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Abstract

We extend the optimal control of direction of reflection problem introduced in Bouchard [4] to
the jump diffusion case. In a Brownian diffusion framework with jumps, the controlled process is
defined as the solution of a stochastic differential equation (SDE) reflected at the boundary of a
domain along oblique directions of reflection which are controlled by a predictable process which
may have jumps. We also provide a version of the weak dynamic programming principle of Bouchard
and Touzi [5] adapted to our context and which is sufficient to provide a viscosity characterization
of the associated value function without requiring the usual heavy measurable selection arguments

nor the a-priori continuity of the value function.

Key words : Optimal control, Dynamic programming, Skorokhod problem, discontinuous viscosity
solutions.
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1 Introduction

The aim of this paper is to study a class of optimal control problem for reflected processes on the
boundary of a bounded domain O, whose direction of reflection can be controlled. When the direction
of reflection v is not controlled, the existence of a solution to reflected SDEs was studied in the case
where the domain O is a half space by El Karoui and Marchan [6], and, Ikeda and Watanabe [10].
Tanaka [18] considered the case of convex sets. More general domains have been discussed by Dupuis
and Ishii [8], where they proved the strong existence and uniqueness of solutions in two cases. In the
first case, the direction of reflection v at each point of the boundary is single valued and varies smoothly,
even if the domain O may be non smooth. In the second case, the domain O is the intersection of a
finite number of domains with relatively smooth boundaries. Motivated by applications in financial
mathematics, Bouchard [4] then proved the existence of a solution to a class of reflected SDEs, in which
the oblique direction of reflection is controlled. This result is restricted to Brownian SDEs and to the
case where the control is a deterministic combination of an It6 process and a continuous process with
bounded variation. In this paper, we extend Bouchard’s result to the case of jump diffusion and allow
the control to have discontinuous paths.



As a first step, we start with an associated deterministic Skhorokhod problem:

o(t) = (t) + / (6(5), £()) Looyeood(s), B(t) € O, (11)

where 7 is a non decreasing function and =y is controlled by a control process ¢ taking values in a given
compact set E of R!. Bouchard [4] proved the strong existence of a solution for such problems in the
family of continuous functions when ¢ is a continuous function with bounded variation. Extending
this result, we consider the Skhorokhod problem in the family of cadlag functions with finite number of
points of discontinuity. The difficulty comes from the way the solution map is defined at the jump times.
In this paper, we will investigate on a particular class of solutions, which is parameterized through the
choice of a projection operator 7. If the value ¢(s—) + At(s) is out of the closure of the domain at
a jump time s, we simply project this value on the boundary 0O of the domain along the direction ~.
The value after the jump of ¢ is chosen as 7(d(s—) + Av(s),e(s)), where the projection 7 along the
oblique direction =y satisfies

y=7(y,e) —l(y,e)y(n(y,e),e), forally ¢ O and e € E,
for some suitable positive function [. This leads to

¢(s) = (¢(s—) + Ad(s)) +7(¢(s),£(s)) An(s),

with An(s) = l(¢(s—) + AY(s),e(s)). When the direction of reflection is not oblique and the domain
O is convex, the function 7 is just the usual projection operator and I(y) coincides with the distance to
the closure of the domain O.

We next consider the stochastic case. Namely, we prove the existence of an unique pair formed by a

reflected process X© and a non decreasing process L° satisfying

{ X(r) =+ [] F(X(s=))dZ, + [] 1(X(5), () Lx () co0dL(s), 12)

X(r) €O, forallre[t,T)

where Z is the sum of a drift term, a Brownian stochastic integral and an adapted compound Poisson
process, and the control process € belongs to the class £ of F-valued cadlag predictable processes with
bounded variation and finite activity. As in the deterministic case, we only study a particular class of
solutions, which is parameterized by w. This means that whenever X is not in the domain O because
of a jump, it is projected on the boundary 0O along the direction v and the value after the jump is
also chosen as 7 (X (s—) + F(X (s—))AZ,, £(s)).

In section 3, we then introduce an optimal control problem, which extends the framework of [4] to the
jump diffusion case,
v(t,x) = sup J(t, z;¢) (1.3)
=

where the cost function J(t,z;¢) is defined as E |5; . (T)g(X; . (T)) +ftT 5f7x(s)f(Xfﬁx(s))ds} with

Bf@(s) = e J¢ PXG o (r=))dly o (7). f, g, p are some given functions, and the subscript ¢,z means that
the solution of (1.2) is considered from time ¢ with the initial condition z. As usual, the technical key
for deriving the associated PDEs is the dynamic programming principle (DPP). The formal statement
of the DPP may be written as follows, for 7 in the set T (¢,T) of stopping times taking values in [¢, T},

v(t,z) = 0(t, x), (1.4)



where

5(t,2) == supE [Bf,m(T)v(ﬂ X+ [ 5f,x(8)f(Xf,z(S))ds] ,

eef
see [4], Fleming and Soner [9] and Lions [13]. Bouchard and Touzi [5] recently discussed a weaker
version of the classical DPP (1.4), which is sufficient to provide a viscosity characterization of the
associated value function, without requiring the usual heavy measurable selection argument nor the a

priori continuity on the associated value function. In this paper, we apply their result to our context:

u(t,z) < suplt |:B§,1(T)[U*ag](7a Xi.(7)) +/ ﬂf,z(S)f(Xf,x(S))dS] , (1.5)
€ t
and, for every upper semi-continuous function ¢ such that ¢ < wv,,
olt.2) 2 S | B (Dl alr XEu ) + [ ()X o)) (1.6
€€ t

where v* (resp. v.) is the upper (resp. lower) semi-continuous envelope of v, and [w,g|(s,z) :=
w(s, z)1s<7 + g(x)1s=7 for any map w define on [0,7] x O. This allows us to provide a PDE charac-
terization of the value function v in the viscosity sense. We finally extend the comparison principle of
Bouchard [4] to our context.

Following are some notations that will be used through out this paper.

Notations. For 7' > 0 and a Borel set K of R?, Df([0,T], K) is the set of cadlag functions from [0, 7]
into K with a finite number of discontinuous points, and BV ([0, 7], K) is the subset of elements in
D’ ([0, T), K) with bounded variation. For ¢ € BV/([0,T], K), we set |e| := Y, |€!|, where |¢?| is the
total variation of €. We denote by Nﬁ,T] the number of jump times of € on the interval [t,T]. In the
space R?, we denote by (-,-) natural scalar product and by || - || the associated norm. Any element of
R? is viewed as a column vector. For x € R?, we denote by B(x,r) the open ball of radius r > 0 and
center x. M is the set of square matrices of dimension n, Trace [M] is the trace of M € M? and M* is
its transposition. For a set K C R, we note K¢ its complement and K its boundary. Given a smooth
map ¢ on [0,7] x RY, we denote by ;¢ its partial derivatives with respect to its first variable, and by
Dy and D?¢ the partial gradient and Hessian matrix with respect to its second variable. If nothing

else is specified, identities involving random variables have to be taken in the a.s. sense.

2 The SDEs with controlled oblique reflection

2.1 The deterministic problem.

For sake of simplicity, we first explain how we construct a class of solutions for the deterministic

Skorokhod problem (SP), given an open domain O C R% and a continuous deterministic map

P(t) = (1) +/0 1(6(s),€(s))Lg(s)c00dn(s) , ¢(t) €O YVt <T.  (SP)

In the case where the direction of reflection 7 is not controlled, i.e. v is a smooth function from R to
R? satisfying |y| = 1 which does not depend on e, Dupuis and Isshi [8] proved the strong existence of a
solution to the SP when O is a bounded open set and there exists r € (0,1) such that

U B(z—M(2),Ar) C 0%, Vo € 90. (2.1)

0<A<r



In the case of controlled directions of reflection, Bouchard [4] showed that the existence holds whenever
the condition (2.1) is imposed uniformly in the control variable:

G1. O is a bounded open set, v is a smooth function from R? x E to R? satisfying |y| = 1, and there
exists some r € (0,1) such that

U B(x — My(z,e),Ar) C O°, V(z,e) € 00 x E. (2.2)
0<A<r

In all this paper, E denotes a given compact subset of R! for some I > 1.

In order to extend this result to the case where v is a deterministic cadlag function with finite number
of points of discontinuity, we focus on the definition of the solution value at the jump times. At each
jump time s, the value after the jump of ¢ is chosen as 7(¢(s—) + A(s),e(s)), where 7 is the image
of a projection operator on the boundary 9O along the direction +y satisfying following conditions:
G2. For any y € R? and e € E, there exists (1(y,e), I(y,e)) € O x Ry satisfying

if y €O, m(y,e) =y, l(y,e) =0,
if y¢ O, mw(y,e) €00 and y =n(y,e) — Iy, e)y(m(y.e),e) ’

Moreover, m and | are Lipchitz continuous functions with respect to their first variable and uniformly in
the second one.

This means that the value of ¢ just after the jump at time s is defined as

¢(s) = (P(s—) + A¢(s)) +7(¢(s),£(s)) An(s),
where An(s) = I(¢(s—) + Ay(s),e(s)), or equivalently

Ad(s) = Atp(s) +v(o(s),£(s))An(s).

In view of the existence result of Bouchard [4], we already know that the existence of a solution to
(SP) is guaranteed between the jump times and that the uniqueness between the jump times holds
if (¢,6) € BVY([0,T],R%) x BV/(]0,T],R"). By pasting together the solutions at the jumps times
according to the above rule, we clearly obtain an existence on the whole time interval [0, 7] when ¢ and

€ have only a finite number of discontinuous points.

Lemma 2.1 Assume that G1 and G2 hold and fiz v,c € D¥([0,T),R%). Then, there exists a solution
(6,m) to (SP) associated to (m,1), i.e. there exists (¢,n) € DI ([0,T],R%) x DY ([0,T],R) such that

() o) = v(t) + / A(B(5),£(5) Ly(e)coodn(s),
(i) ¢(t) € O for t e [0,T],

(iii) 7 is a non decreasing function,
(iv)  o(s) = m(p(s—) + Av(s),e(s)) and An(s) = U(d(s—) + Aip(s),e(s)) for s € [0,T].
Moreover, the uniqueness holds if (1,¢) € BV/([0,T],R%) x BV([0,T],R").

Remark 2.1 (i) When the domain O is convex and the reflection is not oblique, i.e. vy(xz,e) = n(x)
for all x € 0O with n(x) standing for the inward normal vector at the point x € JO, then the usual
projection operator together with the distance function to the boundary 0O satisfies assumption G2.
(ii) Clearly, the Lipschitz continuity conditions of m and | are not necessary for proving the existence of a
solution to (SP). They will be used later to provide some technical estimates on the controlled processes,
see Proposition 3.1 below.



2.2 SDEs with oblique reflection.

We now consider the stochastic version of (SP). Let W be a standard n-dimensional Brownian motion
and 1 be a Poisson random measure on R, which are defined on a complete probability space (2, F,P),
such that W and p are independent. We denote by F := {F; }o<i<7 the P-complete filtration generated
by (W, u). We suppose that 1 admits a deterministic (P, F)-intensity kernel fi(dz)ds which satisfies

/OT /]Rd f(dz)ds < oo . (2.3)

The aim of this section is to study the existence and uniqueness of a solution (X, L) to the class of
reflected SDEs with controlled oblique reflection ~:

X(t) =+ / Fy(X (s-))dZ, + / (X (), 2(5)) L (o) coodL(s), (2.4)

where (Fs)s<7 is a predictable process with values in the set of Lipchitz functions from R4 to M? such
that F7(0) is essentially bounded, and Z is a R%-valued cadlag Lévy process defined as

t t t
th/ bsd3—|—/ adeS—I—/ Bs(2)u(dz, ds), (2.5)
0 0 0 JRrd

where (¢,2) € [0,T] x RY +— (b, 0, B:(2)) is a deterministic bounded map with values in RY x M? x R.
As already mentioned, an existence of solutions was proved for It processes, i.e. § = 0, and the controls
e with continuous path and essentially bounded variation in [4]. In this paper, we extend this result
to the case of jump diffusion and to the case where the controls € can have discontinuous paths with
a.s. finite activity. As in the deterministic case, we only consider a particular class of solutions which is
parameterized by the projection operator m. Namely, X is projected on the boundary 0O through the
projection operator m whenever it is out of the domain because of a jump. The value after the jump of
X is chosen as m(X (s—) + Fs(X(s—))AZs,e(s)).

In order to state rigorously the main result of this section, we first need to introduce some additional
notations and definitions. For any Borel set K, we denote by Dp([0, 7], K) the set of K-valued adapted
cadlag semimartingales with finite activity and BVF([0, T, K) the set of processes in Dy([0,T], K') with
a.s. bounded variation on [0,7]. We set £ := BFy([0,T], E) for case of our notations.

Definition 2.1 Givenx € O and ¢ € &, we say that (X, L) € Dg([0,T],R%) x Dp([0, T], R) is a solution

of the reflected SDEs with direction of reflection vy, projection operator (m,l) and initial condition x, if

X(t) =+ Jy Fo(X(5=))dZs + Jy 1(X(5),2(5) Lx wyeo0dL(s),
X(s) € OVs<T, Lisamnon decreasing process,
X(s) =7(X(s=) + Fs(X(s—))AZs,e(s)) , AL(s) = U(X(s—) + Fs(X(s—))AZs,e(s)) Vs <T.
(2.6)

We now state the main result of this section.

Theorem 2.1 Fizx € O and ¢ € &, and assume that G1 and G2 hold. Then, there exists an unique
solution (X,L) € Dg(]0,T],R?) x Dp([0,T],R) of the reflected SDEs (2.6) with oblique direction of

reflection vy, projection operator (mw,l) and initial condition x.



Proof. Let {T}}r>1 be the jump times of (Z, ). Assume that (2.6) admits a solution on [Ty, Ty—1] for
k> 1, with Tp = 0. It then follows from Theorem 2.2 in [4] that there exists an unique solution (X, L)
of (2.6) on [T_1,T). We set

X(Tx) = m(X(Th—) + Fr,, (X (Th=)) AZ1, , (Th))

so that
X(Ty) = X(Tk—) + P, (X (T =) AZ1, + (X (Th), e(T)) 1 x (1) co0 AL(T}),

with AL(Ty) = (X (Tx—) + Fr, (X (T—))AZp,,e(T))). Since N[(o TE]) < 0o P— a.s, an induction leads
to an existence result on [0, 7]. Uniqueness follows from the uniqueness of the solution on each interval

[Tk—1,Tx), see Theorem 2.2 in [4]. O

3 The optimal control problem

3.1 Definitions.

We now introduce the optimal control problem which extends the one considered in [4]. The set of control
processes ¢ := («,¢) is defined as A x &£, where A is the set of predictable processes taking values in
a given compact subset A of R™, for some m > 1. The family of controlled processes (X, L;")
is defined as follows. Let b, ¢ and x be continuous maps on O x A and O x A x R? with values in
R?, M and R¢ respectively. We assume that they are Lipchitz continuous with respect to their first
variable, uniformly in the others, and that y is bounded with respect to its last component. It then
follows from Theorem 2.1 that, for (¢t,2) € [0,T] x O and (a,e) € A x &, there exists an unique pair
(X7, L) € De([0,T],R?) x Dg([0,T],R) which satisfies

X(r)y=z+ /T b(X(s),a(s))ds + /t’“ o(X(s),a(s))dWs

[ a0 2l ds) + [ 40066 xeaodLls) e < < T(3.1)
X(s) € O Vs € [t,T], L is non decreasing, (3.2)
(X (s),AL(s)) = /Rd(ﬂ',l) (X(s—) +x(X(s—),a(s),2),e(s)) p(dz, {s}), for s € [t,T]. (3.3)

Let p, f,g be bounded Borel measurable real valued maps on O x E, O x A and O, respectively. We
assume that ¢ is Lipchitz continuous and p > 0. The functions p and f are also assumed to be Lipchitz
continuous in their first variable, uniformly in their second one. We then define the cost function

T
J(t,2;¢) :=E ﬂf,m(T)g(Xf,x(T)H/t Bra(8) (X (s), als))ds | (3.4)

where ﬁfz(s) = JF ”(Xfw(”*)’a(”))dwvm(r), for ( = (a,e) e A X E.
The aim of the controller is to maximize J (¢, x; () over the set A; x & of controls in A x £ which are

independent on F;, compare with [5]. The associated value function is then defined as

v(t,z) == sup J(t, ;).
CEAL XE



3.2 Dynamic programming.

In order to provide a PDE characterization of the value function v, we shall appeal as usual to the
dynamic programming principle. The classical DPP (1.4) relates the time-t value function v(t,-) to
the later time-t value v(r,-), for any stopping time 7 € T (¢,T). Recently Bouchard and Touzi [5]
provided a weaker version of the DPP, which is sufficient to provide a viscosity characterization of v.
This version allows us to avoid the technical difficulties related to the use of non-trivial measurable
selection arguments or the a-priori continuity of v.

From now, for ¢t < T, we denote by T;(71,72) the set of elements in T (71, 72) which are independent on
Fi. The weak version of the DPP reads as follows:

Theorem 3.1 Fix (t,z) € [0,T] x O and 7 € T;(t,T), then

o(t.z) < sup E[m o gl X6 + [ f,w<s>f<xfz<s>>ds] (3.5)

CEAL XEs t

and -
o(tz)> sup E[M Yl al(r. XS0 (1) + §w<s>f<X£m<s>>ds}, (3.6)

CEAxXE, t

for any upper semi continuous function ¢ such that v > .

Arguing as in [5], the result follows once J(-; () is proved to be lower semicontinuous for all ¢ € A x &.

In our setting, one can actually prove the continuity of the above map.
Proposition 3.1 Fiz (tg,70) € [0,7] x O and ¢ € A x €. Then, we have

lim  J(t,;¢) = J(tg, zo;C). (3.7)

(t,z)—(to,x0)

Proposition 3.1 will be proved later in the Subsection 3.3. Before providing the proof of the DPP, we

verify the consistency with deterministic initial data assumption, see Assumption A4 in [5].

Lemma 3.1 (i) Fiz (t,x) € [0,7] x O, ((,0) € Ay x & x Ti(t,T). For P-a.e w € Q, there exists
v € Agw) X Egw) such that

E |85,(T) / B <s>,a<s>>ds|fe] ®

B O(w)
= Bra(0(w)T(0(w), X, (0)(w); ) +/t Br o (8) (W) f (X (8) (@), als) (w))ds.

(ii) Fort <s<T, 0 € Tt,s), (e Ay xE and ¢ := (L) + él[g’T], we have, for P-a.e. w € Q,

B |65 o) + [ G <s>,a<s>>dsfe] )

- 0(w)
= Bra(0(w)J(Ow), Xi4(0)(w): ) +/t Bra(8) (@) f(X5 4 (8) (), a(s) (w))ds.

Proof. In this proof, we consider the space (€, F,P) as being the product space C([0,T],R%) x
S([0, 7], R?), where S([0, T],R?) := {(t;,2:)i>1 : t: T T, z; € R}, equipped with the product measure

P induced by the Wiener measure and the Poisson random measure u. We denote by w or @ a generic



point. We also define the stopping operator w” := w,.. and the translation operator T, (w) := w.4, — ws..
We then obtain from direct computations that, for ¢ = (o, ) € Ay x &:

E | 8,(T) /'mx wxmmwv4w>
ﬁC (9) (o.))/ BC(WH(M)JFTSW)(W)) (T) g XC(WH(“>+T9(w)(W))(T)
£,z 9(W);Xf,z(9)(w) 9(w)7Xf,z(9)(W)

T
¢ 4+ Ty 0y (w)) CW ) 4Ty () 0(w)
/e;(w)B@(w),Xf,m(e)(w) O Koy xg, 0 @ Tow @) ) ds

+

dP(Tp(w)(w))

0(w)
+ [ B2, ()(@) (XS, () (), a(s)(w))ds

o(w)
Bt 4 (0)(w) T ((w), X, (0)(w); ) +/t Bt 4 (8) (@) F (X7, (5) (), a(s) (w))ds,

where @ € Q) — C~w((:1) = C( 0(w) + Tg(w)( )) S Ag(w) X 59(w)~
This leads proves (i). The assertion (ii) is proved similarly by using the fact that 8(w) € [t, s] for P-a.e.
w e |

Proof of Theorem 3.1
The inequality (3.5) is clearly a consequence of (i) in Lemma 3.1. So it remains to prove the inequality
(3.6). Fix € > 0. In view of definition of J and v, there exists a family {((s,y)} (s y)c[0,rxo such that

J(s,y;¢(s,)) > v(s,y) —€/3, for all (s,y) € [0,T] x O.

Using Proposition 3.1 and the upper semi continuity of ¢, we can choose a family {r(s,y)} (s ,)ej0,11x0 C
(0, 00) such that

J(5,4:C(5,9)) = J(5C(s,9)) < €/3 and o — (s, y) < €/3 on U(s,y;7(s,9)), (3.8)
where U(s,y;7) :=[(s —7) V 0,s] x B(y,r). Hence,

J(5¢(s,y) = ¢ —eon U(s,y;7(s,y))-

Note that {U(s,y;7) : (s,y) € [0,T] x 0,0 < r < r(s,y)} is a Vitali covering of [0,7] x O. It then
follows from the Vitali’s covering Theorem that there exists a countable sequence {t;, x;};cn so that
[0,T] x O C UjenU (t;, w45 7;) with r; == r(t;, z;). We can then extract a partition {B;};en of [0,T] x O
and a sequence {¢;,x;};>1 satisfying (¢;,z;) € B, for each ¢ € N, such that (t,z) € B; implies ¢t < t,,
and

J(;¢) — @ > e on By, for some (; € Ay, X &, (3.9)
We now fix ¢ € & x A, and 7 € T¢(¢,T) and set

(= Cliry + 1z Z Cﬂl{(nxgz(f))eg”y

n>1

Note that ¢ € Ay x & since T, (Cn)n>1 and X,ﬁm are independent of F;. It then follows from (ii) of
Lemma 3.1 and (3.9) that

(,2.0) = Elg(XE. (1)1 =] ~ BL| B (90 (XE (5
> E (B (1)J(r Xfn(7) Olgremy]
> E [Bu(e(r X o ()l rery| — €.



This implies that

u(t,z) 2 E ﬁf,x(T)[%g](ﬂXﬁx(T))ﬂL/; Br o (8)F(XF0(5))ds| -

3.3 Proof of Proposition 3.1.

In this section, we prove the continuity of the cost function in the (¢, z)-variable as follows.

1. We first show that the map J(-;a, ¢) is continuous if p and e are such that
N{;T] <mP—asande € £, for some m, k > 1,

where E} is defined as the set of € € £ such that || < k and the number of jump times of ¢ is a.s smaller

than k, and N[‘Z 7 = w(R%, [, T]). This result is proved as a consequence of the estimates of X and j3

in Lemma 3.2 presented below together with the Lipchitz continuity conditions on f, g and p.

Lemma 3.2 Fiz k,m € N. Assume that G1 and G2 hold, N[‘Z T <m P—a.c and € € E2. Then, there

exist a constant M > 0 and a function X so that, for allt <t < T and x,2' € O, we have

E [ sup | X/ (s) — Xﬁ_’i/(s)|4} < Mz —2'[* + Xt — 1)), (3.10)
t/<s<T '

E { sup |lnﬂfff(s)—ln6t0f’i,(s)|] < Mlx —2'| + A(|t = t']), (3.11)
t'<s<T ™

where lim,_,0 A(a) = 0.

Proof. In order to prove the result, we use a similar argument as in Proposition 3.1 [4] on the
time intervals where (Z,¢) is continuous. We focus on the differences which come from the points of
discontinuity of (Z,¢). From now, we denote (X, L) := (X;', L) and (X', L') := (X35, Ly ,,). We

t,x

only prove the first assertion, the second one follows from the same line of arguments.
Let {T;};>1 be the sequence of jump times on [, T] of (Z, ) and T :=t'. By the same argument as in
Proposition 3.1 of [4] we obtain that

E[ sup |X(r)—X'(r)|Y] < CLE[|X(T;) — X'(T3)|], for some Cj > 0. (3.12)
TG[Ti,Ti+1)

It follows from (3.3) that
E[|IX (Ti41) = X' (Tis) |

=< EH/}Rd[W(X(X(Ti—&-I_)vCY(E’-H)aZ)aE(Ti-&-l))_W(X(X/(E+1_)>a(ﬂ+l)aZ)vg(THl))W(dZa{Ti-i-l})|4]

This, together with (2.3) and the Lipschitz continuity assumption on y and 7, implies that
E[|X (Ti) = X'(Tes1)['] € GE[X(Ti1-) — X' (T2 -)|], for some C > 0. (3.13)
Using the previous inequality and (3.12), we deduce that there exists C' > 0 s.t

E[ sup |X(r)—X'(n)]"] < CE[IX(T;) - X"(T})["].

r€[T:,Tit1]



Applying an induction argument, it implies to

E[ sup |X(r)—X'(rn)|"] < C'E[X () - X'()|).

TG[Ti,Ti+1]
Since N[t 7] < m and N[i’T] < k, we have
E[ sup |X(s) — X'(s)|*] < C™FE[|X (') — '], for some C > 1. (3.14)
' <s<T

It remains to estimate E[|X(¢') — 2/[*]. Let {T;}i>1 be the sequence of jump times on [t,#'] and set
Ty := t. Using a similar argument as in Proposition 3.1 [4], we deduce that there exists C; > 0 such
that
El swp  [X(r)— 'Y < CE[X(T) — ' + |Tiss — Til). (3.15)
re(T;,Tit1)
Recalling (3.3) and the Lipschitz continuity assumption on 7, we deduce that there exists Cy > 0 so
that

\)(( i+1 "$|]
[ (To1=) + X(X(Tor1—),a(Tin)s 2),e(Togn)) — alpa(dz, {ml})r‘]
[ (To1 =) 4 XX (Toar =) oTon)s 2),e(Topn)) — (s e(Togn )z, {Tm})ﬂ

[|X< )=l [ N ) a(i). 2l s ()|

The previous inequality together with (3.15) leads to
B_swp  |X(r)—s'lY) < CE [|X<T> Pl T =T+ [ X Ta), (T ) {Tm}ﬂ ,
re(T;,Tita

for some C > 0.
Then,

B swp [X(r) =] < O™ =o'+ o+ CBI [ [ (X (s=).a(e).2) id2)as),

t<r<t/

for some C > 1.

Since y is bounded with respect to z, we then conclude that

E[ sup |X(r) —a|*] < M|z —2'|* + A(|t' —t]),

t<r<t’

for some M’ > 0 and a function A satisfying lim, o A(a) = 0. O

2. We now provide the proof of Proposition 3.1 in the general case. Fix (a,¢) € A x £. We denote by
{T}n}m>1 the sequence of jump times of u on the interval ¢, T of (Z,¢), Ty :=t and

1™ (A, B) == (A, BN [t,Ty)) for A€ Bga, B € By

where Bga and By 77 denote the Borel tribes of R and [0, T respectively. Let (Xt(zrf), L(m), 5,572), T (t, 250, £(™))
be defined as (X{3, Lyy, Biy . J(t,x;a,€)) in (3.1), (3.1),(3.3) and (3.4) with u(™ in place of ;1 and
glm) .= ely gy +e(T,,)1r, 1) in place of &, where

Ty, :=sup{s > t: Nj g <m, [e](s) <m} ATy

10



Since f, g and B are bounded on the domain O, there exists a constant M > 0 such that, for all
(t,x) € [0,T] x R, we have

LY

[ (t,2:0,5) = J(t, 2,y 0)] < B (I8 (T)g(X D)) = B (T)g(Xek, (D)L g ]

+E

T
| / B (w) (X (u)) = 877 (w) £ (X757 (w) ) dul L ygm) ]

. ,

< MP {A,E"“ } < MP {Agm> } .
where A™ = {w € Q : Nip 7 < m, Ni g < m,[e[(T) < m}. Since N 7y < 0o P—as and € is a
process with bounded variation and finite activity, then ]P’{Aém) “} converges to 0 when m goes to 0o.
Hence,
sup | T (5 oz,s(m)) — J(;a,e)| = 0, when m — 0. (3.16)
(t,2)€[0,T]x O

It then follows the first part of proof that .J,,(-; o, (™) is continuous map. This leads to the required
result (3.7). O

3.4 The PDE characterization.

We are now ready to provide a PDE characterization for v. Note that the fact that the process X,gm is
projected through the projection operator m whenever it exists the domain O because of a jump implies

that the associated Dynkin operator is given, for values (a, e) of the control process, by
LYp(s,x) = (s, ) + (b(x,a), Do(s,z)) + %Trace [o(2,a)0"(x,a)D*p(s,z)]
[ e (e, m(2) = (s, d),
for smooth functions ¢, where

(73(2),13°(2)) = (m. D) (@ + x(2,0,2). €).

Also note that the probability of having a jump at the time where the boundary is reached is 0. It follows
that the reflection terms does not play the same role, from the PDE point of view, depending whenever
the reflection operate at a point of continuity or at a jump time. In the first case, it corresponds to a
Neumman type boundary condition, while, in the second case, it only appears in the Dynkin operator
which drives the evolution of the value function in the domain as described above. This formally implies

that v should be a solution of
By =0, (3.17)

where

min  {—L%¢p — f(-,a)} on [0,T)x0O

(a,e)€AXE
By = min Hep on [0,T)x00 ,
ecE B
p—9g on {T}x0O

and, for a smooth function ¢ on [0,7] x O and (a,e) € A x E,

He(z,y,p) := p(x,e)y — (y(x,e),p) and Hép(t,x) := H(x, ¢(t,x), Do(t, x)).

11



Since v is not known to be smooth a-priori, we shall appeal as usual to the notion of viscosity solutions.
Also note that the above operator B is not continuous, so that we have to consider its upper- and lower-

semicontinuous envelopes to properly define the PDE. From now, given a function w on [0,T] x O, we

set
w*(tvx) = ( w 1)1H}1nf) 0.7) Ow(t/,m/)
t',x')—(t,x t',x')e X _
e for (t 7] x O.
w(t,x) = lim sup w(t',z')’ or (t,x) € [0,T] x O

(t',x")—(t,x), (t',x')€[0,T)xO

Definition 3.1 A lower semicontinuous (resp. upper semicontinuous ) function w on [0,T] x O is a
viscosity super-solution (resp. sub-solution )of (3.17) if, for any test function o € C*2([0,T] x O) and
(to, o) € [0,T)x O that achieves a local minimum (resp. mazimum) of w— so that (w—p)(to, o) = 0,
we have B1o > 0 (resp. B_y <0), where

By on [0,T] xO
Bip = (aﬁelgrgquEmax{—ll o —f(-,a), Hp} on [0,T)x 00
p—g on {T} x 00
By on [0,T] xO
— i i —L%¢p — f(- in H° 0,7) x 00
B_p = mln{(aygggw{ v = f(,a)}, min#H @} on [0,T)x
min{p — g, Hél]IEl Hep} on {T} x 00

A local bounded function w is a discontinuous viscosity solution of (3.17) if w. (resp. w*) is a super-
solution (resp. sub-solution) of (3.17).

‘We can now state our main result.

Theorem 3.2 Assume that G1 and G2 hold. Then, v is a discontinuous viscosity solution of (3.17).

The proof of this result is reported in the subsequent sections.

3.4.1 The super-solution property.
Let o € C%2(]0,T] x O) and (to,z0) € [0,7] x O be such that
min(strict) o 110 (v — ) = (v, — @) (to, 20) = 0.

1. We first prove the required result in the case where (to, o) € [0,T) x 00.

Then, arguing by contradiction, we suppose that

min max{—L"%p(to,x0) — f(x0,a), Hp(to,x0)} < —2¢ < 0.
(a,e)EAXE

Define ¢(t, x) := p(t,z) — |t — to|> — n|z — zo|%, so that, for > 0 small enough, we have

min maX{—Ea’eqj)(to, JJ()) — f(l‘o, CL)7 He¢<t0, 330)} < —267
(a,e)EAXE

recall (2.3). This implies that there exists (ag,eg) € A x E and § > 0 such that tg + < T and

max{—L"¢(t,z) — f(x,a0), Hd(t,z)} < —eon BN[0,T] x O, (3.18)

12



where B := [ty — 0,19 + 0) x B(xo,9).
Let (tn,Zn)n be a sequence in [0,T) x O converging to (tg,zo) such that
v(tnvl'n) — U*(thxO) )

and set (X, Ly, Bn) := (X[0%0, L{O  Bi0°0) . Obviously, we can assume that (t,,x,) € B. Let 7,

tn,Tn? Ttn,Tn tn,Tn

and 6,, be the first exit times of (s, X,,(s))s>1, and (X, (s))s>t, from B and O, respectively.
Using It6’s Lemma, we have
B30 ()0 (i X)) = ) 48 | [ G505, X (5=
tn
-E { 5n(s)7-l6°¢(s,Xn(s))del(s)} )
tVL

where L¢ denotes the continuous part of L,,. It follows from (3.18) that

T

E{Ba(7)6 (s X (7)) 2 @t 2n) — E [ ' 5n<s>f<Xn<s>,ao>ds] +E [ / eﬂn(S)dLZ(S)] .

tn

Since p > 0, the function f3,(-) is non increasing. Hence

E |8 (m)é (s Xn(ra)) + [ Bn<s>f<Xn<s>,ao>ds} > (b ) + Elefn (ra) LE (7).

tn

Since O is bounded,
¢ —¢ > ( on 9;B for some ¢ > 0,

where 85B := [to — 6, t0 + 0] x (B(z0,6)° N O) U {tg + 6} x O.
This, together with the fact that 8, (m,) =1, L,(7,) =0 on {7, < 6,} , leads to
B 5006 (s Xalr) [ A(6) (X9, a0)ds|
tn
> G(tn,2n) + E[CLr, <o, + Bu(Ta) (€ + €Ly (Tn))1r,>0,] -

Let ¢ > 0 be a positive constant satisfying |p| < ¢, we have

B |5u(r)¢ (7 Xnlr) + [ B (6) X, (5. an)s|

G(tn,x0) + E[CLr, <o, +e L) (¢ + eLE (70))1r, 50,

> : . —cY<rp, ALn(s)] 5 —ck
> P(tn, zn) + min{(; Ele ] égf(‘) (e ¢+ Gk))}

v

It follows from Jensen’s inequality, the Lipschitz property of I, (2.3) and the fact that I(-,eq) =0 on O
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that

InE e ¢2ecr An() 1 > R ZAL
=
> —cE _;Z(Xn(s) + X(Xn(s—), a0, AZ(s)), €o)
S, / [ 1) (X5, a0 2)e >ﬁ<dz>d]
> K / [ (5= + XX 50,2, o) = (X5 e >m<dz>d]
> —c//o sup | [ (dz)ds > oo

Then, there exists €y > 0 so that

Tn

E |:Bn(7'n)90 (Tan(Tn)) + Bn(s)f(Xn<5)vaO)d3 > ¢<tnvxn) + €o-

tn

For n large enough, this leads to a contradiction to the statement (3.6) of Theorem 3.1.
2. The proof is similar for (t9, zo) € [0,7) x O. Indeed, by a similar localization as above, we can restrict
to the case where X,, does not escape the domain O, expect possible by a jump, i.e. L¢(7,) = 0. It

follows that a contradiction can be obtained by exactly the same argument as step 1. by only assuming

i —L%p(to, — , < 0.
(a&l}ggw( ¢(to, zo) — f(z0,a))

When (tg,z) € {T'} x O, it follows from Proposition 3.1 and the fact that A; x & D Ar x &7 for all
t < T that v is lower-semicontinuous at the points of {T'} x O. This leads clearly to v, > g on {T} x O.
O

3.4.2 The sub-solution property.
Let (to, 7o) € [t,T] x O and ¢ € C*2([0,T] x O) such that

max(strict)[O,T]x@(v* — ) = (v" = p)(to,zo) = 0.

1. We first consider the case where (g, zo) € {T'} x 00.
We argue by contradiction and suppose that

min{r%ig?—lego(tmxo), (o — g)(to,z0)} =: 26 > 0.

Since A is compact, after replacing ¢ by (¢, ) — @(t,z) + T — t + ¢, with ¢ > 0 small, we can assume
that lirr% Opp(t,x) = —oo. Then, there exists § > 0 such that
t—

min{ min {-L%% — f(-,a)}, mln’H 0, p—g}>eon BN[T —6,T] x O, (3.19)
(a,e)EAXE

where B := [T —6,T) x B(xg,9).
It follows from the fact that v* — ¢ achieves a strict local maximum at (tg, o) and the fact that the

domain O is bounded that

sup(v* — ) =1 —n < 0, (3.20)
a:B
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where 0SB := [T — 6, T] x (B(z0,6)° N O) U{T} x B(xo,6).
Let (¢, 2n)n be a sequence in [0,T) x O converging to (tg,zo) such that

V(tp, xn) = v*(to, o) -
Obviously, we can assume that (t,,z,) € B. Fix (¢,a) € &, x A, and define
(Xnanaﬂn) = (th am,, L; amn’ﬁt mn)

together with 7, and 6, the first exit times of (s, X,,(s))s>t, and (X,,($))s>t, from B and O, respec-
tively.

Using It6’s Lemma and (3.19), we deduce that

E (B () (7, Xo(72)) 1{TW<T}] FE[B(T) (9(X(T)) + ) Lroery]
< pltman) - [/ B )as>ds}—E[/t:"eﬁn@)m(s)]
< oltman) -E[ [ 5n<s>f<xn<s>,as>ds}—E[eﬂnm)Lm)J.

in

This, together with (3.20), implies that

[Bn(Tn)[ } (Tna Xn(Tn))]
< so(tmm—xﬁ[ ﬁn<s>f<Xn<s>,as>ds]—E[(eAn)ﬂnm)}—E[eﬁnm)mﬂ.

[2%
Recalling that |p| < ¢ for some ¢ > 0, we deduce that

B8, (r)0 0] (e X)) < plti) | [ B (X (o))
—E[(e An)lr, <o, + 6_CL”(T")(€LZ(Tn) +ennls, e,

Then,
E ﬂn(Tn)[U*vg] (Tann(Tn)) + /Tn Bn(s)f(Xn(S)v O‘s)d5j| < @(tnvxn) - min{e, 7, VE[eicESST"AL(S)]}a
tn

where v := inf>q(e~*(ek+( A€)). Note that the same argument as in the proof of section 3.4.1 shows
that E[e~ < AL(3)] > k> 0, for some  independent on n and (.

Using the fact that lim, oo (v —¢)(tn, ) = 0 and (2.3), we may then find ' > 0, which is independent
on €, a and n, such that

W(tmsan) =1 > E | Bu(m) 0" 9] (Tn,xn(fn)w/;" B (8)F(Xn(s), as)ds |

for n large enough. This leads to a contradiction to (3.5) in Theorem 3.1.

2. The case where (tg,z9) € [0,T) x 9O can be treated similarly by similar argument as in previous
step, see (3.19). We can indeed use a localization in order to assume that 7,, < T — € for some € > 0.
Therefore, we do not need to compare the values of v* with g.

The case (tg,zo) € [0,T] x O is also treated similarly by using a localization argument as in step 2 of
the proof in section 3.4.1. O
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3.5 The comparison theorem.

We now prove a comparison result for By¢ > 0 and B_yp < 0 on [0,7] x O, which implies that v
is continuous on [0,7") x O, admits a continuous extension to [0,7] x O, and is the unique viscosity
super-solution (resp. sub-solution) of B¢ > 0 (resp. B_¢ < 0) on [0,T] x O.
We first introduce an equivalent definition of viscosity solutions, which eliminates the appearance of
test function in the integral associated to the measure of jumps. Let us denote by G, . the operator
from [0,7] x O x R x R? x M? to R parameterized by a smooth function ¢ as

Guelw, 0., Mip) = q+ (b(a,a),p) + f(z,0) + 5 Trace [o(r,a)o” (z, ) M]

+ [ e O (2) = pleli(a:)

so that
LYot z) + f(z,a) = Gae(z,0p(t,x), Do(t, ), D*p(t,2); (¢, ).

We also define Fy as the operator associated to B. by the implicit relation:

Fi(x7 (9,5(,0(75, .’13), D@(t Z‘), D2<p(t, J?); QO(L )) = Bi(p(tv 33)

Note that, for (a,e) € A x E, G, is a continuous function satisfying the elliptical condition, i.e. it is
non increasing with respect to M € M? and I. In view of Definition 4 in [1] and the fact that A and E

are compact, we can provide the following equivalent definition of viscosity solutions:

Definition 3.2 A lower semicontinuous (resp. upper semicontinuous ) function w on [0,T] x O is
a viscosity super-solution (resp. sub-solution ) of (3.17) if, for (to,z0) € [0,T] x O, (qo,po, My) €
75510(15,:5) (resp. ﬁgw(t,x)) and ¢ € CY2([0,T] x O) so that

(to, o) is a maximum (resp. minimum) point of w — ¢, w(ty,xo) = ¢(to, o),
and
qo = Oyp(to, x0), po = D(to, o), My > D*p(to, o) (resp. My < D*p(to,x0)),
we have
Fy (20,90, po, Mo;w(to,")) >0 ( resp. F_(zo,qo,po, Mo; w(to,-)) < 0).

See [7] for the standard notations PS and Pg.

Motivated by the comparison result of Proposition 3.4 in [4], we add some assumptions:

G3.
(i) There exists b > 0 such that

B(z — by(z,e),b) N O =0, for all (z,e) € 00 x E. (3.21)
(ii) There exists a C*(O) function h such that
(v(z,€), Dh(z)) > 1, for all x € O and e € E. (3.22)
(iii) For all x € 00, we have

elngW(m,e),v(z,ex» >0,

where &, € argmax{p(x,e): e € E}. Note that G3(iii) is weaker than the corresponding assumption

(3.17) in [4]. We now prove a comparison result:
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Theorem 3.3 Suppose that G3 holds. Let V (resp. U) be a lower-semicontinuous (resp. upper-
semicontinuous) locally bounded map on [0,T] x O. Assume that V is a viscosity supersolution of
Bip >0 0n[0,T] x O and U is a viscosity subsolution of B_p < 0 on [0,T] x O. Then, V > U on
[0,7] x O.

Proof. Fix x > 0 and set U(t,z) = e"U(t,z), V(t,z) = eV (t,z), f(t,z) = e f(t,x) and
g(t,x) := e"tg(z). Here, k is chosen such that

—f(,a) — L°H >0, for all (a,e) € Ax E, (3.23)
where H(t,z) = e~#t=h(),
We argue by contradiction, and therefore assume that

sup (U—V) > 0. (3.24)
[0,T1xO

It follows from the fact that the domain O is bounded that ®”7 := U — V — 2nH achieves its maximum
at (¢7,2") on [0,T] x O and satisfies

Q" (", x") =:m > 0, for n > 0 small enough . (3.25)

1. We first study the case U(t",z") > 0, up to a subsequence. We define the function ¥? on [0, 7] x O?
as

n ~
@Z(tvxay) = @(tvxvy) - |(E - x77|4 - ‘t - tn|2 - §|{E - y‘2 - P(xn’gn)U(tnvxn)<7(xn’§n)’x - y> )

where
@(t,x,y) = U(f,l‘) _V(t’y) —U(H(t,l‘)—f—H(t,y)) )

and ¢, € argmin{p(z",¢): e € E}.
Assume that U7 achieves its maximum at some (7,27, y7) € [0,T] x O2. The inequality W7 (¢, 27 y7)
> W (¢ 2" ") implies that

Ot znyn) = O,z ")+ p(z", e, U7, x")(v(z", e,), 27 — yp)

n? 9 =n
4 2 1N 2
e — 18— P + Sl — P
We deduce that the term on the second line is bounded in n so that, up to a subsequence, z],y! ——
_ _ n—o0o
" e O and t! —— 1" € [0,T] . Sending n — oo in the previous inequality and using the maximum
n—oo

property of ®7 at (", 2"), we obtain

0 > ONE,TT) — Bt ")

) n
limsup(|z? — z|* 4 [t7 — 712 + — |27 —y7|?) ,

Y]

This, together with (3.25), implies that
(a) z),yl —— 2" and t] —— ",
n—oo n—oo

n
(b) =@+ [t — 0 + S — g1 ——0,

(¢ OT(n

n’

@) = Vit yh) —— (0= V) ¢,27) = m+2H(E",27) > 0.
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In view of Ishii’s Lemma, see Theorem 8.3 in [7], we deduce that, for each A > 0, there are real

coefficients b7

7., by and symmetric matrices X7-* and Y7* such that

(b’f,n,pz,é\fg”)‘) € 75:95[?(75" x!)  and (—bg,n,qz,y;”h) € 755‘7(752,342),

where

ph = Al — 2P (] - 2") + () - yl) + p(a", e U 2"y (2", e,) + nDH(t), 7))

gn = n(x) —yn)+pla", e, U, x")y(z", e,) —nDH(t),y)
by ., b3, X7 and VI satisfy

b;],n +bg,n = Q(tz _tn) — KN (H(thxZ) +H(t?r7wy2))
X0 0 (3.26)
K < (A7 4 B) + X4} + B))?
( s ) < | Y )

with

Al =1 DEH(E,a7) , 0 L e e ) 0
0 D2H(t],y7)

I I
Bl :=n ,
-1 I

and [ stands for the identical matrix with dimension d x d.

1.1. We first suppose that, up to a subsequence, z] € 90O for all n. Fix e € E. It follows from (3.21)
that
|z — by(a), e) —yn|? > b

Since |y| = 1, this implies that
2(y(a7), ),y — @) < —b7 'yl — 4. (3.27)

Since x]] —— z", we have
n— oo

p(xz7 6>U(tz7 :L‘Z) - (7(9417 e)7p7771>
= (p(a",e) = p(a”,e,))U",a") + p(a”, e, ) U, 2")(1 = (y(2",€),7 (2", e,)))
+n(y(@],e),y — ap) +n(y(x),e), Dh(@h) H(th, o) + A,

where )\, is independent on e and comes to 0 when n — oco. This, together with (3.22), (b), (3.27) and
the fact that (y(z",e),v(z",¢,)) < 1 since |y| < 1, implies that
HE(a?, U (7, 27),p7) > nH(t",2") > 0,

n

when n is large enough.

Using similar argument as above, if, up to a subsequence, y;! € 00, we then have
HEn (y!, V(£ y"), q") < —nH(t",2") < 0, for all e € E,
when n is large enough.
1.2. We now suppose that, up to a subsequence, ¢! = T, for all n > 1. In view of step 1.1, we have

U(T,z7) < §(T,z") and V(T,y?) > §(T,y"), for all n > 1. Then, passing to the limit, recalling (a)
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and the fact that g is continuous, it implies that U(T,z") < §(T,z") < V(T,z"). This leads to a

contradiction of (c).

1.3. It follows from 1.1 and 1.2 that (7,27, y7) € [0,T) x O? for all n, after possibly passing to a

subsequence. Then, there exists (a]l,el),>1 C A x E such that

1
0 > wUL,2p) =01, — bz}, al),p}) — iTrace [o(2], al)o* (]! a”)Xg’A]

n?’ n n»-'n n»'n n»'n

- [<> 'L(‘"‘%U(tz,vrzié’ez(z))U(tz,xm] (dz) — Fal,al)

N 1
0 < wV(thyl) +07, — (b al) i) — 5 Trace [o(y, al)o™ (yll, i) V1]

n

[ e Ot ) - Vel ae) - Foa.
R

It follows from (b), (3.26) and the Lipchitz continuity of our coefficients that

RO, 2) =Vt y0) = 2nH (A", 2")] + 20 f (2", a]) + L H (", 27)] + C(n, \)

—p(z,e; ln;'ez Z2) (/7 -~ all el o o ~
< / d [ P ONT — V= mE) (0,708 () — (U~ V = 20H) (7, y")] | fild2),
R
where C'(n, A) goes to 0 when A — 0 and then n — oo. This, together with the fact that
(U—-V —=2nH) < (U—-V —=2nH)(t",2") =m > 0,

and p,l > 0, implies that

RO, 2) =Vt y)) = 2nH (7, 2")] < =2q[f(@", a}}) + L2 H(#",2")] + C(n, A).

n»'n N

Finally, using (c) and (3.23), we deduce by sending A — 0 and then n — oo that
km <0,
which is the required contradiction.

2. The case where U(t",2") < 0, up to a subsequence, is treated similarly. The difference comes from

the test function which is chosen as follows

n ~_ o~ -
‘I/Z(t,:c,y) = @(t,ﬂj,y) - ‘:E - xn‘4 - |t - t7I|2 - §|‘T - y‘Q - bn lp(x",en)U(t",z")(*y(x",en),x - y> 5
where €, = €zn, l~)7, and ¢, € E satisfy

min(y(a”, e),7(2", &)) = (v(a”, &), 7(z", &) = by > 0.

Those variables are well defined, when the condition (iii) of assumption G3 holds. Then, if, up to a
subsequence, ]! € 00O for all n, we have

p(x?u e)U(t27 :EZ) -

(y(z3},€),pi})
= (p(a",e) = p(a",e,))U(t",a") + p(a”, &)U (", 2")(1 = b, ' (y(2", €),7(2", &))))
+ (@l e)yl = al) +n(y(@h, e), Dh(al)) H(t], 2}) + A,

where A, goes to 0 as n — oo. This, together with (a), (b), (3.22) and (3.27), implies that

H (@, U (), 2), pl) > nH(t,27) > 0,

n’ n

when n is large enough. The other cases are treated similarly as in step 1 above. a
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