0

0 0

)
,

Bη
n := n

(
I −I
−I I

)
,

and I stands for the identical matrix with dimension d× d.

1.1. We first suppose that, up to a subsequence, xηn ∈ ∂O for all n. Fix e ∈ E. It follows from (3.21)

that

|xηn − bγ(xηn, e)− yηn|2 ≥ b2.

Since |γ| = 1, this implies that

2⟨γ(xηn, e), yηn − xηn⟩ ≤ −b−1|yηn − xηn|2. (3.27)

Since xηn −−−−→
n→∞

xη, we have

ρ(xηn, e)Ũ(tηn, x
η
n)− ⟨γ(xηn, e), pηn⟩

= (ρ(xη, e)− ρ(xη, eη))Ũ(tη, xη) + ρ(xη, eη)Ũ(tη, xη)(1− ⟨γ(xη, e), γ(xη, eη)⟩)

+n⟨γ(xηn, e), yηn − xηn⟩+ η⟨γ(xηn, e), Dh̃(xηn)⟩H(tηn, x
η
n) + λn,

where λn is independent on e and comes to 0 when n→ ∞. This, together with (3.22), (b), (3.27) and

the fact that ⟨γ(xη, e), γ(xη, eη)⟩ ≤ 1 since |γ| ≤ 1, implies that

He(xηn, Ũ(tηn, x
η
n), p

η
n) > ηH(tη, xη) > 0,

when n is large enough.

Using similar argument as above, if, up to a subsequence, yηn ∈ ∂O, we then have

Heη (yηn, Ṽ (tηn, y
η
n), q

η
n) < −ηH(tη, xη) < 0, for all e ∈ E,

when n is large enough.

1.2. We now suppose that, up to a subsequence, tηn = T , for all n ≥ 1. In view of step 1.1, we have

Ũ(T, xηn) ≤ g̃(T, xηn) and Ṽ (T, yηn) ≥ g̃(T, yηn), for all n ≥ 1. Then, passing to the limit, recalling (a)
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and the fact that g is continuous, it implies that Ũ(T, xη) ≤ g̃(T, xη) ≤ Ṽ (T, xη). This leads to a

contradiction of (c).

1.3. It follows from 1.1 and 1.2 that (tηn, x
η
n, y

η
n) ∈ [0, T ) × O2 for all n, after possibly passing to a

subsequence. Then, there exists (aηn, e
η
n)n≥1 ⊂ A× E such that

0 ≥ κŨ(tηn, x
η
n)− bη1,n − ⟨b(xηn, aηn), pηn⟩ −

1

2
Trace

[
σ(xηn, a

η
n)σ

∗(xηn, a
η
n)X η,λ

n

]
−

∫
Rd

[
e
−ρ(xη

n,e
η
n)l

a
η
n,e

η
n

x
η
n

(z)
[Ũ(tηn, π

aη
n,e

η
n

xη
n

(z))− Ũ(tηn, x
η
n)]

]
µ̃(dz)− f̃(xηn, a

η
n)

0 ≤ κṼ (tηn, y
η
n) + bη1,n − ⟨b(yηn, aηn), qηn⟩ −

1

2
Trace

[
σ(yηn, a

η
n)σ

∗(yηn, a
η
n)Yη,λ

n

]
−

∫
Rd

[
e
−ρ(yη

n,e
η
n)l

a
η
n,e

η
n

y
η
n

(z)
[Ṽ (tηn, π

aη
n,e

η
n

yη
n

(z))− Ṽ (tηn, y
η
n)]

]
µ̃(dz)− f̃(yηn, a

η
n).

It follows from (b), (3.26) and the Lipchitz continuity of our coefficients that

κ[Ũ(tηn, x
η
n)− Ṽ (tηn, y

η
n)− 2ηH(tη, xη)] + 2η[f̃(xη, aηn) + Laη

n,e
η
nH(tη, xη)] + C(n, λ)

≤
∫
Rd

[
e
−ρ(xη,eηn)l

a
η
n,e

η
n

x
η
n

(z)
[(Ũ − Ṽ − 2ηH)(tηn, π

aη
n,e

η
n

xη
n

(z))− (Ũ − Ṽ − 2ηH)(tη, yη)]

]
µ̃(dz),

where C(n, λ) goes to 0 when λ→ 0 and then n→ ∞. This, together with the fact that

(Ũ − Ṽ − 2ηH) ≤ (Ũ − Ṽ − 2ηH)(tη, xη) = m > 0,

and ρ, l ≥ 0, implies that

κ[Ũ(tηn, x
η
n)− Ṽ (tηn, y

η
n))− 2ηH(tη, xη)] ≤ −2η[f̃(xη, aηn) + Laη

n,e
η
nH(tη, xη)] + C(n, λ).

Finally, using (c) and (3.23), we deduce by sending λ→ 0 and then n→ ∞ that

κm ≤ 0,

which is the required contradiction.

2. The case where U(tη, xη) < 0, up to a subsequence, is treated similarly. The difference comes from

the test function which is chosen as follows

Ψη
n(t, x, y) := Θ(t, x, y)− |x− xη|4 − |t− tη|2 − n

2
|x− y|2 − b̃−1

η ρ(xη, ēη)Ũ(tη, xη)⟨γ(xη, ẽη), x− y⟩ ,

where ēη = ēxη , b̃η and ẽη ∈ E satisfy

min
e∈E

⟨γ(xη, e), γ(xη, ēx)⟩ = ⟨γ(xη, ẽη), γ(xη, ēx)⟩ = b̃η > 0.

Those variables are well defined, when the condition (iii) of assumption G3 holds. Then, if, up to a

subsequence, xηn ∈ ∂O for all n, we have

ρ(xηn, e)Ũ(tηn, x
η
n)− ⟨γ(xηn, e), pηn⟩

= (ρ(xη, e)− ρ(xη, ēη))Ũ(tη, xη) + ρ(xη, ēη)Ũ(tη, xη)(1− b̃−1
η ⟨γ(xη, e), γ(xη, ẽη)⟩)

+ n⟨γ(xηn, e), yηn − xηn⟩+ η⟨γ(xηn, e), Dh̃(xηn)⟩H(tηn, x
η
n) + λn,

where λn goes to 0 as n→ ∞. This, together with (a), (b), (3.22) and (3.27), implies that

He(xηn, Ũ(tηn, x
η
n), p

η
n) > ηH(tη, xη) > 0,

when n is large enough. The other cases are treated similarly as in step 1 above. 2
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