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Large Bandit GamesAntoine SalomonAbstratWe study a multi-player one-arm bandit game: for in�nitely many stages, playershoose between playing a risky ation or dropping out irreversibly to a safe ation. Eahplayer observe his payo�s and other players' ations only. We study equilibria of thegame when the number of players gets large. We argue that limit equilibrium an exhibitaggregate randomness, and provide a haraterization of games where players behaviourslead to a swift determination of the value of the risky ation.KEYWORDS: one-arm bandit, large games, deterministi equilibria, soial learning.IntrodutionIn this paper, we study situations where many agents fae a dilemma between exploiting aknown pro�table investment and experimenting others with unknown values. Bandit modelsprovide a good way to deal with this problem: eah player faes a one-arm bandit mahine(or equivalently a two-arm bandit with a safe and a risky arm) whih he sequentially deidesto (or not to) operate. When the risky arm is pulled, the player gets a payo� from whih hean learn about the pro�tability of its mahine. Usually a mahine is one of two types, sayHigh and Low, that the player does not know. When the type is High, the expeted value ofthe risky ation is positive, and negative when the type is Low. So the player has to hoose ifhe stops experimentation, and when: not too early to have time to detet the High state andnot too late to avoid ostly bets. Gittings [11℄ �rst desribed the optimal strategy in a basisituation where a single player hooses sequentially between a safe and a risky ation (seealso Ferguson [10℄). Models with a single player and a multi-arm bandit have also spawnedmany publiations (e.g. Brezzi and Lai [5℄). In a multi-player game, the situation is trikier: aplayer may be able to wath others' deisions and/or payo�s, whih is another way to get infor-mation when the types of the risky arms are orrelated. The model we onsider is one of them.Let us now desribe some relevant onepts usually assoiated with multi-player bandit games.A strategi e�et of bandit games is free-riding. Players may have an inentive to take ad-vantage of other agents' experimentation without taking risks themselves (see Bolton andHarris [4℄ and Keller, Rady and Kripps [12℄). This brings some intriaies in the desriptionof equilibria, and it a�ets their soial e�ieny. As we do not want to fous on free-ridingwe assume that the deision to swith to a safe ation is irreversible.Moreover, the fat that there are many players may enable to gather a better amount ofinformation. As the number of players is growing, this ould even asymptotially leads to afull learning of the state. As a onsequene, the players would eventually all play the sameation, whih has proven to be the best. Consequently our subjet is linked to herding , whihis not restrited to bandit games (see Banarjee [2℄ and Aoyagi [1℄). In this ase of perfet1



learning, we an also wonder if it bene�ts to a large proportion of players, and if the state isrevealed fast. This issue usually depends on two parameters. On the one hand, if the ost ofexperimentation is big, it may enourage players to take risks and shorten the learning period.On the other hand, when the number of players gets large, it inreases soures of informationand it may speed learning up as well. For example, C. Chamley and D. Gale [8℄ studied thein�uene of the number of players and of the disount rate on herding and delay in a modelof investment.In this paper, we study the ase where the number of players gets large.This situation is often modelled in the literature by a ontinuum of players (see, e.g. Caplinand Leahy [7℄, Bergemann and Välimäki [3℄, and Camargo [6℄). In this setting, an individ-ual player an not reveal anything and only massive ations indiate relevant information.Eah player get a piee of information, whih a�ets their deisions, so that the proportionof players who take a given option is a feature of the state of the nature. For instane, theequilibria onsidered in [7℄ are depited as follows: at some point a proportion of agents is ledto leave the market, and this reveals the state to the others. The interest for these modelsis justi�ed in so far as a large number of players is expeted to be asymptotially equivalentto a ontinuum setting. As an example, in Rosenberg, Solan and Vielle [14℄, the number ofplayers is �nite but when it gets large we also observe a revealing fration of exit.Nevertheless, the limit aggregate behaviour of a large game is not always similar to player on-tinuum situation. In [14℄, the model assumes that some payo�s make players so pessimistiafter one stage that exiting is the dominant strategy. That is why, when the number of play-ers gets large, a massive departure is observed. Without this assumption, players ould betempted to delay their exit or to leave far more sarely, so that limit aggregate behaviourdisplays randomness and is not perfetly orrelated to the state of the nature. In a study thatis related to our, P. Murto and J. Välimäki [13℄ study this randomness and the proess oflearning. They show that when the number of players is large and when the period is short,information aggregates smoothly by several random wave of exits. In their model, a player iseither informed (i.e. he has reeived the positive signal that tells his that his state is High) oruninformed (i.e. he did not get the positive signal).Our model is lose to [14℄: eah of a large number of players operates in disrete time a one-arm bandit mahine, they observe eah others' ations but not eah others' payo�s. The onlyway players an get information is from their own payo�s and from wathing others' deisions.Exept from one tehnial assumption, the distribution of payo�s is general, so that learningis not monotoni as in [13℄.Here are the main assumptions of our model.First, the state of the mahines are perfetly orrelated: either they are all in the "High" state,either they are all "Low". This means that all the mahine shares a ommon distribution ofpayo�, the expetation of whih is positive in the High state and negative in the Low state.Seond, onditionally to the state, payo�s are drawn independently aross players and arossstages. Finally and as mentioned before, the deision to stop experimentation is irreversible.Our laim is that an alternative exists onerning asymptoti equilibria.For some equilibria, players wait until a fration of them gets too bad news and is fored toleave. Thus the state is revealed to the remaining players. This ase is similar to models witha ontinuum of players, as the limit aggregate behaviour does not show unertainty. This is2



also related to herding: exept for the �rst leaving players, all players will at the same. Theirdeisions are based on others' behaviours rather than on their private information, but thisalways leads to the best ation anyway.We will all these equilibria Asymptotially Deterministi. We provide onditions for theirexistene, whih are the inequalities that make sure that a non negligible part of the playersexits at a given stage and that all players are optimisti enough to wait for this revealingstage. In partiular, these inequalities an be viewed as onditions for existene of equilibriain a ontinuum of players setting.For all other asymptoti equilibria, the limit aggregate behaviour exhibits randomness. Atsome stage of the game, some of the most pessimisti players will leave but the number ofexits is unertain, as it is not perfetly orrelated to the type of the mahines. This situationis due to the fat there are not enough players willing to reveal a good piee of their privateinformation. Indeed, we will show that the average number of exits is bounded w.r.t to thenumber of players involved in the game. In partiular, if the equilibrium is symmetri the lawof this number is asymptotially equivalent to a Poisson distribution. As a onsequene, thislimit ase annot be modelled by a ontinuum of players.The paper is organized as follows. In the �rst setion, our model is desribed and the mainresults are presented. Then, we give the main leads of their proofs. The third setion isdevoted to the omplete proofs.1 Model and results1.1 ModelEah of N players sequentially operates a one-arm bandit mahine. They have to deide whento stop, this deision being irreversible and yielding a payo� normalized to zero. At any stage
n ≥ 1, eah player i:1. deides to drop out irreversibly or to stay in,2. observes own payo� Xi

n,3. observes who stayed in.The mahines have a ommon payo� distribution, whih an be one of two possible types:High or Low. This type is a random variable, denoted Θ and stands for the state of theworld. Players are not informed of the value of Θ but they share a ommon prior p0 whihis the probability of the state being High. We assume that, onditional on Θ, the payo�s
(Xi

n)n≥1,i∈{1,...,N} are i.i.d.
θ (resp. θ) stands for the expeted stage payo� of a mahine of type High (resp. Low) andis w.l.o.g. identi�ed with this type. To avoid trivial ases, we assume that θ < 0 < θ.Players disount payo�s at a ommon rate δ ∈ (0, 1) so that the overall payo� of player i is
∑τi

k=1 δ
k−1Xi

k, where τi is the last stage where player i deides to stay in (possibly +∞).Lastly, we denote by Pθ the onditional probability given Θ = θ (θ ∈ {θ, θ}).
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Remarks
• Payo�s are private information, but deisions are publily observed. Thus the only waya player an learn the state is thanks to his own payo�s on the one hand, and to others'players deisions on the other hand. If payo�s were publily dislosed, the study of thelarge game (i.e. N → +∞) would be simple: there would be a full learning of the stateafter the �rst stage.
• Exept for one tehnial assumption whih will be detailed below, this model is generalin terms of information dislosure. For example, it ould be that some payo�s are badin term of pro�t but are at the same time good news, i.e. they show that the state islikely to be High.
• The fat that all the mahines are either all of type High, either all of type Low is relatedas perfet positive orrelation. It implies for example that good news for one player isgood news for the others.
• Lastly, the fat that dropping out is irreversible forbids any player to get bak to exper-iment if they stopped it before. This will enable us to have a simple haraterizationof equilibria. Without this assumption, the study would be trikier notably beause offree-riding.1.2 Cuto� StrategiesWe want to study equilibria when N is large. Let us �rst reall a general result haraterizingequilibria for any N .To make a deision, a player i may take into aount his past payo�s, whih partially dislosethe state. To this aim, he an ompute his Private Belief, denoted pin:

pin = P(Θ = θ|Xi
n, ...,X

i
1).This is the probability that player i assigns to state High aording to his own payo�s, re-gardless of others players' ations (as if he were alone).Assuming he knows the others players' strategies, player i also knows how to aount for otherplayers' deisions. Let us set the r.v. α

j,N
n , whih gives the status of player j at stage n inthe N player game, as follows: αj,N

n = N if player j still ative, αj,N
n = m if j left at stage m(m ≤ n). One an sum up the status of all players (exept i) in a random vetor ~α−i,N

n whoseoordinates are the r.v. α
j,N
n (j 6= i). We will denote ~N the vetor suh that all oordinatesare N. Moreover, a signi�ant parameter of the N player game is the number of departuresbefore the end of stage n, and we will denote it k(N)

n , i.e. k(N)
n = #{j ∈ {1, ..., N}|αj,N

n 6= N}.Now, player i an play as follows: at eah stage, he omputes pin and deides to stay only if itis above a given ut-o� whih depends on n and on the status of the other players ~α−i,N
n .We de�ne uto� strategies as a sequene (πi,N

n (~tn)) with values in [0, 1] indexed by the stages
n ≥ 1 and by ~tn, the possible vetors of status at stage n. Player i plays the strategy if hestops at stage inf{n ≥ 1 : pin−1 < πi

n−1(~α
−i,N
n−1 )}.
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pinFigure 1: Progress of the game in uto� strategy.Beware the notations that an be bit deeptive, beause the deision at stage n rely on privatebelief pin−1.These strategies were introdued in [14℄. Their study of equilibria is based on the 2-playergame but their results are easily generalized for the game with any number of players. Theirresults also suppose the following assumption.Assumption A. The private belief pi1 has a density w.r.t. the Lebesgue Measure.This implies that the law of pin is ontinuous for any n ≥ 1 (see setion 3.1.1). This is a wayto rule out mixed strategy and to simplify the desription of equilibria: if pi1 had atoms, someplayers ould have the same belief at the same time and there would not exist equilibrium ifthey did not mix their strategy. Our results are based on this assumption as well.Under A, there exists symmetri equilibria, and all equilibria are in uto� strategies. That iswhy a sequene of equilibria indexed by the number of players N will be sometimes referredto by the orresponding sequene of uto�s (πi,N
n (~tn)

).Another onsequene of A is that pin has the same support under Pθ and Pθ: if not, it wouldmean that, with positive probability, pin has a value that is harateristi of the state. So thestate ould be revealed and this value would be either 0 or 1. Consequently we would have
P(p1n = 0) > 0 or P(p1n = 1) > 0, whih ontradits the fat that pin has a density.Now we will study the asymptoti equilibria when N → +∞. As we will see, there are mainlytwo types of asymptoti equilibria.1.3 Asymptotially Deterministi Equilibrium1.3.1 Introduing exampleD.Rosenberg, E.Solan and N.Vieille [14℄ study limit equilibrium play as N → +∞ in a parti-ular ase. In this setting the support of pi1 is [0, 1] and asymptoti equilibria an be fully andintuitively desribed. Basially, this full support assumption makes sure that some playerswill be so pessimisti after the �rst stage that they will leave, whih enable the other playersto learn the state.To understand the desription, we need to introdue the uto� p∗, de�ned by the followingequation:

p∗θ

1− δ
+ (1− p∗)θ = 0.This is the uto� that makes a player indi�erent between staying and leaving when he is sureto learn the state at the following stage: leaving yields a payo� of zero, whereas staying yieldsone payo� of expetation θ in the Low state and payo�s of expetation θ for all the remaining5



stages in the High state. Consequently if a player has a belief below p∗, he has to leave be-ause even if he were to learn the state afterwards, he will still not get a positive expetation.Conversely, if a player has a belief over p∗ and if he is going to learn the state at the followingstage, he has to stay.Now let us desribe the equilibria of large games when pi1 has full support. After the �rstpayo�, a fration of players have a belief under p∗ and is then obliged to drop out. Thisfration depends on the state of the world, as players get on average more bad news in theLow state than in the High state. When the number of players is large, this reveals the stateby the Law of Large Numbers. Thus players who have a belief above p∗ after the �rst payo�an a�ord to stay for one more stage as the number of departures will show them the state.Therefore players tends to play with uto� p∗.In this paper we do not assume that pi1 has full support anymore. We set Fn,θ as the .d.f. of
pin under Pθ, and we de�ne πn as the worst possible belief at stage n:

πn = inf{π ∈ [0, 1] : Fn,θ(π) > 0}.Note that πn does not depend on θ, beause pin has the same support under Pθ and Pθ.First asual intuition suggests that learning is only delayed and the equilibria will still bedeterministi: players will remain ative until a fration of them gets too bad news, leaves,and thus reveals the state to the others. Let us de�ne preisely this kind of asymptoti play.1.3.2 De�nitionA sequene of equilibria will be alled Asymptotially Deterministi if, as the number of playersgets large, the play is roughly always the same: players all experiment for a given number ofstages, then some of them leaves, and then all players left play in aordane to the state.De�nition 1. A sequene of equilibria indexed by the number of players N for whih eahgame is set is an Asymptotially Deterministi with delay n ≥ 1 if:
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1.Suh a sequene will also be alled an Asymptotially Deterministi Equilibrium (ADE).The idea is that the number k(N)
n of departures at stage n reveals the state to the remainingplayers, who then all leave in the Low state and all stay forever in the High state.Note that n = 1 is a possible value of the delay, but this situation basially means that no-body enters the game, and this does not make a determination of the state possible. Indeed,this would mean that in the Low state, every player drop out at the very beginning of thegame, before getting any information. Consequently their deisions do not depend on theirprivate payo�s, or a fortiori on the state, and the players all leave in the High state as well.In setion 1.5, this situation will not be onsidered as an ADE.6



1.3.3 ResultsThe following theorem gives neessary onditions and su�ient onditions for existene of anADE with delay n.First, a fration of players leave at stage n and this reveals the state to the others. Conse-quently, the most pessimisti belief is below p∗. If not, any leaving player would have betterstay ative one more stage as he would learn the state and thus get a positive average payo�.Moreover, this guarantees that a non negligible fration of players, whose belief is below p∗,does leave at stage n. So we have a �rst ondition.Seond, nobody leaves before stage n. So we have to ensure that, at any stage m < n, eventhe most pessimisti player is willing to stay in. Suh a player's belief is πm−1. He expets toget an average payo� of πm−1θ + (1− πm−1)θ for n−m stages before some players leave. Atstage n he will leave only if his belief is below p∗. If he stays he learns the state by lookingat the number of departures, so that he remains ative forever if the state is High, and leavesif the state is Low. The expeted payo� of this strategy must be positive for this player (sayplayer i) to be right to remain ative at stage n, as laimed in the following inequality:
(1 + δ + ...+ δn−m−1)

(
πm−1θ + (1− πm−1)θ

)

+δn−m

(

πm−1

θ

1− δ
Pθ(p

i
n−1 > p∗|pim−1 = πm−1)

+(1− πm−1)θPθ(p
i
n−1 > p∗|pim−1 = πm−1)

)

> 0. (Im)We also denote by (Ĩm) the orresponding large inequality.Theorem 1.1. If πn−1 < p∗ and if inequalities (I1), (I2),..., (In−1) hold, then there exists anADE.Conversely if there exist an ADE, then πn−1 ≤ p∗ and inequalities (Ĩ1), (Ĩ2),..., (Ĩn−1) hold.In partiular, the delay n is the �rst stage suh that πn−1 ≤ p∗.This theorem enables us to know when there exists an ADE: as we will see in some examples(Setion 1.5) and in orollary 1.2 below, this depends on the settings of the game (i.e. δ, p0,
fθ, fθ). One an show that inequalities (Ĩm) and πn−1 < p∗ are the neessary and su�ientonditions for the existene of an equilibrium in the same game but with a ontinuum ofplayers. Our theorem is then similar to the results of A. Caplin and J. Leahy [7℄.If inequalities (Ĩm) and πn−1 ≤ p∗ hold with at least an equality, the existene of an ADE isunertain. For example if (Ĩm) is an equality, two phenomenons ompete when N is gettinglarge: on the one hand the fat that there are more players may reveal the state at stage nwith better auray; on the other hand, more and more players may have ritial bad news atstagem and this ould entail a signi�ant number of exits before stage n. The balane betweenthis two phenomenons is linked with the equivalent of x 7→ P(pim−1 ≤ x) in a neighbourhoodof πm−1.Corollary 1.2. • For any n ≥ 2, there exists settings of the game for whih there existsan ADE with delay n.

• There exists settings of the game for whih there is no ADE.7



Thus there are more asymptoti equilibria than equilibria in the ontinuum of player game.Moreover even if an ADE exists, it is not neessarily the unique asymptoti equilibrium. Wehave a uniqueness result though but, ontrary to theorem 1.1, its hypothesis does not onlyrely on onditions on the settings of the game.Proposition 1.3. If (ΦN ) is a sequene of equilibria suh that P(k
(N)
n−1 = 0) −−−−−→

N→+∞
0 and if

πn−1 < p∗, then (ΦN ) is an ADE with delay n.This result takes up the same ideas as before: players wait for stage n, then a fration of themgets a belief below p∗ and reveals it by leaving, whih enables the others to learn the state.The following setion desribes what happens when limit equilibrium play is not deterministiand exhibits randomness.1.4 Other asymptoti equilibria and Poisson aggregate behaviourLet us �rst deal with symmetri equilibria. If a sequene of equilibria is not A.D. and if playersdelay their departures until stage n, then they limit themselves to only a few exits for thestate not to be revealed at one. The distribution of this number of exits is asymptotially aPoissonian, the parameter of whih depends on the state.Theorem 1.4. Let (ΦN )N≥1 be a sequene of symmetri equilibria. Assume that there existsa delay, i.e. a stage n suh that:
P(k

(N)
n−1 = 0) −−−−−→

N→+∞
1 and lim sup

N→+∞
P(k(N)

n = 0) < 1,and assume also that πn−1 > p∗.Then there exists two bounded sequenes (λθ,N )N≥1 and (λθ,N )N≥1, with (λθ,N)N≥1 boundedaway from zero suh that:
∀θ ∈ {θ, θ}, Pθ(k

(N)
n = k|k

(N)
n−1 = 0) ∼

N→+∞
e−λθ,N

(λθ,N )k

k!
.Note that the result still holds for a subsequene (i.e. for a sequene (Φϕ(N)

)

N≥1
, where

ϕ : N → N is a non-dereasing funtion). Thus the ondition of existene of a delay is notreally binding, beause any sequene of equilibria an be divided into subsequenes for whihthere exists a delay.What strikes most is that the average number of exits at stage n stands bounded no matter howlarge the number of players N an be. This extents to non symmetri equilibria, as expressedin the following proposition whih an be viewed as an alternative result of propostion 1.3.Proposition 1.5. If (ΦN ) is a sequene of equilibria suh that P(k
(N)
n−1 = 0) −−−−−→

N→+∞
1 and if

πn−1 > p∗, then the sequene (Eθ[k
(N)
n |k

(N)
n−1 = 0]

)

N≥1
is bounded.Nevertheless it is not sure that we will always observe a Poisson distribution. For example,it ould be that only a given group of players (say player 1 to player n0, where n0 does notdepend on N) may leave at stage n. Every other player may a�ord to stay one more stage8



beause this would enable them to learn the useful information left by this group.To omplete our study, let us omment the ase of a sequene of equilibria (ΦN ) suh that
P(k

(N)
n−1 = 0) −−−−−→

N→+∞
1 and if πn−1 = p∗. This limit ase does not entirely �t our alternative,and what we observe in this ase is a sort of weak ADE. The number of exits Eθ[k

(N)
n |k

(N)
n−1 = 0]tends to +∞ and this enables the players to disern the state, but the number of exits an beless than order N and the revelation is not as lear as in an ADE. One an show that:

• ∀i ≥ 1, Pθ(α
i,N
n+1 = N) −−−−−→

N→+∞
0

• ∀i ≥ 1, ∀l ≥ n, Pθ(α
i,N
n = α

i,N
l ) −−−−−→

N→+∞
1.This is muh weaker than in our de�nition of ADE.As a onlusion, the senario desribed in our introduing example (setion 1.3.1) is notgeneral. If we do not assume that players an be arbitrarily pessimisti after the �rst stage,the senario is either delayed and still deterministi, either ompletely di�erent: in partiularthe proess of learning exhibits randomness.1.5 ExamplesAs an illustration of previous results, we would like to know when there exists ADE and tosee how the parameters of the game a�et this existene. We all the delay (and denote it

n) the stage when �rst players exit. In the ase of ADE, n is the smallest integer suh that
πn−1 < p∗.The setting is the following : the distribution of the Xi

n+1 is exponential, with parameters λθif the state is High, and λθ if the state is Low. To avoid trivial ase, we must have λθ > 1 > λθ,as Eθ[X
i
n] =

1
λθ

− 1.On Figures 2, 3 and 4, x-axis is the prior p0 and y-axis is the disount rate δ. The olorshading from left to right shows the inrease of the delay n, exept for darkest zones whihare the values of p0 and δ for whih there an not be ADE.
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Figure 2: λθ = 1.1, λθ = 0.9
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Figure 3: λθ = 1.5, λθ = 0.9.

11



0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4: λθ = 1.1, λθ = 0.5With a delay of n = 1, we have p0 < p∗ and no player an a�ord to enter the game. Thissituation (an ADE with delay n = 1) is not onsidered as an ADE here (left of the �gures).The other possible values of n are bordered by urves πk = p∗, k = 0, 1, 2, ....For given values of λθ and λθ, an inrease of λθ (whih is equivalent to a derease of θ) thereare less possible ADE (see Fig. 2 and Fig. 3). Even if the delay is shorter (for given values of
p0 and δ), it that seems players an not wait for the revelation. Indeed, their average payo�sbefore the revelation is not high enough.On the ontrary, a derease λθ is an inentive for players to wait to learn the state. Thus, inthe partiular ase of Fig. 4, there always exists ADE.Similarly, an inrease of δ seems to at as an inentive to wait, beause after the revelationthe reward is higher when in the High state. Indeed there always exists ADE if δ is lose to 1.Lastly, when δ goes to 0, the game beomes basi beause only the following stage is signif-iant. Thus strategies are straightforward: when it beomes possible that some players areobliged to quit beause they do not expet a positive reward for the next stage, they leave andtheir departures reveals the state to the others. Consequently there are more ADE in this ase.

12



2 Sketh of the proofsWe want to show that, exept for some limit ases, asymptoti equilibria are either determin-isti (when the onditions of existene of theorem 1.1 apply), or the state is not revealed when�rst players leave and in this ase the average number of exits is bounded w.r.t to N (as intheorem 1.4 and 1.2).More preisely, we are interested in any sequene of equilibria (ΦN )N≥1 for whih we ande�ne a delay n, whih is asymptotially the �rst stage where some players ould deide toleave:
P(k

(N)
n−1 = 0) −−−−−→

N→+∞
1 and lim sup

N→+∞
P(k(N)

n = 0) < 1.Remember that any sequene of equilibria an be divided into subsequenes for whih we ande�ne a delay. What we are going to explain still hold for subsequenes.Note also that when N is large, all players always remain ative before stage n and we annot derive any information from their behaviour. That is why player i's belief over the stateat any stage m < n is assumed to be equal to his private belief pim.Let us denote n0 = min{m ≥ 1|πm ≤ p∗}. To avoid a limit ase, we assume that πn0
< p∗.Stage n0+1 is then the maximum value of the delay n. Indeed if we had n > n0+1, it wouldimply that P(k

(N)
n0+1 = 0) −−−−−→

N→+∞
1. Thus, for N large enough, every player would deide toremain at stage n0 + 1, whereas a non negligible fration of them would have a belief below

p∗.What we will see is that the behaviour of the players is di�erent whether n = n0 + 1 or
n < n0 + 1. In the �rst ase, players stay ative until a fration of them gets a belief below
p∗ and leaves, whih enable other players to learn the state. In the seond ase, the �rstdepartures happen before any player an get a belief below p∗. There an not be too manyexits: if not this would give relevant information about the state and staying would be adominant strategy for any player, as all of them has a belief greater than p∗.2.1 n = n0 + 1: the Asymptotially Deterministi aseFirst, let us study the asymptoti equilibrium when n = n0 + 1.In this ase, players wait at least until stage n0+1 before dropping out. Then a non negligiblepart of them gets a belief below p∗, and is obliged to drop out. Thus there is a signi�antfration of players who leave at stage n0 + 1. As players get on average better news in theHigh state than in the Low state, this fration depends on the state.On the other hand, players who deide to remain ative after stage n0 + 1 an observe thisfration and learn the state very aurately when N is large. So if player i deides to stay, hewill get a n0+1-th payo� (the expetation of whih is pin0

θ+(1− pin0
)θ), and then by lookingat the fration of exits he will be able to play in aordane to the state: stay forever if it isHigh and drop out if it is Low. On average, player i's asymptoti ontinuation payo� is then:

pin0
θ + (1− pin0

)θ + δ

(

pin0

θ

1− δ
+ (1− pin0

)0

)

=
pin0

θ

1− δ
+ (1− pin0

)θ.Therefore, by de�nition of p∗, if pin0
> p∗ this payo� is non-negative and player i will not dropout. 13



This disussion enables us to onlude that players tend to play with uto� p∗ at stage n0+1.Now let us see on what onditions this strategi pro�le is an asymptoti equilibrium.We onsider the deision of player i at stage m ∈ {1, ..., n0}. If he follows the strategy pro�ledesribed above, he is going to get n0−m+1 payo�s, then at stage n he will remain ative if
pin > p∗, and then he will play in aordane to the state. The average payo� of this strategyis:

(1 + δ + ...+ δn−m−1)
(
pim−1θ + (1− pim−1)θ

)

+δn−m

(

pim−1

θ

1− δ
Pθ(p

i
n−1 > p∗|pim−1) + (1− pim−1)θPθ(p

i
n−1 > p∗|pim−1)

)

.This payo� has to be positive. If not this strategy would not be optimal beause player iwould have better leave, whih yields a ontinuation payo� of 0. This even has to be positivefor all players in any ase. Consequently, this payo� is still positive for a player who got theworst news from his private payo�s, i.e. whose private belief is πm−1. That gives us inequality
(Ĩm):

(1 + δ + ...+ δn−m−1)
(
πm−1θ + (1− πm−1)θ

)

+δn−m

(

πm−1

θ

1− δ
Pθ(p

i
n−1 > p∗|pim−1 = πm−1)

+(1− πm−1)θPθ(p
i
n−1 > p∗|pim−1 = πm−1)

)

≥ 0.Conversely if strit inequality (Im) hold for any m ∈ {1, ..., n0} and if N is large enough, ourstrategi pro�le is an equilibrium. Indeed, any player at any stage m ∈ {1, ..., n0} an expeta non negative payo� if he stays, whereas leaving would give him 0. Then at stage n eahplayer plays with uto� p∗ whih, as explained before, is the optimal strategy.2.2 n < n0 + 1: the average number of exits is boundedNow, let us onsider the ase n < n0 + 1.This ondition is equivalent to πn−1 > p∗, and in this situation the asymptoti proportion ofleaving players at stage n is either 0 or 1. Indeed if the fration were in-between, it woulddepend on the state beause players averagely get worse beliefs in the Low state. Then, asexplained in the former ase, any player who deides to leave at stage n should deviate andstay, beause staying would enable him to wath the fration of exits, and thus he ould learnthe state and reat aordingly. This strategy would yield a positive payo� beause privatebeliefs are greater than p∗.In fat the fration of exits an not be 1 either. Indeed, the ondition P(k
(N)
n−1 = 0) −−−−−→

N→+∞
1means that, asymptotially, every players have planned to stay until the end of stage n − 1,and being that optimisti is not onsistent with dropping out for sure at the next stage.Thus there are few exits at stage n. We denote by λθ,N and λθ,N the average number ofleaving players at stage n, in the N -player equilibrium ΦN , respetively in the High and inthe Low state:

λθ,N = Eθ[k
(N)
n |k

(N)
n−1 = 0], λθ,N = Eθ[k

(N)
n |k

(N)
n−1 = 0].14



What we have showed is that λ
θ,N

N and λθ,N

N go to zero as N goes to +∞. In fat λθ,N and
λθ,N are bounded w.r.t. to N beause too many exits would still enable ative players tohave a good guess on the state if N is large enough. λθ,N is also bounded away from zero:by de�nition of the delay n some players are likely to leave the game at stage n (that is theondition lim sup

N→+∞
P(k

(N)
n = 0) < 1), and there are more exits in the Low state than in theHigh state.Now let us onsider the ase of symmetri equilibria. As players all play the same strategy,the probability to leave at stage n for eah of them is λθ,N

N
, whih depends on the state(θ ∈ {θ, θ}). At stage n the deision only depends on private payo�s, whih are independentaross players onditionally to the state. Therefore the number of exits k

(N)
n is the sum of

N independent Bernoulli r.v. with the same parameter λθ,N

N . So the distribution of k(N)
n is abinomial, whih is usually equivalent to a Poisson distribution when N is large:

∀θ ∈ {θ, θ}, Pθ(k
(N)
n = k|k

(N)
n−1 = 0) ∼

N→+∞
e−λθ,N

λk
θ,N

k!
.Let us sum up our two ases: we have an alternative between a massive and deterministidropping out of a fration of players (if πn−1 < p∗), and a bounded average number of exits(if πn−1 > p∗). In the �rst ase we have established that some inequalities must hold for thissituation to be an equilibrium. That is the ontent of theorem 1.1, 1.4 and 1.5.3 Proofs3.1 Preliminary resultsThe proof of the main theorems requires some preliminary results that are given in the presentsetion.3.1.1 BeliefsLet us give a more detailed presentation of beliefs.As pi1 has a density, the payo�s Xi

1 have a density fθ under Pθ.By means of Bayes rule, we then have an expliit formula:
pin

1− pin
=

p0

1− p0

fθ(X
i
1)

fθ(X
i
1)

· · ·
fθ(X

i
m)

fθ(Xi
m)

· · ·
fθ(X

i
n)

fθ(Xi
n)

,and in partiular we have
pin

1− pin
=

pim
1− pim

fθ(X
i
m+1)

fθ(X
i
m+1)

· · ·
fθ(X

i
n)

fθ(Xi
n)

. (1)Now assume that others' strategy pro�le is �xed.All the information gathered by player i at stage n is then given by his Posterior Belief,denoted qin:
qin = P(Θ = θ|Xi

n, ...,X
i
1, ~α

−i,N
n ).15



Similarly, we have the following formula by Bayes rules:
qin

1− qin
=

pin
1− pin

Pθ(~α
−i,N
n = ~α)

Pθ(~α
−i,N
n = ~α)

,whenever ~α−i,N
n = ~α.We will often debate the ase of every player remaining ative until a ertain stage n as

N is getting large, i.e. P(k
(N)
n = 0) −−−−−→

N→+∞
1. The number of departure observed byplayer i is k

−i,N
n , de�ned as #

{

j ∈ {1, · · · , N}\{i}|αj,N
n 6= N

} . As k
−i,N
n ≤ k

(N)
n , we have

P(k−i,N
n = 0) −−−−−→

N→+∞
1, and beauseP(k−i,N

n = 0) = p0Pθ(k
−i,N
n = 0)+(1−p0)Pθ(k

−i,N
n = 0)one an write:

Pθ(k
−i,N
n = 0) −−−−−→

N→+∞
1 and Pθ(k

−i,N
n = 0) −−−−−→

N→+∞
1.The events {~α−i,N

n = ~N} and {k−i,N
n = 0} are equal, so that player i's posterior belief isequivalent to his private belief when k

(N)
n = 0:

qin
1− qin

=
pin

1− pin

Pθ(k
−i,N
n = 0)

Pθ(k
−i,N
n = 0)

⇒ qin =
pinPθ(k

−i,N
n = 0)

pinPθ(k
−i,N
n = 0) + (1− pin)Pθ(k

−i,N
n = 0)

∼
N→+∞

pinThis explain the fat mentioned in setion 2 that player i an not derive publi informationfrom his opponents, the latter being expeted to remain ative no matter what their privatepayo�s ould be.3.1.2 Speial Cut-o�sOne player ut-o� π∗ When there is only one player, the game redues to an optimalstopping problem whih is equivalent to the lassi one-arm bandit problem (see [9℄ and [10℄)where exit deisions an be assumed reversible. Indeed, if the player �nds it optimal not toplay at a given stage, it will remain optimal for the following stages. In this ase, the optimalpoliy is to leave as soon as the belief pin drops below a time-independent given ut-o�, denoted
π∗ .Note that, in our multi-player model, if qin ≥ π∗ player i will �nd it optimal to remain ative:in this situation, even if he ould not observe the others any more, staying would still be thebest deision.Myopi ut-o� p A simple way to deide to stay is to aount just for the next stage. Itsexpeted payo�, that we all myopi payo� and denote myop(qin), equals qinθ + (1− qin)θ.The myopi ut-o�, denoted p is de�ned as the only value suh that myop(p) = 0. It is readilyseen that if qin ≥ p, player i has to stay at least one more stage. As this is still true in theone-player game, one has also p ≥ π∗.
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Best optimal ontinuation payo� ut-o� p∗ We have already introdued the uto� p∗.Let us give an another presentation based on the notion of optimal ontinuation payo�.When faing the deision at the beginning of stage n, a player has to balane two things. Onthe one hand, there is the next payo� with expetation myop(qin). On the other hand if hestays he an expet to be informed better for the next deision, thanks to the the payo� Xi
nand to other players' behavior. At most, he ould learn the state nearly perfetly. Thus, if hestays he an not expet more than the best optimal ontinuation payo�:

opt(qin) = myop(qin) +
δqinθ

1− δ
=

qinθ

1− δ
+ (1− qin)θwhih is possible to get if at stage n + 1 he leaves when the state is Low, or stays forever ifthe state is High.In [14℄, it is showed that, a strategy pro�le being �xed, the optimal ontinuation payo�, i.e.the expeted payo� player i an get from a stage n + 1 if he stays at stage n + 1 and thenplays optimally, is a funtion ω

i,N
n whih only depends on pin and ~α

−i,N
n . This means that theoptimal strategy onsists in staying ative as long as ωi,N

n (pin, ~α
−i,N
n ) ≥ 0. And from what isexplained above, we dedue that opt(qin) ≥ ω

i,N
n (pin, ~α

−i,N
n ).We de�ne the best optimal ontinuation payo� p∗ as the unique ut-o� suh that opt(p∗)=0.A simple property of p∗ is that if qin ≤ p∗, it is a dominant strategy to leave.On the ontrary, if qin > p∗ player i has to stay if he is optimisti enough and/or if he expetsto get a good piee of information looking at other players' behavior. In partiular, the moreplayers there are, the more information he an expet.The optimal ontinuation payo� has a role in our results. In an ADE with delay n, when theend of stage n is reahed, a wave of exits reveals the state with more and more auray as Nis getting large. Asymptotially, any player i is faing the optimal ontinuation payo� whenmaking his deision at stage n. Consequently, at stage m, player i expets a ontinuationpayo� of:

(1 + δ + ...+ δn−m−1)myop(pim−1) + δn−m
E[max

(
0, opt(pin−1)

)
|pim−1].Asmyop is non dereasing and pin−1 is inreasing w.r.t. to pim−1 (equation (1)), this expressionis non dereasing w.r.t. pim−1: this explains explains the intuitive fat that a player is all themore willing to stay in the game as his belief is higher. Moreover, one an show that:

pim−1

θ

1− δ
Pθ(p

i
n−1 ≥ p∗|pim−1) + (1− pim−1)θPθ(p

i
n−1 ≥ p∗|pim−1)

= E[max
(
0, opt(pin−1)

)
|pim−1]Combining the last two equalities and with pim−1 = πm−1, we �nd an other expression ofequalities (Im) and (Ĩm). It has to be positive for any player to be right to remain ative atstage m (leaving only yields a payo� of 0).It is also worth notiing that, the left side of equality (Ĩm) being an expression of a on-tinuation payo� with belief πm−1, it is stritly lower than opt(πm−1). Consequently if (Ĩm)holds then πm−1 > p∗. This explains the last part of theorem 1.1: in an ADE, the delay n isneessarily the �rst stage suh that πn−1 ≤ p∗.17



No let us give some results about how a player behaviour a�ets the other players' beliefs.We want to formalize the fat that players get on average better news in the High state thanin the Low state, and as a onsequene it is good news for a player to observe his opponentsremaining ative.3.1.3 Staying is always good newsIf a player i (with ut-o�s πi
m(~t)) stays until stage n + 1, his ontribution to other ativeplayers' beliefs is given by the following likelihood ratio:

Pθ(p
i
n ≥ π

i,N
n (~α−i,N

n ), pin−1 ≥ π
i,N
n−1(~α

−i,N
n−1 ), ..., pi1 ≥ π

i,N
1 (~α−i,N

1 ))

Pθ(pin ≥ π
i,N
n (~α−i,N

n ), pin−1 ≥ π
i,N
n−1(~α

−i,N
n−1 ), ..., pi1 ≥ π

i,N
1 (~α−i,N

1 ))
.Now, if this player is still ative at stage n+ 2, the former ontribution has to be updated bymultiplying by:

Pθ(p
i
n+1 ≥ π

i,N
n+1(~α

−i,N
n+1 )|pin ≥ π

i,N
n (~α−i,N

n ), ..., pi1 ≥ π
i,N
1 (~α−i,N

1 ))

Pθ(p
i
n+1 ≥ π

i,N
n+1(~α

−i,N
n+1 )|pin ≥ π

i,N
n (~α−i,N

n ), ..., pi1 ≥ π
i,N
1 (~α−i,N

1 ))
.The fat that this ratio is always greater than 1, i.e. that it is always good news to observe aplayer staying ative, is a by-produt of proposition 3.2 thereafter. To obtain this result weneed the following lemma, the proof of whih an be found in the appendix.Lemma 3.1. For eah stage n and eah uto� π1, ..., πn−1 ∈ [0, 1], the likelihood ratio

π 7→
Pθ(p

i
n ≥ π, pin−1 ≥ πn−1, ..., p

i
1 ≥ π1)

Pθ(pin ≥ π, pin−1 ≥ πn−1, ..., p
i
1 ≥ π1)is inreasing.We now ome to our proposition.Proposition 3.2. (Conditional stohasti dominane)For eah stage n and k ∈ {0, 1, ..., n − 1}, x1, x2, ..., xn ∈ [0, 1],

Pθ(p
i
n ≥ xn, ..., p

i
k+1 ≥ xk+1|p

i
k ≥ xk, ..., p

i
1 ≥ x1) ≥ Pθ(p

i
n ≥ xn, ..., p

i
k+1 ≥ xk+1|p

i
k ≥ xk, ..., p

i
1 ≥ x1)Proof. Thanks to Lemma 3.1, as xn ≥ 0, we an write:

Pθ(p
i
n ≥ xn, p

i
n−1 ≥ xn−1, ..., p

i
1 ≥ x1)

Pθ(pin ≥ xn, p
i
n−1 ≥ xn−1, ..., p

i
1 ≥ x1)

≥
Pθ(p

i
n ≥ 0, pin−1 ≥ xn−1, ..., p

i
1 ≥ x1)

Pθ(pin ≥ 0, pin−1 ≥ xn−1, ..., p
i
1 ≥ x1)

≥
Pθ(p

i
n−1 ≥ xn−1, ..., p

i
1 ≥ x1)

Pθ(p
i
n−1 ≥ xn−1, ..., p

i
1 ≥ x1)

.Hene:
Pθ(p

i
n ≥ xn, p

i
n−1 ≥ xn−1, ..., p

i
1 ≥ x1)

Pθ(p
i
n−1 ≥ xn−1, ..., p

i
1 ≥ x1)

≥
Pθ(p

i
n ≥ xn, p

i
n−1 ≥ xn−1, ..., p

i
1 ≥ x1)

Pθ(p
i
n−1 ≥ xn−1, ..., p

i
1 ≥ x1)

,18



whih is exatly the desired result for k = n− 1.We derived from this the whole proposition, as:
Pθ(p

i
n ≥ xn, ..., p

i
k+1 ≥ xk+1|p

i
k ≥ xk, ..., p

i
1 ≥ x1)

= Pθ(p
i
n ≥ xn|p

i
n−1 ≥ xn−1, ..., p

i
1 ≥ x1)×Pθ(p

i
n−1 ≥ xn−1|p

i
n−2 ≥ xn−2, ..., p

i
1 ≥ x1)

×...×Pθ(p
i
k+1 ≥ xk+1|p

i
k ≥ xk, ..., p

i
1 ≥ x1).Let us mention a simple onsequene of proposition 3.2 whih will be useful subsequently,and whih shows that publi information is inreasing from stage to stage as long as no moreplayers leave.Corollary 3.3. For all uto� strategy pro�les, for all stages n > m, and for all i ∈ {1, · · · , N},

Pθ

(

k
−i,N
n = k

−i,N
m |~α−i,N

m

)

Pθ

(

k
−i,N
n = k

−i,N
m |~α−i,N

m

) ≥ 1 a.s.Proof. As the payo�s are independent aross players onditionally to the state, the above ratiois equal to
∏

j 6=i|αj
m=N

Pθ(p
j
n ≥ π

j,N
n (~α−j,N

m ), ..., pjm+1 ≥ π
−j,N
m+1 (~α

−j,N
m )|pjm ≥ π

j
m(~α−j,N

m ), ..., pj1 ≥ π
j,N
1 (~α−j,N

1 ))

Pθ(p
j
n ≥ π

j,N
n (~α−j,N

m ), ..., pjm+1 ≥ π
j,N
m+1(~α

−j,N
m )|pjm ≥ π

j,N
m (~α−j,N

m ), ..., pj1 ≥ π
j,N
1 (~α−j,N

1 ))
,and all the fators in this produt are greater than 1 beause of proposition 3.2.Thus, it has been showed that a player staying ative inreases his ontribution in otherplayers' posterior beliefs from stage to stage. But this is an inrease in a large sense, as hisontribution an remain onstant. For instane, in an ADE every player asymptotially stayative until the revelation stage no matter what their private information may be, and theirpubli ontribution remain equal to 1.Now we will show that someone leaving after a stage where all players were still ative repre-sents a strit derease of his ontribution to others' posterior belief.3.1.4 Leaving is bad newsWhat we want to study spei�ally is what happens when �rst players exit. To this aim, weintrodue the probability Pn,θ = Pθ(· · · |k

(N)
n = 0) and En,θ the orresponding expetation (asequene of equilibria being given). Let F i
n,θ be the .d.f. of pin under this probability:

F i
n,θ(x) = Pθ

(

pin ≤ x
∣
∣ k(N)

n = 0
)

.Note that F i
n,θ(x) = Pθ

(

pin ≤ x
∣
∣ pin−1 ≥ π

i,N
n−1(N), ..., p

i
1 ≥ π

i,N
1 (N)

) by independene of pay-o�s aross players onditionally to the state. In partiular, by de�nition of uto� strategieswe have:
Pθ(i leaves at stage n+ 1|k(N)

n = 0) = F i
n,θ(π

i,N
n (N)).19



To show that leaving is meaningful, we need to prove that one an not foreast with ertaintythat a player i will stop at a given stage. If not, this exit annot give us any information asit was due to happen, no matter what player i's private information is.The following lemma states that, in an equilibrium where every player have planned to stayuntil stage n, the probability that a rational player leaves the game at stage n+1 is uniformlyless than 1. Indeed, being too pessimisti would not be onsistent with staying until stage n.Lemma 3.4. Let (ΦN ) be a sequene of equilibrium suh that P(k
(N)
n = 0) −−−−−→

N→+∞
1.There exists N0 ≥ 0 and βθ, βθ ∈ [0, 1) suh that:

∀N ≥ N0, ∀θ ∈ {θ, θ}, Pn,θ(i leaves at stage n+ 1|pin−1) ≤ βθ Pn,θ − a.s.In partiular:
∀N ≥ N0, ∀θ ∈ {θ, θ}, Pn,θ(i leaves at stage n+ 1) = F i

n,θ(π
i,N
n (~N)) ≤ βθ.Proof. Let us �rst prove the existene of βθ.We are studying the deision of player i at stage n + 1, given that his private belief at stage

n, pin−1, is known. As we are working under the probability Pn,θ, we an also assume that hehas not observe any departure from other players yet. So his posterior belief at stage n is alsoknown:
qin−1

1− qin−1

=
pin−1

1− pin−1

Pθ(k
−i,N
n−1 = 0)

Pθ(k
−i,N
n−1 = 0)

.The fat that player i will not deide to leave at stage n + 1 too often is the onsequene ofone of two ases: either he has got news good so far and he will mostly remain optimisti atstage n+ 1, either he has not but the fat that he has not dropped out until stage n anywayshows that he is still expeting something and will not leave too soon.Case n◦1: player i is optimisti enough to get a posterior belief at stage n greater than themyopi uto� p.From the inequality θ < 0 < θ, it is easy to show that there exists ǫ, ǫ′ > 0 suh that
Pθ

(
f
θ
(Xi

n)

fθ(Xi
n)

≥ 1 + ǫ
)

≥ ǫ′. Assume that qin−1

1−qin−1
> p

1−p
1

1+ǫ . As it is a stritly dominant strategyto stay when the belief is greater than p, we have:
Pn,θ(i stays at stage n+ 1|pin−1) ≥ Pn,θ(q

i
n ≥ p|pin−1) = Pn,θ

(
qin

1− qin
≥

p

1− p

∣
∣
∣
∣
pin−1

)

= Pn,θ









qin−1

1− qin−1

fθ(X
i
n)

fθ(Xi
n)

Pθ(k
−i,N
n−1 = 0|k−i,N

n−2 = 0)

Pθ(k
−i,N
n−1 = 0|k−i,N

n−2 = 0)
︸ ︷︷ ︸

≥1 see corollary3.3

≥
p

1− p

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

pin−1









≥ Pn,θ

(
p

1− p

1

1 + ǫ

fθ(X
i
n)

fθ(Xi
n)

≥
p

1− p

∣
∣
∣
∣
pin−1

)

= Pn,θ

(
fθ(X

i
n)

fθ(Xi
n)

≥ 1 + ǫ

∣
∣
∣
∣
pin−1

)

As pin−1 and k
(N)
n are measurable w.r.t. σ

(

X
j
m, 1 ≤ m ≤ N, 1 ≤ m ≤ n− 1

), they are inde-20



pendent from Xi
n under Pθ, and we have:
Pn,θ

(
fθ(X

i
n)

fθ(Xi
n)

≥ 1 + ǫ

∣
∣
∣
∣
pin−1

)

= Pθ

(
fθ(X

i
n)

fθ(Xi
n)

≥ 1 + ǫ

)

≥ ǫ′.Case n◦2: he is not that optimisti but he still had to experiment.In this ase, we have:
qin−1

1− qin−1

≤
p

1− p

1

1 + ǫ
.We are working under probability Pn,θ, so we assume that k

(N)
n = 0. In partiular player

i deides to remain ative at stage n and pin−1 ≥ π
i,N
n−1(~N). Consequently the ontinuationpayo� that he was expeting to get at stage n is positive. Let us overestimate this ontinuationpayo�.At the beginning of stage n, player i's deision is based on the information k

(N)
n−1 = 0 and on

pin−1. When he stays, he �rst gets a myopi payo� of expetation myop(qin−1). Then, if heobserves k−i,N
n = 0 he will stay if pin ≥ π

i,N
n (~N). Let us say this will never happen in the Lowstate and, if he stays in the High state, he will remain ative forever (whih yields on average

θ
1−δ ). Moreover, we an overestimate his ontinuation payo� when k

−i,N
n 6= 0 by θ

1−δ in theHigh state and by 0 in the Low state. So we have the following overestimation:
myop(qin−1) +

qin−1δθ

1− δ
Pθ(p

i
n ≥ πi,N

n (~N)|k−i,N
n = 0, k

(N)
n−1 = 0, pin−1)Pθ(k

−i,N
n = 0|k

(N)
n−1 = 0, pin−1)

+ qin−1Pθ(k
−i,N
n 6= 0|k

(N)
n−1 = 0, pin−1)

θ

1− δ
.As pin−1 ≥ π

i,N
n−1(~N), we have α

i,N
n = N and onditioning by k

−i,N
n = 0, k

(N)
n−1 = 0, pin−1 isequivalent to onditioning by k

(N)
n = 0, pin−1. As a onsequene we have:

Pθ(p
i
n ≥ πi,N

n (~N)|k−i,N
n = 0, k

(N)
n−1 = 0, pin−1) = Pn,θ(p

i
n ≥ πi,N

n (~N)|pin−1).The same argument, together with the fat other players' deisions do not depend on is pin−1but only on α
i,N
n , enables us to write:

Pθ(k
−i,N
n 6= 0|k

(N)
n−1 = 0, pin−1) = Pθ(k

−i,N
n 6= 0, αi,N

n = N|k
(N)
n−1 = 0, pin−1)

≤ Pθ(k
(N)
n 6= 0|k

(N)
n−1 = 0, pin−1)

≤ Pθ(k
(N)
n 6= 0).Moreover we an simply overestimate Pθ(k

−i,N
n = 0|k

(N)
n−1 = 0, pin−1) by 1.Consequently player i's ontinuation payo� is less than:

myop(qin−1) +
qin−1δθ

1− δ
Pn,θ(p

i
n ≥ πi,N

n (~N)|pin−1)

+ qin−1Pθ(k
(N)
n 6= 0)

θ

1− δ
.21



And than:
myop(

p

1 + ǫ(1− p)
) +

δθ

1− δ
Pn,θ(p

i
n ≥ πi,N

n (~N)|pin−1)

+ Pθ(k
(N)
n 6= 0)

θ

1 − δ
.As player i did deide to remain ative at stage n, this payo� is neessarily positive: if not hewould have better leave, whih yields a payo� of 0. Consequently we have:

Pn,θ(p
i
n ≥ πi,N

n (~N)|pin−1) ≥ −
1− δ

δθ

(

myop(
p

1 + ǫ(1− p)
) +Pθ(k

(N)
n 6= 0)

θ

1− δ

)

.As P(k
(N)
n = 0) −−−−−→

N→+∞
1, one an �nd N0 ≥ 1 suh that, for any N ≥ N0:

−
1− δ

δθ

(

myop(
p

1 + ǫ(1− p)
) +Pθ(k

(N)
n 6= 0)

θ

1− δ

)

≥ −
1− δ

2δθ
myop(

p

1 + ǫ(1− p)
).As a onlusion of the two ases, we an set βθ = max(1− ǫ′, 1 +myop( p

1+ǫ(1−p))
1−δ

2δθ
).Now, we will prove the existene of βθ.Let Gθ be the .d.f. of f

θ
(Xi

n)

fθ(Xi
n)

under Pθ. We have:
Pn,θ(p

i
n ≤ πi,N

n (~N)|pin−1) = Pn,θ

(

pin
1− pin

≤
π
i,N
n (~N)

1− π
i,N
n (~N)

∣
∣
∣
∣
∣
pin−1

)

= Pn,θ

(

fθ(X
i
n)

fθ(Xi
n)

pin−1

1− pin−1

≤
π
i,N
n (~N)

1− π
i,N
n (~N)

∣
∣
∣
∣
∣
pin−1

)

= Gθ

(

π
i,N
n (~N)

1− π
i,N
n (~N)

1− pin−1

pin−1

) (2)beause Xi
n is independent from pin−1 and k

(N)
n under Pθ.As Gθ is ontinuous and inreasing, we an onsider the real r = maxG−1

θ
({βθ}). Then

Gθ(r) = βθ < 1, and, aording to equation (2) by the property of βθ we have:
π
i,N
n (~N)

1− π
i,N
n (~N)

1− pin−1

pin−1

≤ r Pn,θ − a.s.This is equivalent to:
Pθ

(
{

k(N)
n = 0

}

∩

{

π
i,N
n (~N)

1− π
i,N
n (~N)

1− pin−1

pin−1

> r

})

= 0.And to:
Pθ













⋂

i = 1, ..., N
l = 1, ..., n − 1

pil ≥ π
i,N
l (~N)







∩

{

π
i,N
n (~N)

1− π
i,N
n (~N)

1− pin−1

pin−1

> r

}







= 0.22



As the private beliefs have the same support under Pθ and Pθ, we have:
Pθ













⋂

i = 1, ..., N
l = 1, ..., n − 1

pil ≥ π
i,N
l (~N)







∩

{

π
i,N
n (~N)

1− π
i,N
n (~N)

1− pin−1

pin−1

> r

}







= 0,and equivalently:
π
i,N
n (~N)

1− π
i,N
n (~N)

1− pin−1

pin−1

≤ r Pn,θ − a.s.Then, by means of equation (2):
Pn,θ(p

n
i ≤ πi,N

n (~N)|pin−1) = Gθ

(

π
i,N
n (~N)

1− π
i,N
n (~N)

1− pin−1

pin−1

)

≤ Gθ(r) Pn,θ − a.s.As f
θ
(Xi

n)

fθ(Xi
n)

has the same support under Pθ and Pθ, Gθ(r) < 1 so that we an set βθ = Gθ(r).Remark 1. The proof shows us that the existene of βθ and βθ an be written as the existeneof a non-negative real r suh that π
i,N
n (~αi

n−1)

1−π
i,N
n (~αi

n−1)

1−pin−1

pin−1
≤ r Pn,θ−a.s. Then βθ = Gθ(r), where

Gθ is the .d.f. of f
θ
(Xi

n)

fθ(Xi
n)

under Pθ.As a onsequene of Lemma 3.4, the lemma thereafter states that a player leaving wheneverybody is still ative implies a strit pessimism for the others. Indeed, the evolution of hisontribution in publi information is then
Pθ(p

i
n ≤ π

i,N
n (~N)|pin−1 ≥ π

i,N
n−1(~N), ..., p

i
1 ≥ π

i,N
1 (~N))

Pθ(pin ≤ π
i,N
n (~N)|pin−1 ≥ π

i,N
n−1(~N), ..., p

i
1 ≥ π

i,N
1 (~N))

=
F i
n,θ

(πi,N
n (~N))

F i
n,θ(π

i,N
n (~N))and is smaller than a onstant γ < 1.Proposition 3.5. Let (ΦN ) be a sequene of equilibria suh that P(k

(N)
n = 0) −−−−−→

N→+∞
1.There exists N0 ≥ 0 and γ ∈ [0, 1) suh that:

∀N ≥ N0, ∀i ∈ {1, ..., N}, F i
n,θ

(πi,N
n (~N)) ≤ γF i

n,θ(π
i,N
n (~N)).Proof. We �rst show that there exists as an upper bound γ < 1 of G
θ

Gθ
on (ν, r], where Gθ and

r have been introdued in Lemma 3.4, and where ν is the in�mum of the support of f
θ
(Xi

n)

fθ(Xi
n)(for G

θ

Gθ
to be de�ned).Notie that:

∀x ∈ [0, r], Gθ(x) =

∫

{

f
θ
(u)

fθ(u)
≤x

} fθ(u)du ≤

∫

{

f
θ
(u)

fθ(u)
≤x

} xfθ(u)du = xGθ(x) ≤ rGθ(x).Consequently if r < 1, setting γ = r enables us to onlude. If not, thanks to the presene ofbad news, there exists γ1 < 1 suh that Gθ(γ1) > 0. Then γ1 > ν, and just as before we have:
∀x ∈ [0, γ1], Gθ(x) ≤ γ1Gθ(x).23



In partiular:
Gθ(γ1) < Gθ(γ1) =⇒

1−Gθ(γ1)

1−Gθ(γ1)
> 1.On the other hand the funtion

x 7→
1−Gθ(x)

1−Gθ(x)
=

Pθ

(
f
θ
(Xi

n)

fθ(Xi
n)

≥ x
)

Pθ

(
f
θ
(Xi

n)

fθ(Xi
n)

≥ x
)is well de�ned on [γ1, r] (beause x ≤ r implies that Gθ(x) ≤ Gθ(r) < 1) and inreasing (seeLemma 3.1). Thus:

∀x ∈ [γ1, r],
1−Gθ(x)

1−Gθ(x)
≥

1−Gθ(γ1)

1−Gθ(γ1)
> 1,and:

∀x ∈ [γ1, r], Gθ(x) < Gθ(x).Going bak to the funtion G
θ

Gθ
, we then see that, on the segment [γ1, r], its values are all in

(0, 1). As this funtion is ontinuous, we have by ompatness:
max
[γ1,r]

Gθ

Gθ
< 1.To onlude, we an set γ = max(γ1,max[γ1,r]

G
θ

Gθ
), so that:

∀x ∈ [0, r], Gθ(x) ≤ γGθ(x). (3)
γ is indeed the upper bound we were looking for.Now, let us see why γ applies to the onlusion of our lemma. We hoose N0 as given byLemma 3.4.We have:
F i
n,θ(π

i,N
n (~N)) = Pn,θ(p

i
n ≤ πi,N

n (~N)) = En,θ

(
Pn,θ(p

i
n ≤ πi,N

n (~N)|pin−1)
)

= Eθ

(

Gθ

(

π
i,N
n (~N)

1− π
i,N
n (~N)

1− pin−1

pin−1

)∣
∣
∣
∣
∣
pin−1 ≥ π

i,N
n−1(~N), ..., p

i
1 ≥ π

i,N
1 (~N)

)by means of equation (2), and beause onditioning by k
(N)
n = 0 is equivalent to onditioningby {pin−1 ≥ π

i,N
n−1(~N), ..., p

i
1 ≥ π

i,N
1 (~N)} by independene of payo�s aross player onditionallyto the state.As π

i,N
n (~N)

1−π
i,N
n (~N)

1−pin−1

pin−1
≤ r, (3) applies and one an write by positivity of expetation:

F i
n,θ

(πi,N
n (~N)) = Eθ

(

Gθ

(

π
i,N
n (~N)

1− π
i,N
n (~N)

1− pin−1

pin−1

)∣
∣
∣
∣
∣
pin−1 ≥ π

i,N
n−1(~N), ..., p

i
1 ≥ π

i,N
1 (~N)

)

≤ γEθ

(

Gθ

(

π
i,N
n (~N)

1− π
i,N
n (~N)

1− pin−1

pin−1

)∣
∣
∣
∣
∣
pin−1 ≥ π

i,N
n−1(~N), ..., p

i
1 ≥ π

i,N
1 (~N)

)

.24



In order to onlude, we need to replae Eθ by Eθ. As Gθ

(
π
i,N
n (~N)

1−π
i,N
n (~N)

1−pin−1

pin−1

) is positive anddereasing w.r.t. pin−1, this an be done by approximation by positive linear ombination offuntions of the form 1pin−1<π, with π in [0, 1]. Consequently, it remains to show that:
Pθ

(

pin−1 < π|pin−1 ≥ π
i,N
n−1(~N), ..., p

i
1 ≥ π

i,N
1 (~N)

)

≤ Pθ

(

pin−1 < π|pin−1 ≥ π
i,N
n−1(~N), ..., p

i
1 ≥ π

i,N
1 (~N)

)

,whih is equivalent to:
Pθ

(

pin−1 ≥ π|pin−1 ≥ π
i,N
n−1(~N), ..., p

i
1 ≥ π

i,N
1 (~N)) ≥ Pθ(p

i
n−1 ≥ π|pin−1 ≥ π

i,N
n−1(~N), ..., p

i
1 ≥ π

i,N
1 (~N)

)

.If π ≤ π
i,N
n−1(~N), both terms of the inequality equal 1. If not, the former inequality an bewritten as:
Pθ

(

pin−1 ≥ π, ..., pi1 ≥ π
i,N
1 (~N)

)

Pθ

(

pin−1 ≥ π
i,N
n−1(~N), ..., p

i
1 ≥ π

i,N
1 (~N)

) ≥
Pθ

(

pin−1 ≥ π, ..., pi1 ≥ π
i,N
1 (~N)

)

Pθ

(

pin−1 ≥ π
i,N
n−1(~N), ..., p

i
1 ≥ π

i,N
1 (~N)

) ,and:
Pθ

(

pin−1 ≥ π, ..., pi1 ≥ π
i,N
1 (~N)

)

Pθ

(

pin−1 ≥ π, ..., pi1 ≥ π
i,N
1 (~N)

) ≥
Pθ

(

pin−1 ≥ π
i,N
n−1(~N), ..., p

i
1 ≥ π

i,N
1 (~N)

)

Pθ

(

pin−1 ≥ π
i,N
n−1(~N), ..., p

i
1 ≥ π

i,N
1 (~N)

) .The result then follows from Lemma 3.1.3.2 Main theorems3.2.1 Proposition 1.5 and onsequenesFirst, let us demonstrate proposition 1.5, and then draw some useful onsequenes.Proof. Assume for ontradition that (Eθ[k
(N)
n |k

(N)
n−1 = 0]

)

N≥1
=
(
∑N

i=1 F
i
n−1,θ(π

i,N
n−1(~N))

)

N≥1is not bounded. Up to a subsequene, one has
lim

N→+∞
Eθ[k

(N)
n |k

(N)
n−1 = 0] = +∞.Let us show that this assumption enables to learn the state at the following stage if N is largeenough, by omparing k

(N)
n to MN =

E
θ
[k

(N)
n |k

(N)
n−1=0]+Eθ[k

(N)
n |k

(N)
n−1=0]

2 . Indeed k
(N)
n tends to begreater than MN in the Low state and lower than MN in the High State, beause players get
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worse news in the Low state and leave more often. Let us prove this:
Pθ

(

k(N)
n < MN

∣
∣
∣ k

(N)
n−1 = 0

)

= Pθ



k(N)
n <

∑N
i=1 F

i
n−1,θ

(πi,N
n−1(~N)) + F i

n−1,θ(π
i,N
n−1(~N))

2

∣
∣
∣
∣
∣
∣

k
(N)
n−1 = 0





= Pθ









N∑

i=1

F i
n−1,θ(π

i,N
n−1(~N))− k(N)

n >

N∑

i=1

F i
n−1,θ(π

i,N
n−1(~N))− F i

n−1,θ
(πi,N

n−1(~N))

2
︸ ︷︷ ︸

>0

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

k
(N)
n−1 = 0









≤ Pθ





∣
∣
∣
∣
∣

N∑

i=1

F i
n−1,θ(π

i,N
n−1(~N))− k(N)

n

∣
∣
∣
∣
∣
>

N∑

i=1

F i
n−1,θ(π

i,N
n−1(~N))− F i

n−1,θ
(πi,N

n−1(~N))

2

∣
∣
∣
∣
∣
∣

k
(N)
n−1 = 0





≤ 4

∑N
i=1 F

i
n−1,θ(π

i,N
n−1(~N))− F i

n−1,θ(π
i,N
n−1(~N))

2

(
∑N

i=1 F
i
n1,θ

(πi,N
n−1(~N))− F i

n−1,θ
(πi,N

n (~N))
)2by means of Thebyhev's inequality.Moreover, thanks to proposition 3.5:

γF i
n−1,θ(π

i,N
n−1(~N)) ≥ F i

n−1,θ
(πi,N

n−1(~N))with γ ∈ [0, 1) and N large enough, so that:
Pθ

(

k(N)
n < MN

∣
∣
∣ k

(N)
n−1 = 0

)

≤ 4

∑N
i=1 F

i
n−1,θ(π

i,N
n−1(~N))

(1− γ)2
(
∑N

i=0 F
i
n−1,θ(π

i,N
n−1(~N))

)2

≤
4

(1− γ)2
∑N

i=1 F
i
n−1,θ(π

i,N
n−1(~N))

=
4

(1− γ)2Eθ[k
(N)
n |k

(N)
n−1 = 0]

−−−−−→
N→+∞

0.Similarly, one an show that:
Pθ

(

k(N)
n ≥ MN

∣
∣
∣ k

(N)
n−1 = 0

)

≤ 4

∑N
i=1 F

i
n−1,θ(π

i,N
n−1(~N))

(1 − γ)2
(
∑N

i=0 F
i
n−1,θ(π

i,N
n−1(~N))

)2 ≤ 4

∑N
i=1 F

i
n−1,θ

(πi,N
n−1(~N))

(1 − γ)2
(
∑N

i=0 F
i
n−1,θ(π

i,N
n−1(~N))

)2

=
4

(1− γ)2
∑N

i=1 F
i
n−1,θ(π

i,N
n−1(~N))

=
4

(1− γ)2Eθ[k
(N)
n |k

(N)
n−1 = 0]

−−−−−→
N→+∞

0.Now let us see how this a�ets player i's deision. He is able to make to make a similar
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omparison, between k
−i,N
n and M i

N =
E

θ
[k−i,N

n |k
(N)
n−1=0]+Eθ[k

−i,N
n |k

(N)
n−1=0]

2 . In this ase we have:
Pθ

(

k−i,N
n < M i

N

∣
∣ k

(N)
n−1 = 0

)

≤
4

(1− γ)2Eθ[k
−i,N
n |k

(N)
n−1 = 0]

≤
4

(1− γ)2
(

Eθ[k
(N)
n |k

(N)
n−1 = 0]− 1

) (4)and
Pθ

(

k−i,N
n ≥ M i

N

∣
∣ k

(N)
n−1 = 0

)

≤
4

(1− γ)2
(

Eθ[k
(N)
n |k

(N)
n−1 = 0]− 1

) . (5)Consider the strategy onsisting in leaving if k−i,N
n ≥ M i

N and staying forever otherwise, wheneverybody is still ative at the end of stage n − 1, i.e. k(N)
n−1 = 0. The overall expeted payo�after stage n− 1 is:

opt(qin−1) −
δqin−1θ

1− δ
Pθ

(

k−i,N
n ≥ M i

N

∣
∣ k

(N)
n−1 = 0

)

+
(1 − qin−1)δθ

1− δ
Pθ

(

k
−i,N
n−1 < M i

N

∣
∣
∣ k

(N)
n−1 = 0

)

.Thanks to equation 4 and 5, one an underestimate this by:
opt(qin−1)−

4δ(θ − θ)

(1− δ)(1 − γ)2
(

Eθ[k
(N)
n |k

(N)
n−1 = 0]− 1

) (6)In our ase qin−1

1−qin−1
=

pin−1

1−pin−1

P
θ
(k

(N)
n−1=0)

Pθ(k
(N)
n−1=0)

≥
pin−1

1−pin−1
thanks to Lemma 3.3, so that qin−1 ≥ pin−1 ≥

πn−1. Therefore, our strategy yields at least an average payo� of:
opt(πn−1)−

4δ(θ − θ)

(1− δ)(1 − γ)2
(

Eθ[k
(N)
n |k

(N)
n−1 = 0]− 1

)

−−−−−→
N→+∞

πn

θ

1− δ
+ (1− πn−1)θ = opt(πn−1) > 0, as πn−1 > p∗.Consequently, this payo� is non-negative for any qin−1 and for N large enough and any playershould stay ative at stage n. This is absurd beause the equilibrium strategy leads someplayers to leave in some non negligible ases: if not, the sequene (Eθ[k

(N)
n |k

(N)
n−1 = 0]

)

N≥1would not onverge to +∞.Remark 2. In this proof, notie that we ompared k
(N)
n toMN =

Eθ[k
(N)
n |k

(N)
n−1=0]+E

θ
[k

(N)
n |k

(N)
n−1=0]

2 ,but we ould equivalently have ompared it to any strit onvex ombination of Eθ[k
(N)
n |k

(N)
n−1 =

0] and Eθ[k
(N)
n |k

(N)
n−1 = 0]. 27



More generally, for every sequene (aN )N≥1 onverging to a ∈ (0, 1), and if (Eθ[k
(N)
n |k

(N)
n−1 =

0])N≥1 onverges to +∞:
Pθ

(

k(N)
n < aNEθ[k

(N)
n |k

(N)
n−1 = 0] + (1− aN )Eθ[k

(N)
n |k

(N)
n−1 = 0]

∣
∣
∣ k

(N)
n−1 = 0

)

−−−−−→
N→+∞

{
1 if θ = θ

0 if θ = θ
.Others onlusion an be drawn by the former proof, that generalizes the large game resultwhih an be found in [14℄.Proposition 3.6. For any sequene (πi,N

m (~t)
)

N≥1
of equilibria suh that

P(k
(N)
n−1 = 0) −−−−−→

N→+∞
1 and Eθ[k

(N)
n |k

(N)
n−1 = 0] −−−−−→

N→+∞
+∞,the uto�s π

i,N
n−1(~N) uniformly onverge to p∗, i.e.:

sup
i∈{1,··· ,N}

|πi,N
n−1(~N)− p∗| −−−−−→

N→+∞
0.Moreover there exists a sequene of real numbers (KN )N≥1 suh that KN −−−−−→

N→+∞
0 and:

opt(qin−1) ≥ ω
i,N
n−1(p

i
n−1, ~N) ≥ opt(qin−1)−KN a.s.Proof. Aording to the de�nition of p∗, a player whose posterior belief qin−1 is below p∗should exit. Moreover if no player has left until the end of stage n− 1, we have that qin−1

1−qin−1
=

P
θ
(k−i,N

n−1 =0)

Pθ(k
−i,N
n−1 =0)

pin−1

1−pin−1
. Consequently we an underestimate π

i,N
n−1(~N):

π
i,N
n−1(~N)

1− π
i,N
n−1(~N)

≥
Pθ(k

−i,N
n−1 = 0)

Pθ(k
−i,N
n−1 = 0)

p∗

1− p∗

⇔ π
i,N
n−1(~N) ≥ p∗

Pθ(k
−i,N
n−1 = 0)

(1− p∗)Pθ(k
−i,N
n−1 = 0) + p∗Pθ(k

−i,N
n−1 = 0)

.Now we want an overestimation, and for this we have to �nd a uto� that makes player ioptimisti enough to stay. In the former proof, we provided a strategy that guarantees atleast a payo� of opt(qin−1)−KN , where
KN =

4δ(θ − θ)

(1− δ)(1 − γ)2
(

Eθ[k
(N)
n |k

(N)
n−1 = 0]− 1

) ,and with γ ∈ [0, 1) and N large enough (see equation 6).If our strategy yields a positive payo�, player i has to stay. This is the ase if qin−1 ≥ p∗+∆N ,where
∆N =

4δ(θ − θ)

(1− γ)2(θ − (1− δ)θ)
(

Eθ[k
(N)
n |k

(N)
n−1 = 0]− 1

) .A straightforward alulus leads us to the overestimation of πi,N
n (~N) we were looking for:

π
i,N
n−1(~N) ≤

Pθ(k
−i,N
n−1 = 0)(p∗ +∆N )

Pθ(k
−i,N
n−1 = 0)(1− p∗ −∆N ) +Pθ(k

−i,N
n−1 = 0)(p∗ +∆N )

.28



Both sides of our estimation tends to p∗. The onvergene is uniform w.r.t. to i beause
Pθ(k

(N)
n−1 = 0) ≤ Pθ(k

−i,N
n−1 = 0) ≤ 1. That gives us the �rst part of the proposition.The fat we have a strategy that guarantees a payo� of opt(qin−1)−KN implies that ωi

n−1(p
i
n−1, ~N) ≥

opt(qin−1) − KN by de�nition of ωi
n−1. The inequality opt(qin−1) ≥ ωi

n−1(p
i
n−1, ~N) is also aby-produt of the de�nition of ωi

n−1 (see setion 3.1.2), hene the seond part of the proposi-tion.3.2.2 Theorem 1.1, Neessary onditionsOur aim is to show that if there exists an ADE with delay n, then πn−1 ≤ p∗ and inequalities
(Im), 1 ≤ m ≤ n − 1, hold. We will reah this goal by dividing the proof into simplerintermediate results.Lemma 3.7. If there exists an ADE with delay n, then Eθ[k

(N)
n |k

(N)
n−1 = 0] −−−−−→

N→+∞
+∞.Proof. We proeed using redutio ad absurdum. Up to a subsequene, (Eθ[k

(N)
n |k

(N)
n−1 = 0]

)

N≥1
=

(
∑N

i=1 F
i
n−1,θ(π

i,N
n−1(~N))

)

N≥1
is bounded.And we have:

Pθ(k
(N)
n = 0) = Pθ(k

(N)
n = 0|k

(N)
n−1 = 0)Pθ(k

(N)
n−1 = 0)

= Pθ

(
n⋂

i=1

{i stays at stage n}

∣
∣
∣
∣
∣
k
(N)
n−1 = 0

)

Pθ(k
(N)
n−1 = 0)

=

N∏

i=1

(

1− F i
n−1,θ(π

i,N
n−1(~N))

)

Pθ(k
(N)
n−1 = 0),and

logPθ(k
(N)
n = 0) =

N∑

i=1

log
(

1− F i
n−1,θ(π

i,N
n−1(~N))

)

+ log
(

Pθ(k
(N)
n−1 = 0)

)

.The sum has the same behaviour as −∑N
i=1 F

i
n−1,θ(π

i,N
n−1(~N)), for we know that

F i
n−1,θ(π

i,N
n−1(~N)) ≤ βθ < 1 (see Lemma 3.4) so that, by onavity:

log(1− F i
n−1,θ(π

i,N
n−1(~N))) ≥

log(1− βθ)

βθ
F i
n−1,θ(π

i,N
n−1(~N)).Combining these fats and the fat that Pθ

(

k
(N)
n−1 = 0

)

−−−−−→
N→+∞

1, we get:
∃α > 0, ∃N0 ≥ 1, ∀N ≥ N0, Pθ(k

(N)
n = 0) > α.And in these onditions (see orollary 3.3) Pθ(k

(N)
n = 0) > α, so that we have:

Pθ(k
(N)
n+1 6= 0|k(N)

n = 0) = Pθ(k
(N)
n+1 6= k(N)

n |k(N)
n = 0) ≤

Pθ(k
(N)
n+1 6= k

(N)
n )

Pθ(k
(N)
n = 0)

≤
Pθ(k

(N)
n+1 6= k

(N)
n )

α
−−−−−→
N→+∞

029



by means of the third ondition in the de�nition of ADE. Therefore we have:
Pθ(k

(N)
n+1 = 0|k(N)

n = 0) −−−−−→
N→+∞

1.And then:
Pθ(k

(N)
n+1 = 0) = Pθ(k

(N)
n+1 = 0|k(N)

n = 0)Pθ(k
(N)
n = 0) ≥ αPθ(k

(N)
n+1 = 0|k(N)

n = 0)so that Pθ(k
(N)
n+1 = 0) ≥ α

2 for N large enough.In partiular:
Pθ

(

p11 ≥ π
1,N
1 (~N), p12 ≥ π

1,N
2 (~N), ..., p1n ≥ π1,N

n (~N)
)

≥
α

2
.Up to a subsequene, one an assume that:

∀l ∈ {1, · · · , n}, ∃πl ∈ [0, 1], π
1,N
l (~N) −−−−−→

N→+∞
πl.Consequently, we have Pθ

(
p11 ≥ π1, p

1
2 ≥ π2, ..., p

1
n ≥ πn

)
≥ α

2 and by ontinuity:
∃π̃1 > π1, ∃π̃2 > π2, ..., ∃π̃n > πn, Pθ

(
p11 ≥ π̃1, p

1
2 ≥ π̃2, ..., p1n ≥ π̃n

)
≥

α

4
.As the private beliefs have the same support under Pθ and under Pθ, one an write:

∃β > 0, Pθ

(
p11 ≥ π̃1, p

1
2 ≥ π̃2, ..., p1n ≥ π̃n

)
≥ β.Therefore, one have, for N large enough:

Pθ

(

p11 ≥ π
1,N
1 (~N), p12 ≥ π

1,N
2 (~N), ..., p1n ≥ π1,N

n (~N)
)

≥ β.And then:
Pθ(k

(N)
n+1 ≤ N − 1) ≥ Pθ (Player 1 is still active at stage n + 1)

≥ Pθ

(

{Player 1 is still active at stage n + 1} ∩ {k(N)
n = 0}

)

= Pθ(k
(N)
n = 0)Pθ

(

Player 1 is still active at stage n + 1|k(N)
n = 0

)

≥ αPθ

(

p1n ≥ π1,N
n (~N)

∣
∣ p1n−1 ≥ π

1,N
n−1(~N), ..., p

1
1 ≥ π

1,N
1 (~N)

)

≥ αPθ

(

p1n ≥ π1,N
n (~N), p1n−1 ≥ π

1,N
n−1(~N), ..., p

1
1 ≥ π

1,N
1 (~N)

)

≥ αβ > 0.This ontradits the fat that Pθ(k
(N)
n+1 = N) −−−−−→

N→+∞
1.Corollary 3.8. If there exists an ADE with delay n, then πn−1 ≤ p∗.Proof. This is a diret onsequene of proposition 1.5 and lemma 3.7.Lemma 3.9. If there exists an ADE with delay n then the inequalities (Ĩm), 1 ≤ m ≤ n− 1,hold. 30



Proof. Let us prove inequality (Ĩm). To this aim, we �x an ADE with delay n and we overes-timate the ontinuation payo� that player i gets at stage m in suh a strategi pro�le whenno player has left, i.e. k(N)
m−1 = 0.Let us say that if any player leaves before stage n, player i ould at best play in perfetaordane to the state: stay forever in the High state and drop out in the Low state . Ifnot, he will stay in the game until stage n, and then stay i� the optimal optimal ontinuationpayo� ω

i,N
n−1(p

i
n−1, ~α

−i,N
n−1 ) is positive (see setion 3.1.2). The orresponding overestimation isthe following:

Pθ(k
(N)
n−1 6= 0|k

(N)
m−1 = 0, pim−1)q

i
m−1

θ

1− δ

+ P(k
(N)
n−1 = 0|k

(N)
m−1 = 0, pim−1)

[

(1 + δ + ...+ δn−m−1)
(
myop(qim−1)

)

+δn−m
E

[

max
(

0, ωi,N
n−1(p

i
n−1, ~N)

)∣
∣
∣ pim−1

]
]

,where qim−1

1−qim−1
=

pim−1

1−pim−1

P
θ
(k

(N)
m−1=0)

Pθ(k
(N)
m−1=0

. We denote by fN
m (pim−1) this upper bound.We have that {fN

m (pim−1) < 0} ∩ {k
(N)
m−1 = 0} ⊆ {k

(N)
n−1 6= 0}: if fN

m (pim−1) < 0 and k
(N)
m−1 = 0,player i prefers to leaves at stage m (whih yields at payo� of 0) beause his ontinuationpayo� is non-positive. Consequently we have

P

(

{fN
m (pim−1) < 0} ∩ {k

(N)
m−1 = 0}

)

≤ P

(

k
(N)
n−1 6= 0

)

−−−−−→
N→+∞

0,and:
P

(

fN
m (pim−1) ≥ 0

∣
∣ k

(N)
m−1 = 0

)

−−−−−→
N→+∞

1. (7)On the other hand the fat that P(k
(N)
n−1 = 0) −−−−−→

N→+∞
1 implies that

P(k
(N)
n−1 = 0|k

(N)
m−1 = 0, pim−1) −−−−−→

N→+∞
1 a.s.As qin =

pinPθ
(k−i,N

n =0)

pinPθ
(k−i,N

n =0)+(1−pin)Pθ(k
−i,N
n =0)

, it also implies that:
qim−1 −−−−−→

N→+∞
pim−1 a.s.Then thanks to lemma 3.7 and proposition 3.6 we have fN

m (pim−1) −−−−−→
N→+∞

fm(pim−1) a.s.,where:
fm(pim−1) = (1 + δ + ...+ δn−m−1)

(
pim−1θ + (1− pim−1)θ

)

+δn−m
E
[
max

(
0, opt(pin−1)

)∣
∣ pim−1

]
.This funtion is non-dereasing (see setion 3.1.2). Consequently there is at most one valueof pim−1 for whih fm(pim−1) = 0, and beause the law pim−1 is ontinuous, we have:

1fN
m (pim−1)≥0 −−−−−→

N→+∞
1fm(pim−1)≥0 a.s.31



Finally we have that P(k
(N)
m−1 = 0) −−−−−→

N→+∞
1 and, up to a subsequene, 1

k
(N)
m−1=0

−−−−−→
N→+∞

1 a.s.From this we dedue that:
P

(

fN
m (pim−1) ≥ 0

∣
∣ k

(N)
m−1 = 0

)

=

P

(

1fN
m (pim−1)≥01k(N)

m−1=0

)

P

(

k
(N)
m−1 = 0

) −−−−−→
N→+∞

P
(
fm(pim−1) ≥ 0

)
.Then fm(pim−1) ≥ 0 a.s. by means of equation (7). As fm is ontinuous, one an onludethat fm(πm−1) ≥ 0, whih is the desired equation (Ĩm).The �rst part of theorem 1.1 is then the onjuntion of orollary 3.8 and lemma 3.9.3.2.3 Theorem 1.1, Su�ient onditionsTo prove the seond part of theorem 1.1, we �rst need to show proposition 1.3, and beforethat we will begin by two useful lemmas.In proposition 1.3 we have P(k

(N)
n−1 = 0) −−−−−→

N→+∞
0 and πn−1 < p∗. After stage n, a signi�antproportion of players have to leave beause their private beliefs are less than p∗, and thisproportion depends on the state. That is the ontent of the following lemma.Lemma 3.10. Assume that πn−1 < p∗. For any sequene (πi,N

m (~t)
)

N≥1
of equilibria suhthat P(k

(N)
n−1 = 0) −−−−−→

N→+∞
1, we have:

∀θ ∈ {θ, θ}, Eθ[k
(N)
n |k

(N)
n−1 = 0] ∼

N→+∞
NFn−1,θ(p

∗).In partiular Eθ[k
(N)
n |k

(N)
n−1 = 0] −−−−−→

N→+∞
+∞.Proof. As in the proof of proposition 3.6, the fat that a player whose posterior belief is below

p∗ will neessarily leave implies that: πi,N
n−1(~N) ≥ p∗

P
θ
(k−i,N

n−1 =0)

(1−p∗)Pθ(k
−i,N
n−1 =0)+p∗P

θ
(k−i,N

n−1 =0)
.Therefore we have:

F i
n−1,θ(π

i,N
n−1(~N)) = Pθ(p

i
n−1 ≤ π

i,N
n−1(~N)|k

(N)
n−1 = 0) ≥

Pθ(p
i
n−1 ≤ π

i,N
n−1(~N))−Pθ(k

(N)
n−1 6= 0)

Pθ(k
(N)
n−1 = 0)

≥

Pθ

(

pin−1 ≤ p∗
P

θ
(k−i,N

n−1 =0)

(1−p∗)Pθ(k
−i,N
n−1 =0)+p∗P

θ
(k−i,N

n−1 =0)

)

−Pθ(k
(N)
n−1 6= 0)

Pθ(k
(N)
n−1 = 0)

≥

Fn−1,θ

(

p∗
P

θ
(k−i,N

n−1 =0)

(1−p∗)Pθ(k
−i,N
n−1 =0)+p∗P

θ
(k−i,N

n−1 =0)

)

−Pθ(k
(N)
n−1 6= 0)

Pθ(k
(N)
n−1 = 0)

.The term p∗
P

θ
(k−i,N

n−1 =0)

(1−p∗)Pθ(k
−i,N
n−1 =0)+p∗P

θ
(k−i,N

n−1 =0)
onverges to p∗, and the onvergene is uniform
32



w.r.t. i beause Pθ(k
(N)
n−1 = 0) ≤ Pθ(k

−i,N
n−1 = 0) ≤ 1. Consequently we have:

Eθ[k
(N)
n |k

(N)
n−1 = 0] =

N∑

i=1

F i
n−1,θ(π

i,N
n−1(~N))

≥
N∑

i=1

Fn−1,θ

(

p∗
P

θ
(k−i,N

n−1 =0)

(1−p∗)Pθ(k
−i,N
n−1 =0)+p∗P

θ
(k−i,N

n−1 =0)

)

−Pθ(k
(N)
n−1 6= 0)

Pθ(k
(N)
n−1 = 0)

∼
N→+∞

NFn−1,θ(p
∗). (8)In partiular Eθ[k

(N)
n |k

(N)
n−1 = 0] −−−−−→

N→+∞
+∞, and by means of proposition 3.6 the uto�s

π
i,N
n−1(~N) uniformly onverge to p∗. Moreover we have that:

F i
n−1,θ(π

i,N
n−1(~N)) = Pθ(p

i
n−1 ≤ π

i,N
n−1(~N)|k

(N)
n−1 = 0)

≤
Pθ

(

pin−1 ≤ π
i,N
n−1(~N)

)

Pθ(k
(N)
n−1 = 0)

=
Fn,θ(π

i,N
n−1(~N))

Pθ(k
(N)
n−1 = 0)

.And:
Eθ[k

(N)
n |k

(N)
n−1 = 0] =

N∑

i=1

F i
n−1,θ(π

i,N
n−1(~N)) ≤

N∑

i=1

Fn,θ(π
i,N
n−1(~N))

Pθ(k
(N)
n−1 = 0)

∼
N→+∞

NFn−1,θ(p
∗). (9)Equations (8) and (9) together give the result we were looking for.The basi idea is that, after the wave of exits, in the Low state qin is mostly below p∗ so thatany player will leave, and in the High state qin is mostly high enough for all the future believesto be greater than p, so that any remaining player will stay forever.Remember that the posterior belief of player i (after stage n) is expressed by:

qin
1− qin

=
pin

1− pin
×

Pθ(~α
−i,N
n = ~α)

Pθ(~α
−i,N
n = ~α)whenever the status of the players is ~α. This an also be written as:

qin
1− qin

=
pin

1− pin
×

∏

j 6=i,p
j
n−1<π

j,N
n−1(~N)

F
j

n−1,θ
(πj,N

n−1(~N))

F
j
n−1,θ(π

j,N
n−1(~N))

×
∏

j 6=i,p
j
n−1≥π

j,N
n−1(~N)

1− F
j

n−1,θ
(πj,N

n−1(~N))

1− F
j
n−1,θ(π

j,N
n−1(~N))

.The terms F
j
n−1,θ(π

j,N
n−1(~N)) onverges to Fn−1,θ(p

∗), beause P(k
(N)
n−1 = 0) −−−−−→

N→+∞
1 andbeause of lemma 3.10 and proposition 3.6. This leads us to set ρ∗ suh that :

ρ∗ log
Fn−1,θ(p

∗)

Fn−1,θ(p∗)
+ (1− ρ∗) log

1− Fn−1,θ(p
∗)

1− Fn−1,θ(p∗)
= 0.Using onvexity properties, it is readily seen that Fn−1,θ(p

∗) < ρ∗ < Fn−1,θ(p
∗). The real ρ∗represents a ritial fration of players leaving at stage n above whih the posterior beliefswill derease exponentially to 0 and under whih it will inrease exponentially, as stated inthe lemma below. 33



Lemma 3.11. Let (ΦN ) be a sequene of equilibria suh that P(k
(N)
n−1 = 0) −−−−−→

N→+∞
0, andassume that πn−1 < p∗. For every ρ > ρ∗, there exists K > 0 and N0 ≥ 1 suh that:

∀N ≥ N0,∀i ∈ {1, ..., N},∀~β−i ∈ {N, n}N−1 s.t. #
{
j ∈ {1, ..., N}\{i}, βj 6= N

}
≥ Nρ,

Pθ(~α
−i,N
n = ~β−i)

Pθ(~α
−i,N
n = ~β−i)

≤ e−KN .Similarly, for every ρ < ρ∗, there exists K > 0 and N0 suh that:
∀N ≥ N0,∀i ∈ {1, ..., N},∀~β−i s.t. #

{
j ∈ {1, ..., N}\{i}, αj 6= N

}
< Nρ :

Pθ(~α
−i,N
n = ~β−i)

Pθ(~α
−i,N
n = ~β−i)

≥ eKN .The proof of this lemma is in the appendix.Let us now prove proposition 1.3.Proof. First let us show the seond ondition in the de�nition of ADE.We just have to show that Pn−1,θ(k
(N)
n+1 < N) −−−−−→

N→+∞
0, beause then:

Pθ(k
(N)
n+1 = N) = 1−Pθ(k

(N)
n+1 < N) = 1−Pθ(k

(N)
n+1 < N, k

(N)
n−1 = 0)−Pθ(k

(N)
n+1 < N, k

(N)
n−1 6= 0)

≥ 1−Pn−1,θ(k
(N)
n+1 < N)P(k

(N)
n−1 = 0)−Pθ(k

(N)
n−1 6= 0) −−−−−→

N→+∞
1.We set ρ =

Fn−1,θ(p
∗)+ρ∗

2 . As Eθ[k
(N)
n |k

(N)
n−1 = 0] ∼ NFn−1,θ(p

∗) (lemma 3.10), and beause ρ∗is a onvex ombination of Fn−1,θ(p
∗) and Fn−1,θ(p

∗), remark 2 enables us to write:
lim

N→+∞
Pn−1,θ

(

k(N)
n ≤ Nρ

)

= 0. (10)Then we have:
Pn−1,θ(k

(N)
n+1 < N) = Pn−1,θ

(

k
(N)
n+1 < N, k(N)

n > Nρ
)

+Pn−1,θ

(

k
(N)
n+1 < N, k(N)

n ≤ Nρ
)

≤ Pn−1,θ(k
(N)
n+1 < N |k(N)

n > Nρ)Pn−1,θ(k
(N)
n > Nρ) +Pn−1,θ(k

(N)
n ≤ Nρ)

≤ Pn−1,θ(k
(N)
n+1 < N |k(N)

n > Nρ) +Pn−1,θ(k
(N)
n ≤ Nρ)As Pn−1,θ(k

(N)
n ≤ Nρ) −−−−−→

N→+∞
0, we fous on the other term. We use the basi idea that wementioned before, i.e. the posterior belief of ative player is neessarily greater than p∗:

Pn−1,θ(k
(N)
n+1 < N |k(N)

n > Nρ) = Pn−1,θ

(

∃i ∈ {1, ..., N}, αi,N
n+1 = N

∣
∣
∣ k(N)

n > Nρ
)

≤ Pn−1,θ

(

∃i ∈ {1, ..., N}, qin ≥ p∗ and αi,N
n = N

∣
∣ k(N)

n > Nρ
)

≤ NPn−1,θ

(

qin ≥ p∗ and αi,N
n = N

∣
∣ k(N)

n > Nρ
)

= NPn−1,θ

(
qin

1− qin
≥

p∗

1− p∗
and αi,N

n = N

∣
∣
∣
∣
k(N)
n > Nρ

)

= NPn−1,θ

(

pin
1− pin

Pθ(~α
−i,N
n = ~α)

Pθ(~α
−i,N
n = ~α)

≥
p∗

1− p∗
, αi,N

n = N

∣
∣
∣
∣
∣
k(N)
n > Nρ

)
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The fat that k(N)
n > Nρ and that i is still ative implies that, for N large enough and for agiven K > 0, P
θ
(~α−i,N

n =~α)

Pθ(~α
−i,N
n =~α)

≤ e−KN by means of lemma 3.11. This enables us to write:
Pn−1,θ(k

(N)
n+1 < N |k(N)

n > Nρ) ≤ NPn−1,θ

(
pin

1− pin
e−KN ≥

p∗

1− p∗
, αi,N

n = N

∣
∣
∣
∣
k(N)
n > Nρ

)

.And then:
Pn−1,θ(k

(N)
n+1 < N |k(N)

n > Nρ) ≤ N
Pθ

(
pin

1−pin
e−KN ≥ p∗

1−p∗ , α
i,N
n = N, k

(N)
n > Nρ, k

(N)
n−1 = 0

)

Pn−1,θ(k
(N)
n > Nρ)Pθ(k

(N)
n−1 = 0)

≤ N
Pθ

(
pin

1−pin
e−KN ≥ p∗

1−p∗

)

Pn−1,θ(k
(N)
n > Nρ)Pθ(k

(N)
n−1 = 0)

≤ Ne−KN
(1− p∗)Eθ

(
pin

1−pin

)

p∗Pn−1,θ(k
(N)
n > Nρ)Pθ(k

(N)
n−1 = 0)by means of Markov inequality.This last term onverges to 0. Indeed we have:

• Ne−KN −−−−−→
N→+∞

0,
• Pn−1,θ(k

(N)
n > Nρ) −−−−−→

N→+∞
1 (see equation (10))

• Pθ(k
(N)
n−1 = 0) −−−−−→

N→+∞
1 by hypothesis.And

Eθ

(
fθ(X

i
1)

fθ(X
i
1)

)

=

∫
fθ(u)

fθ(u)
fθ(u)du =

∫

fθ(u)du = 1,so that:
Eθ

(
pin

1− pin

)

= Eθ

(
p0

1− p0

fθ(X
i
n)

fθ(Xi
n)

...
fθ(X

i
1)

fθ(X
i
1)

)

=
p0

1− p0
Eθ

(
fθ(X

i
1)

fθ(X
i
1)

)n

=
p0

1− p0by independene of payo�s onditionally to the state.We are then able to onlude that Pθ(k
(N)
n+1 = N) −−−−−→

N→+∞
1, hene the seond ondition inthe de�nition of ADE.Now, let us show the third ondition.Similarly to equation (10) we have

lim
N→+∞

Pn−1,θ

(

k(N)
n < Nρ

)

= 1,where ρ =
F
n−1,θ(p

∗)+ρ∗

2 . And, as in the former point, we just have to show that:
Pn−1,θ

(

∃l ≥ n, k
(N)
l+1 6= k(N)

n

∣
∣
∣ k(N)

n < Nρ
)

−−−−−→
N→+∞
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We use the fat that a player whose posterior belief is greater than p neessarily remainsative:
Pn−1,θ

(

∃l ≥ n, k
(N)
l+1 6= k(N)

n

∣
∣
∣ k(N)

n < Nρ
)

= Pn−1,θ

(

∃l ≥ n, k
(N)
l+1 6= k(N)

n and k
(N)
l = k(N)

n

∣
∣
∣ k(N)

n < Nρ
)

≤ Pn−1,θ

(

∃l ≥ n,∃i ∈ {1, ..., N}, i leaves at stage l + 1 and k
(N)
l = k(N)

n

∣
∣
∣ k(N)

n < Nρ
)

≤ Pn−1,θ

(

∃l ≥ n,∃i ∈ {1, ..., N}, qil ≤ p and k
(N)
l = k(N)

n

∣
∣
∣ k(N)

n < Nρ
)

≤ Pn−1,θ

(

∃l ≥ n,∃i ∈ {1, ..., N},
qil

1− qil
≤

p

1− p
and k

(N)
l = k(N)

n

∣
∣
∣
∣
k(N)
n < Nρ

)

≤
∑

l ≥ n

i ∈ {1, ..., N}

Pn−1,θ

(
qil

1− qil
≤

p

1− p
and k

(N)
l = k(N)

n

∣
∣
∣
∣
k(N)
n < Nρ

)

.Sine
qil

1− qil
=

pil
1− pil

Pθ(~α
−i,N
l = ~α)

Pθ(~α
−i,n
l = ~α)

=
pin

1− pin
×

l∏

m=n+1

fθ(X
i
m)

fθ(Xi
m)

×
Pθ(~α

−i,N
n = ~α)

Pθ(~α
−i,N
n = ~α)

×
Pθ(k

−i,N
l = k

−i,N
n |~α−i,N

n )

Pθ(k
−i,N
l = k

−i,N
n |~α−i,N

n )
,and k

−i,N
n ≤ k

(N)
n < Nρ, we an underestimate qi

l

1−qi
l

using lemma 3.11 and orollary 3.3:
qil

1− qil
≥

πn

1− πn

×

l∏

m=n+1

fθ(X
i
m)

fθ(Xi
m)

× eKN × 1for N large enough and for a given K > 0.Consequently:
∑

l ≥ n

i ∈ {1, ..., N}

Pn−1,θ

(
qil

1− qil
≤

p

1− p
and k

(N)
l = k(N)

n

∣
∣
∣
∣
k(N)
n < Nρ

)

≤
∑

l ≥ n

i ∈ {1, ..., N}

Pn−1,θ

(
l∏

m=n+1

fθ(X
i
m)

fθ(Xi
m)

≤
p

1− p

1− πn

πn

e−KN

∣
∣
∣
∣
∣
k(N)
n < Nρ

)

=
∑

l≥n

NPθ

(
l∏

m=n+1

fθ(X
i
m)

fθ(Xi
m)

≤
p

1− p

1− πn

πn

e−KN

) (11)
= Pθ

(

1 ≤
p

1− p

1− πn

πn

e−KN

)

︸ ︷︷ ︸

=0 for N large enough

+
∑

l≥n+1

NPθ

(
l∏

m=n+1

fθ(X
i
m)

fθ(Xi
m)

≤
p

1− p

1− πn

πn

e−KN

)

.Equality (11) is a by-produt of the independene of payo�s onditionally to the state.36



Then, we set the r.v. Y i
m = log

f
θ
(Xi

m)

fθ(Xi
m)
, and denote by y its expetation under Pθ. We have:

Eθ

[
fθ(X

i
m)

fθ(X
i
m)

]

=

∫
fθ(u)

fθ(u)
fθ(u)du =

∫

fθ(u)du = 1,whih gives thanks to Jensen inequality:
0 = logEθ

[
fθ(X

i
m)

fθ(X
i
m)

]

≥ Eθ

[

log
fθ(X

i
m)

fθ(X
i
m)

]

= −y.And beause f
θ
(Xi

m)

fθ(Xi
m)

is not onstant (it has a density) and log is not a�ne, y > 0. Moreover,we an assume that the r.v. Y i
m are upper bounded and y is �nite: if not, one an replae

Y i
m by Ỹ i

m = sup(Y i
m, L) with L with large enough for the orrespondent expetation ỹ tobe non-negative (whih is made possible by dominated onvergene). Plus, the estimationsthereafter will hold a fortiori beause Ỹ i

m ≤ Y i
m.We also de�ne Si

l =
∑l

m=n+1(Y
i
m − y) and s = log

(
p

1−p

1−πn

πn

). Then, we have:
∑

l≥n+1

NPθ

(
l∏

m=n+1

fθ(X
i
m)

fθ(Xi
m)

≤
p

1− p

1− πn

πn

e−KN

)

≤
∑

l≥n+1

NPθ(S
i
l ≤ s−KN − (l − n)y).The r.v. Y i

m − v are upper bounded by a real M , and lower bounded by a real M ′. UsingHoe�ding's inequality we have (with N large enough to have NK > s):
Pθ(S

i
l ≤ s−KN − (l − n)y) ≤ exp

−2(s−NK − (l − n)y)2

(l − n)(M −M ′)2
.This leads us to the �nal onlusion sine

∑

l≥n+1

NPθ(S
i
l ≤ s−KN − (l − n)y) ≤

∑

l≥n+1

N exp
−2(s−NK − (l − n)y)2

(l − n)(M −M ′)2

≤
∑

l≥1

N exp
−2(s−NK − ly)2

l(M −M ′)2and by dominated onvergene this onverges to 0 as N → +∞.Now let us prove the seond part of theorem 1.1.Proposition 3.12. If πn−1 < p∗ and if inequalities (Im) (1 ≤ m ≤ n − 1) hold, then thereexists an ADE with delay n.Proof. Consider the game where eah player is obliged to stay until stage n, and is still obligedto stay then if pin−1 > πn−2. This game is very similar to the original one, there still existsequilibria and all of them are in uto� strategy. In this new game, we have:
Pθ(i leaves at stage n|k(N)

n = 0, pin−2) ≤ Pθ(p
i
n−1 ≤ πn−2|p

i
n−2)

≤ Pθ(p
i
n−1 ≤ πn−2|p

i
n−2 = πn−2) = Pθ

(
fθ(X

i
n−1)

fθ(X
i
n−1)

≤ 1

)

< 1.37



By setting β̃θ = Pθ(p
i
n−1 ≤ πn−2|p

i
n−2 = πn−2) (and r̃ = 1) we get the same inequality asin Lemma 3.4, and all that was proven thereafter is still true with these new bounds. Inpartiular, the fat that P(k

(N)
n = 0) = 1 and that πn−1 < p∗ implies thanks to the previoustheorem (1.3) that any sequene of equilibria is an ADE.Let (ΦN ) be a sequene of suh equilibria. Our goal is to show that there exists N0 suh that

(ΦN )N≥N0 is a sequene of equilibria in the original game.First, thanks to lemma 3.10 and to proposition 3.6, the uto�s πi,N
n (~N) uniformly tend to p∗.Inequality (In−1) implies that πn−2 > p∗ (see setion 3.1.2), so that the rule whih ompelsplayer i to remain ative if pin−1 > πn−2 is still obeyed in the original game for N large enough.Now let us see if any player i is not tempted to deviate unilaterally by leaving at a stagem < n.If this player stiks to his strategy in the onstrained game, he will remain ative until stage

n, and then stay i� his ontinuation payo� ω
i,N
n−1(p

i
n−1, ~α

−i,N
n−1 ) is positive (see setion 3.1.2).In the onstrained game we have Pθ

(

k
−i,N
l = 0

)

= Pθ

(

k
−i,N
l = 0

)

= 1 (1 ≤ l ≤ n − 1),this implies that pil = qil (see setion 3.1.1) and that ~α
−i,N
l = ~N. This gives us the followingunderestimation of the payo� that player i gets from stage m if he stays and follows hisstrategy in the onstrained game:

(1 + δ + ...+ δn−m−1)myop(pim−1) + δn−m
E

[

max
(

0, ωi,N
n−1(p

i
n−1, ~N)

)∣
∣
∣ pim−1

]By lemma 3.10 and propostion 3.6, we have ωi,N
n−1(p

i
n−1, ~N) ≥ opt(pin−1)−KN , whereKN −−−−−→

N→+∞

0 (irrespetive to i). Consequently, by staying at stage m, player i an expet at least a payo�of:
(1 + δ + ...+ δn−m−1)myop(pim−1) + δn−m

E
[
max

(
0, opt(pin−1)

)∣
∣ pim−1

]
− δn−mKNAs mentioned in setion 3.1.2 this lower bound is nearly the left side of inequality (Im) and isinreasing in pim−1. Consequently, it is non-negative for N large enough, and player i is rightto stay at stage m beause leaving would yield a payo� of 0.To onlude the results about ADE, note that the proof of orollary 1.2 an be found in theappendix.Our last proof deals with other asymptoti equilibria.3.2.4 Theorem 1.4Proof. Let (ΦN ) be a sequene of symmetri equilibria suh that P(k

(N)
n−1 = 0) −−−−−→

N→+∞
1and lim sup

N→+∞
P(k

(N)
n = 0) < 1. We also assume that πn−1 ≥ p∗. Then by theorem 1.5 thesequene (Eθ[k
(N)
n |k

(N)
n−1 = 0]

)

N≥1
is bounded, and so is the sequene (Eθ[k

(N)
n |k

(N)
n−1 = 0]

)

N≥1by stohasti dominane. Let us set λθ,N = Eθ[k
(N)
n |k

(N)
n−1 = 0]. As lim sup

N→+∞
P(k

(N)
n = 0) < 1and Pθ(k

(N)
n = 0) ≥ Pθ(k

(N)
n = 0) by stohasti dominane, Pθ(k

(N)
n = 0) is bounded awayfrom 1 and λθ,N is bounded away from zero. We an also assert that Pθ(k

(N)
n = 0) < 1 for Nlarge enough, beause k

(N)
n is measurable w.r.t. the pim (1 ≤ i ≤ N and 1 ≤ m ≤ n − 1) andthe pim have the same support under Pθ and Pθ. Therefore λN,θ > 0 for N large enough.38



As the equilibria are symmetri, players all play the same strategy and the probability under
Pθ(·|k

(N)
n−1 = 0) to leave at stage n for eah of them is λθ,N

N
(θ ∈ {θ, θ}). Moreover eahdeision only depends on private payo�s, whih are independent aross players onditionallyto the state. Therefore the number of exits k(N)

n is the sum of N independent Bernoulli r.v.with the same parameter λθ,N

N . So the distribution of k(N)
n is a binomial distribution:

∀N ≥ 1, ∀k ∈ {0, ..., N}, Pθ(k
(N)
n = k|k

(N)
n−1 = 0) = Ck

N

(
λθ,N

N

)k (

1−
λθ,N

N

)N−k

.This asymptotially equals a Poisson distribution:
Pθ(k

(N)
n = k|k

(N)
n−1 = 0) = Ck

N

(
λθ,N

N

)k (

1−
λθ,N

N

)N−k

=
N(N − 1) · · · (N − k + 1)

Nk

(λθ,N )k

k!

(

1−
λθ,N

N

)N (

1−
λθ,N

N

)−k

∼
N→+∞

(λθ,N )k

k!
e
N log

(

1−
λθ,N
N

)

∼
N→+∞

(λθ,N )k

k!
e−λθ,N .
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AppendixProof of Lemma 3.1Proof. As the link between pik and the likelihood ratio pi
k

1−pi
k

is an inreasing bijetion between
[0, 1] and [0,+∞), we an restate the result as:

x 7→
Pθ

(
f
θ
(Xi

n)

fθ(Xi
n)

f
θ
(Xi

n−1)

fθ(X
i
n−1)

...
f
θ
(Xi

1)

fθ(X
i
1)

≥ x,
f
θ
(Xi

n−1)

fθ(X
i
n−1)

...
f
θ
(Xi

1)

fθ(X
i
1)

≥ xn−1, ...,
f
θ
(Xi

1)

fθ(X
i
1)

≥ x1

)

Pθ

(
f
θ
(Xi

n)

fθ(Xi
n)

f
θ
(Xi

n−1)

fθ(X
i
n−1)

...
f
θ
(Xi

1)

fθ(X
i
1)

≥ x,
f
θ
(Xi

n−1)

fθ(X
i
n−1)

...
f
θ
(Xi

1)

fθ(X
i
1)

≥ xn−1, ...,
f
θ
(Xi

1)

fθ(X
i
1)

≥ x1

)is inreasing, with xi =
πi

1−πi

1−p0
p0

.Let us then denote Ri
m =

f
θ
(Xi

m)

fθ(Xi
m)

f
θ
(Xi

m−1)

fθ(X
i
m−1)

...
f
θ
(Xi

1)

fθ(X
i
1)

and:
Pθ(x) = Pθ

(
Ri

n ≥ x,Ri
n−1 ≥ xn−1, ..., R

i
1 ≥ x1

)
.We onsider two positive reals x and x′ with x′ > x. We have to show that:

Pθ(x
′)Pθ(x)− Pθ(x)Pθ(x

′) ≥ 0.First, note that:
Pθ(x

′)Pθ(x)− Pθ(x)Pθ(x
′) = Pθ(x

′)
(
Pθ(x)− Pθ(x

′)
)
− Pθ(x

′)
(
Pθ(x)− Pθ(x

′)
)
, (12)and:

Pθ(x)− Pθ(x
′) = Pθ

(
x′ > Ri

n ≥ x,Ri
n−1 ≥ xn−1, ..., R

i
1 ≥ x1

)
= Eθ

[∫

1A(un)fθ(un)dun

]

,where A(un) is the event {x′ > f
θ
(un)

fθ(un)

f
θ
(Xi

n−1)

fθ(X
i
n−1)

...
f
θ
(Xi

1)

fθ(X
i
1)

≥ x,Ri
n−1 ≥ xn−1, ..., R

i
1 ≥ x1

}.On A(un), we have fθ(un) ≤
fθ(X

i
n−1)

f
θ
(Xi

n−1)
...

fθ(X
i
1)

f
θ
(Xi

1)
x′fθ(un), so that:

Pθ(x)− Pθ(x
′) ≤ Eθ

[∫

1A

fθ(X
i
n−1)

fθ(X
i
n−1)

...
fθ(X

i
1)

fθ(X
i
1)
x′fθ(un)dun

]

= x′
∫

1B(u1,...,un)

fθ(un−1)

fθ(un−1)
...
fθ(u1)

fθ(u1)
fθ(un)fθ(un−1)...fθ(u1)du1...dun

= x′
∫

1B(u1,...,un)fθ(un)fθ(un−1)...fθ(u1)du1...dunwhere B(u1, ..., un) is the set {x′ > f
θ
(un)

fθ(un)
...

f
θ
(u1)

fθ(u1)
≥ x, ...,

f
θ
(u1)

fθ(u1)
≥ x1

}. We then have:
Pθ(x)− Pθ(x

′) ≤ x′Pθ

(
x′ > Ri

n ≥ x,Ri
n−1 ≥ xn−1, ..., R

i
1 ≥ x1

)

= x′
(
Pθ(x)− Pθ(x

′)
)
.Combining this with (12), we get:

Pθ(x
′)Pθ(x)− Pθ(x)Pθ(x

′) ≥ Pθ(x
′)
(
Pθ(x)− Pθ(x

′)
)
− x′Pθ(x

′)
(
Pθ(x)− Pθ(x

′)
)

=
(
Pθ(x)− Pθ(x

′)
) (

Pθ(x
′)− x′Pθ(x

′)
)
.Using similar arguments, we �nd that Pθ(x

′) ≥ x′Pθ(x
′).Then : Pθ(x

′)Pθ(x)− Pθ(x)Pθ(x
′) ≥ 0, and the result follows.41



Proof of lemma 3.11Proof. First notie that the funtion
gN,θ : (x, j) 7→ Pθ

(

p
j
n−1 ≤ x, p

j
n−2 ≥ π

j,N
n−1(~N), · · · , p

j
1 ≥ π

j,N
1 (~N)

)uniformly onverges to Fn−1,θ as N → +∞. Indeed, on the one hand we have that:
gN,θ(x, j) ≤ Pθ(p

j
n−1 ≤ x) = Fn−1,θ(x).On the other hand we have:

gN,θ(x, j) ≥ Pθ

(

p
j
n−1 ≤ x, k

(N)
n−1 = 0

)

≥ Pθ

(

p
j
n−1 ≤ x

)

−Pθ(k
(N)
n−1 6= 0)

≥ Fn−1,θ(x)−Pθ(k
(N)
n−1 6= 0).Similarly, the funtion

hN,θ : (x, j) 7→ Pθ

(

p
j
n−1 > x, p

j
n−2 ≥ π

j,N
n−1(~N), · · · , p

j
1 ≥ π

j,N
1 (~N)

)uniformly onverges to 1− Fn−1,θ as N → +∞.Now let us set ρ > ρ∗. By stohasti dominane Fn−1,θ(p
∗) < Fn−1,θ(p

∗) whih implies thatthe funtion
x 7→ x log

Fn−1,θ(p
∗)

Fn−1,θ(p∗)
+ (1− x) log

1− Fn−1,θ(p
∗)

1− Fn−1,θ(p∗)is inreasing. Consequently, by de�nition of ρ∗, we have:
ρ log

Fn−1,θ(p
∗)

Fn−1,θ(p∗)
+ (1− ρ) log

1− Fn−1,θ(p
∗)

1− Fn−1,θ(p∗)
< 0.Beause of the uniform onvergenes mentioned above and by ontinuity of Fn−1,θ, one anhoose K in (0,−ρ log

F
n−1,θ(p

∗)

Fn−1,θ(p∗)
− (1− ρ) log

1−F
n−1,θ(p

∗)

1−Fn−1,θ(p∗)

), ǫ > 0 and N0 suh that
∀π, π′ ∈ [p∗ − ǫ, p∗ + ǫ], ∀N ≥ N0,∀j ∈ {1, · · · , N},

ρ log
gN,θ(π, j)

gN,θ(π, j)
+ (1− ρ) log

hN,θ(π
′, j)

hN,θ(π′, j)
< −K. (13)By lemma 3.10 and proposition 3.6, one an also hoose N0 large enough suh that:

∀N ≥ N0, ∀j ∈ {1, ..., N}, p∗ − ǫ ≤ π
N,j
n−1(~N) ≤ p∗ + ǫ.
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Then, for all N ≥ N0:
log

Pθ(~α
−i,N
n = ~β−i)

Pθ(~α
−i,N
n = ~β−i)

=
∑

j 6=i|pjn−1<π
N,i
n−1(~N)

log
gN,θ(π

N,j
n−1(~N), j)

gN,θ(π
N,j
n−1(~N), j)

+
∑

j 6=i|pjn−1≥π
N,j
n−1(~N)

log
hN,θ(π

N,j
n−1(~N), j)

hN,θ(π
N,j
n−1(~N), j)

≤ #{j 6= i| pjn−1 < π
N,j
n−1(~N)} log

gN,θ(π
N,jN0
n−1 (~N), jN0 )

gN,θ(π
N,jN0
n−1 (~N), jN0 )

︸ ︷︷ ︸

≤0

+#{j 6= i| pjn−1 ≥ π
N,j
n−1(~N)} log

hN,θ(π
N,jN1
n−1 (~N), jN1 )

hN,θ(π
N,jN1
n−1 (~N), jN1 )

︸ ︷︷ ︸

≥0

,

where jN0 = argmax
j 6=i| pjn−1<π

N,j
n−1(~N)

g
N,θ

(πN,j
n−1(~N),j)

gN,θ(π
N,j
n−1(~N),j)

and jN1 = argmax
j 6=i| pjn−1<π

N,j
n−1(~N)

h
N,θ

(πN,j
n−1(~N),j)

hN,θ(π
N,j
n−1(~N),j)

.Then, thanks to equation (13) we have:
log

Pθ(~α
−i,N
n = ~β−i)

Pθ(~α
−i,N
n = ~β−i)

≤ Nρ log
gN,θ(π

N,jN0
n−1 (~N), jN0 )

gN,θ(π
N,jN0
n−1 (~N), jN0 )

+N(1− ρ) log
hN,θ(π

N,jN1
n−1 (~N), jN1 )

hN,θ(π
N,jN1
n−1 (~N), jN1 )

≤ −KN.The proof of the seond assertion of the lemma is very similar.Proof of orollary 1.2Proof. The seond point of the orollary is a by-produt of the examples in setion 1.5.Let us prove the �rst point. We �x n ≥ 2, and set µ = ess inf
fθ>0

f
θ

fθ
. In partiular the relation

pim
1− pim

=
fθ(X

i
1)

fθ(X
i
1)

· · ·
fθ(X

i
m)

fθ(Xi
m)

p0

1− p0implies that πm

1−πm
= µm p0

1−p0
. If there exists an ADE with delay n ≥ 2, we have πn−1 < p∗ ≤

πn−2 whih equivalent to µn−1 p0
1−p0

< p∗

1−p∗ ≤ µn−2 p0
1−p0

. To ensure the relation, we set thefollowing equality between the settings of the game:
µn− 3

2
p0

1− p0
=

p∗

1− p∗
. (14)As suggested in setion 1.5, we �x all the settings of the games exept for p0 and δ and weshow that, when δ is lose enough to 1 and under ertain irumstanes, all the inequalities43



(Im) (1 ≤ m ≤ n− 1) are satis�ed so that there exists an ADE with delay n.Let us study inequality (Im). First we set Λn,m,θ = Pθ

(
pin−1 ≥ p∗|pim−1 = πm−1

). We have:
Λn,m,θ = Pθ

(
pin−1

1− pin−1

≥
p∗

1− p∗
|pim−1 = πm−1

)

= Pθ

(
fθ(X

i
n−1)

fθ(X
i
n−1)

· · ·
fθ(X

i
m)

fθ(Xi
m)

πm−1

1− πm−1

≥
p∗

1− p∗

)

= Pθ

(
fθ(X

i
n−1)

fθ(X
i
n−1)

· · ·
fθ(X

i
m)

fθ(Xi
m)

µm−n+ 1
2 ≥ 1

)by means of equation 14. Thus Λn,m,θ does not depend on δ or p0. Moreover we have:
πm−1

1− πm−1

=
p0

1− p0
µm−1 =

p∗

1− p∗
µm−n+ 1

2 =
(1− δ)(−θ)µm−n+ 1

2

θand
πm−1 =

(1− δ)(−θ)µm−n+ 1
2

θ + (1− δ)(−θ)µm−n+ 1
2

.Then one an hek that:
(1 + δ + ...+ δn−m−1)

(
πm−1θ + (1− πm−1)θ

)

+δn−m

(

πm−1
θ

1− δ
Pθ(p

i
n−1 ≥ p∗|pim−1 = πm−1)

+(1− πm−1)θPθ(p
i
n−1 ≥ p∗|pim−1 = πm−1)

)

−−−→
δ→1

−θ
(

µm−n+ 1
2Λn,m,θ − n+m− Λn,m,θ

)

.We want this limit to be non-negative for any m ∈ {1, · · · , n− 1}. To be more expliit, we setthe distribution of Xi
m + 1 as an exponential law of parameter λθ, as in setion 1.5. In thisase µ =

λ
θ

λθ
, and thanks to the property of summation of gamma distributions we get that:

Λn,m,θ = µ
1

2λθ(λθ−λ
θ
)

n−m−1∑

i=0

xi

i!λi
θ

, where x =
− log µ

2(λθ − λθ)
.Consequently 1 ≥ Λn,m,θ ≥ µ

1
2λθ(λθ−λ

θ
) , and:

−θ
(

µm−n+ 1
2Λn,m,θ − n+m− Λn,m,θ

)

≥ −θ

(

µ
m−n+ 1

2
+ 1

2λ
θ
(λθ−λ

θ
) − n+m− 1

)

.The latter is non-negative for any m ∈ {1, · · · , n− 1} i�:
∀k ∈ {1, · · · , n− 1},

(
1

µ

)k− 1
2
− 1

2λ
θ
(λθ−λ

θ
)

> k + 1.44



This is learly the ase if µ is small enough and λθ(λθ − λθ) is large enough, e.g. λθ = 10 and
λθ =

1
2 .As a onlusion, with these values of λθ and with δ lose enough to 1, all inequalities (Im)hold so that there exists an ADE with delay n.
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