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Large Bandit GamesAntoine SalomonAbstra
tWe study a multi-player one-arm bandit game: for in�nitely many stages, players
hoose between playing a risky a
tion or dropping out irreversibly to a safe a
tion. Ea
hplayer observe his payo�s and other players' a
tions only. We study equilibria of thegame when the number of players gets large. We argue that limit equilibrium 
an exhibitaggregate randomness, and provide a 
hara
terization of games where players behaviourslead to a swift determination of the value of the risky a
tion.KEYWORDS: one-arm bandit, large games, deterministi
 equilibria, so
ial learning.Introdu
tionIn this paper, we study situations where many agents fa
e a dilemma between exploiting aknown pro�table investment and experimenting others with unknown values. Bandit modelsprovide a good way to deal with this problem: ea
h player fa
es a one-arm bandit ma
hine(or equivalently a two-arm bandit with a safe and a risky arm) whi
h he sequentially de
idesto (or not to) operate. When the risky arm is pulled, the player gets a payo� from whi
h he
an learn about the pro�tability of its ma
hine. Usually a ma
hine is one of two types, sayHigh and Low, that the player does not know. When the type is High, the expe
ted value ofthe risky a
tion is positive, and negative when the type is Low. So the player has to 
hoose ifhe stops experimentation, and when: not too early to have time to dete
t the High state andnot too late to avoid 
ostly bets. Gittings [11℄ �rst des
ribed the optimal strategy in a basi
situation where a single player 
hooses sequentially between a safe and a risky a
tion (seealso Ferguson [10℄). Models with a single player and a multi-arm bandit have also spawnedmany publi
ations (e.g. Brezzi and Lai [5℄). In a multi-player game, the situation is tri
kier: aplayer may be able to wat
h others' de
isions and/or payo�s, whi
h is another way to get infor-mation when the types of the risky arms are 
orrelated. The model we 
onsider is one of them.Let us now des
ribe some relevant 
on
epts usually asso
iated with multi-player bandit games.A strategi
 e�e
t of bandit games is free-riding. Players may have an in
entive to take ad-vantage of other agents' experimentation without taking risks themselves (see Bolton andHarris [4℄ and Keller, Rady and Kripps [12℄). This brings some intri
a
ies in the des
riptionof equilibria, and it a�e
ts their so
ial e�
ien
y. As we do not want to fo
us on free-ridingwe assume that the de
ision to swit
h to a safe a
tion is irreversible.Moreover, the fa
t that there are many players may enable to gather a better amount ofinformation. As the number of players is growing, this 
ould even asymptoti
ally leads to afull learning of the state. As a 
onsequen
e, the players would eventually all play the samea
tion, whi
h has proven to be the best. Consequently our subje
t is linked to herding , whi
his not restri
ted to bandit games (see Banarjee [2℄ and Aoyagi [1℄). In this 
ase of perfe
t1



learning, we 
an also wonder if it bene�ts to a large proportion of players, and if the state isrevealed fast. This issue usually depends on two parameters. On the one hand, if the 
ost ofexperimentation is big, it may en
ourage players to take risks and shorten the learning period.On the other hand, when the number of players gets large, it in
reases sour
es of informationand it may speed learning up as well. For example, C. Chamley and D. Gale [8℄ studied thein�uen
e of the number of players and of the dis
ount rate on herding and delay in a modelof investment.In this paper, we study the 
ase where the number of players gets large.This situation is often modelled in the literature by a 
ontinuum of players (see, e.g. Caplinand Leahy [7℄, Bergemann and Välimäki [3℄, and Camargo [6℄). In this setting, an individ-ual player 
an not reveal anything and only massive a
tions indi
ate relevant information.Ea
h player get a pie
e of information, whi
h a�e
ts their de
isions, so that the proportionof players who take a given option is a feature of the state of the nature. For instan
e, theequilibria 
onsidered in [7℄ are depi
ted as follows: at some point a proportion of agents is ledto leave the market, and this reveals the state to the others. The interest for these modelsis justi�ed in so far as a large number of players is expe
ted to be asymptoti
ally equivalentto a 
ontinuum setting. As an example, in Rosenberg, Solan and Vielle [14℄, the number ofplayers is �nite but when it gets large we also observe a revealing fra
tion of exit.Nevertheless, the limit aggregate behaviour of a large game is not always similar to player 
on-tinuum situation. In [14℄, the model assumes that some payo�s make players so pessimisti
after one stage that exiting is the dominant strategy. That is why, when the number of play-ers gets large, a massive departure is observed. Without this assumption, players 
ould betempted to delay their exit or to leave far more s
ar
ely, so that limit aggregate behaviourdisplays randomness and is not perfe
tly 
orrelated to the state of the nature. In a study thatis related to our, P. Murto and J. Välimäki [13℄ study this randomness and the pro
ess oflearning. They show that when the number of players is large and when the period is short,information aggregates smoothly by several random wave of exits. In their model, a player iseither informed (i.e. he has re
eived the positive signal that tells his that his state is High) oruninformed (i.e. he did not get the positive signal).Our model is 
lose to [14℄: ea
h of a large number of players operates in dis
rete time a one-arm bandit ma
hine, they observe ea
h others' a
tions but not ea
h others' payo�s. The onlyway players 
an get information is from their own payo�s and from wat
hing others' de
isions.Ex
ept from one te
hni
al assumption, the distribution of payo�s is general, so that learningis not monotoni
 as in [13℄.Here are the main assumptions of our model.First, the state of the ma
hines are perfe
tly 
orrelated: either they are all in the "High" state,either they are all "Low". This means that all the ma
hine shares a 
ommon distribution ofpayo�, the expe
tation of whi
h is positive in the High state and negative in the Low state.Se
ond, 
onditionally to the state, payo�s are drawn independently a
ross players and a
rossstages. Finally and as mentioned before, the de
ision to stop experimentation is irreversible.Our 
laim is that an alternative exists 
on
erning asymptoti
 equilibria.For some equilibria, players wait until a fra
tion of them gets too bad news and is for
ed toleave. Thus the state is revealed to the remaining players. This 
ase is similar to models witha 
ontinuum of players, as the limit aggregate behaviour does not show un
ertainty. This is2



also related to herding: ex
ept for the �rst leaving players, all players will a
t the same. Theirde
isions are based on others' behaviours rather than on their private information, but thisalways leads to the best a
tion anyway.We will 
all these equilibria Asymptoti
ally Deterministi
. We provide 
onditions for theirexisten
e, whi
h are the inequalities that make sure that a non negligible part of the playersexits at a given stage and that all players are optimisti
 enough to wait for this revealingstage. In parti
ular, these inequalities 
an be viewed as 
onditions for existen
e of equilibriain a 
ontinuum of players setting.For all other asymptoti
 equilibria, the limit aggregate behaviour exhibits randomness. Atsome stage of the game, some of the most pessimisti
 players will leave but the number ofexits is un
ertain, as it is not perfe
tly 
orrelated to the type of the ma
hines. This situationis due to the fa
t there are not enough players willing to reveal a good pie
e of their privateinformation. Indeed, we will show that the average number of exits is bounded w.r.t to thenumber of players involved in the game. In parti
ular, if the equilibrium is symmetri
 the lawof this number is asymptoti
ally equivalent to a Poisson distribution. As a 
onsequen
e, thislimit 
ase 
annot be modelled by a 
ontinuum of players.The paper is organized as follows. In the �rst se
tion, our model is des
ribed and the mainresults are presented. Then, we give the main leads of their proofs. The third se
tion isdevoted to the 
omplete proofs.1 Model and results1.1 ModelEa
h of N players sequentially operates a one-arm bandit ma
hine. They have to de
ide whento stop, this de
ision being irreversible and yielding a payo� normalized to zero. At any stage
n ≥ 1, ea
h player i:1. de
ides to drop out irreversibly or to stay in,2. observes own payo� Xi

n,3. observes who stayed in.The ma
hines have a 
ommon payo� distribution, whi
h 
an be one of two possible types:High or Low. This type is a random variable, denoted Θ and stands for the state of theworld. Players are not informed of the value of Θ but they share a 
ommon prior p0 whi
his the probability of the state being High. We assume that, 
onditional on Θ, the payo�s
(Xi

n)n≥1,i∈{1,...,N} are i.i.d.
θ (resp. θ) stands for the expe
ted stage payo� of a ma
hine of type High (resp. Low) andis w.l.o.g. identi�ed with this type. To avoid trivial 
ases, we assume that θ < 0 < θ.Players dis
ount payo�s at a 
ommon rate δ ∈ (0, 1) so that the overall payo� of player i is
∑τi

k=1 δ
k−1Xi

k, where τi is the last stage where player i de
ides to stay in (possibly +∞).Lastly, we denote by Pθ the 
onditional probability given Θ = θ (θ ∈ {θ, θ}).
3



Remarks
• Payo�s are private information, but de
isions are publi
ly observed. Thus the only waya player 
an learn the state is thanks to his own payo�s on the one hand, and to others'players de
isions on the other hand. If payo�s were publi
ly dis
losed, the study of thelarge game (i.e. N → +∞) would be simple: there would be a full learning of the stateafter the �rst stage.
• Ex
ept for one te
hni
al assumption whi
h will be detailed below, this model is generalin terms of information dis
losure. For example, it 
ould be that some payo�s are badin term of pro�t but are at the same time good news, i.e. they show that the state islikely to be High.
• The fa
t that all the ma
hines are either all of type High, either all of type Low is relatedas perfe
t positive 
orrelation. It implies for example that good news for one player isgood news for the others.
• Lastly, the fa
t that dropping out is irreversible forbids any player to get ba
k to exper-iment if they stopped it before. This will enable us to have a simple 
hara
terizationof equilibria. Without this assumption, the study would be tri
kier notably be
ause offree-riding.1.2 Cuto� StrategiesWe want to study equilibria when N is large. Let us �rst re
all a general result 
hara
terizingequilibria for any N .To make a de
ision, a player i may take into a

ount his past payo�s, whi
h partially dis
losethe state. To this aim, he 
an 
ompute his Private Belief, denoted pin:

pin = P(Θ = θ|Xi
n, ...,X

i
1).This is the probability that player i assigns to state High a

ording to his own payo�s, re-gardless of others players' a
tions (as if he were alone).Assuming he knows the others players' strategies, player i also knows how to a

ount for otherplayers' de
isions. Let us set the r.v. α

j,N
n , whi
h gives the status of player j at stage n inthe N player game, as follows: αj,N

n = N if player j still a
tive, αj,N
n = m if j left at stage m(m ≤ n). One 
an sum up the status of all players (ex
ept i) in a random ve
tor ~α−i,N

n whose
oordinates are the r.v. α
j,N
n (j 6= i). We will denote ~N the ve
tor su
h that all 
oordinatesare N. Moreover, a signi�
ant parameter of the N player game is the number of departuresbefore the end of stage n, and we will denote it k(N)

n , i.e. k(N)
n = #{j ∈ {1, ..., N}|αj,N

n 6= N}.Now, player i 
an play as follows: at ea
h stage, he 
omputes pin and de
ides to stay only if itis above a given 
ut-o� whi
h depends on n and on the status of the other players ~α−i,N
n .We de�ne 
uto� strategies as a sequen
e (πi,N

n (~tn)) with values in [0, 1] indexed by the stages
n ≥ 1 and by ~tn, the possible ve
tors of status at stage n. Player i plays the strategy if hestops at stage inf{n ≥ 1 : pin−1 < πi

n−1(~α
−i,N
n−1 )}.

4
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pinFigure 1: Progress of the game in 
uto� strategy.Beware the notations that 
an be bit de
eptive, be
ause the de
ision at stage n rely on privatebelief pin−1.These strategies were introdu
ed in [14℄. Their study of equilibria is based on the 2-playergame but their results are easily generalized for the game with any number of players. Theirresults also suppose the following assumption.Assumption A. The private belief pi1 has a density w.r.t. the Lebesgue Measure.This implies that the law of pin is 
ontinuous for any n ≥ 1 (see se
tion 3.1.1). This is a wayto rule out mixed strategy and to simplify the des
ription of equilibria: if pi1 had atoms, someplayers 
ould have the same belief at the same time and there would not exist equilibrium ifthey did not mix their strategy. Our results are based on this assumption as well.Under A, there exists symmetri
 equilibria, and all equilibria are in 
uto� strategies. That iswhy a sequen
e of equilibria indexed by the number of players N will be sometimes referredto by the 
orresponding sequen
e of 
uto�s (πi,N
n (~tn)

).Another 
onsequen
e of A is that pin has the same support under Pθ and Pθ: if not, it wouldmean that, with positive probability, pin has a value that is 
hara
teristi
 of the state. So thestate 
ould be revealed and this value would be either 0 or 1. Consequently we would have
P(p1n = 0) > 0 or P(p1n = 1) > 0, whi
h 
ontradi
ts the fa
t that pin has a density.Now we will study the asymptoti
 equilibria when N → +∞. As we will see, there are mainlytwo types of asymptoti
 equilibria.1.3 Asymptoti
ally Deterministi
 Equilibrium1.3.1 Introdu
ing exampleD.Rosenberg, E.Solan and N.Vieille [14℄ study limit equilibrium play as N → +∞ in a parti
-ular 
ase. In this setting the support of pi1 is [0, 1] and asymptoti
 equilibria 
an be fully andintuitively des
ribed. Basi
ally, this full support assumption makes sure that some playerswill be so pessimisti
 after the �rst stage that they will leave, whi
h enable the other playersto learn the state.To understand the des
ription, we need to introdu
e the 
uto� p∗, de�ned by the followingequation:

p∗θ

1− δ
+ (1− p∗)θ = 0.This is the 
uto� that makes a player indi�erent between staying and leaving when he is sureto learn the state at the following stage: leaving yields a payo� of zero, whereas staying yieldsone payo� of expe
tation θ in the Low state and payo�s of expe
tation θ for all the remaining5



stages in the High state. Consequently if a player has a belief below p∗, he has to leave be-
ause even if he were to learn the state afterwards, he will still not get a positive expe
tation.Conversely, if a player has a belief over p∗ and if he is going to learn the state at the followingstage, he has to stay.Now let us des
ribe the equilibria of large games when pi1 has full support. After the �rstpayo�, a fra
tion of players have a belief under p∗ and is then obliged to drop out. Thisfra
tion depends on the state of the world, as players get on average more bad news in theLow state than in the High state. When the number of players is large, this reveals the stateby the Law of Large Numbers. Thus players who have a belief above p∗ after the �rst payo�
an a�ord to stay for one more stage as the number of departures will show them the state.Therefore players tends to play with 
uto� p∗.In this paper we do not assume that pi1 has full support anymore. We set Fn,θ as the 
.d.f. of
pin under Pθ, and we de�ne πn as the worst possible belief at stage n:

πn = inf{π ∈ [0, 1] : Fn,θ(π) > 0}.Note that πn does not depend on θ, be
ause pin has the same support under Pθ and Pθ.First 
asual intuition suggests that learning is only delayed and the equilibria will still bedeterministi
: players will remain a
tive until a fra
tion of them gets too bad news, leaves,and thus reveals the state to the others. Let us de�ne pre
isely this kind of asymptoti
 play.1.3.2 De�nitionA sequen
e of equilibria will be 
alled Asymptoti
ally Deterministi
 if, as the number of playersgets large, the play is roughly always the same: players all experiment for a given number ofstages, then some of them leaves, and then all players left play in a

ordan
e to the state.De�nition 1. A sequen
e of equilibria indexed by the number of players N for whi
h ea
hgame is set is an Asymptoti
ally Deterministi
 with delay n ≥ 1 if:
• P

(

k
(N)
n−1 = 0

)

−−−−−→
N→+∞

1

• Pθ

(

k
(N)
n+1 = N

)

−−−−−→
N→+∞

1

• Pθ

(

∀l ≥ n, k
(N)
n = k

(N)
l

)

−−−−−→
N→+∞

1.Su
h a sequen
e will also be 
alled an Asymptoti
ally Deterministi
 Equilibrium (ADE).The idea is that the number k(N)
n of departures at stage n reveals the state to the remainingplayers, who then all leave in the Low state and all stay forever in the High state.Note that n = 1 is a possible value of the delay, but this situation basi
ally means that no-body enters the game, and this does not make a determination of the state possible. Indeed,this would mean that in the Low state, every player drop out at the very beginning of thegame, before getting any information. Consequently their de
isions do not depend on theirprivate payo�s, or a fortiori on the state, and the players all leave in the High state as well.In se
tion 1.5, this situation will not be 
onsidered as an ADE.6



1.3.3 ResultsThe following theorem gives ne
essary 
onditions and su�
ient 
onditions for existen
e of anADE with delay n.First, a fra
tion of players leave at stage n and this reveals the state to the others. Conse-quently, the most pessimisti
 belief is below p∗. If not, any leaving player would have betterstay a
tive one more stage as he would learn the state and thus get a positive average payo�.Moreover, this guarantees that a non negligible fra
tion of players, whose belief is below p∗,does leave at stage n. So we have a �rst 
ondition.Se
ond, nobody leaves before stage n. So we have to ensure that, at any stage m < n, eventhe most pessimisti
 player is willing to stay in. Su
h a player's belief is πm−1. He expe
ts toget an average payo� of πm−1θ + (1− πm−1)θ for n−m stages before some players leave. Atstage n he will leave only if his belief is below p∗. If he stays he learns the state by lookingat the number of departures, so that he remains a
tive forever if the state is High, and leavesif the state is Low. The expe
ted payo� of this strategy must be positive for this player (sayplayer i) to be right to remain a
tive at stage n, as 
laimed in the following inequality:
(1 + δ + ...+ δn−m−1)

(
πm−1θ + (1− πm−1)θ

)

+δn−m

(

πm−1

θ

1− δ
Pθ(p

i
n−1 > p∗|pim−1 = πm−1)

+(1− πm−1)θPθ(p
i
n−1 > p∗|pim−1 = πm−1)

)

> 0. (Im)We also denote by (Ĩm) the 
orresponding large inequality.Theorem 1.1. If πn−1 < p∗ and if inequalities (I1), (I2),..., (In−1) hold, then there exists anADE.Conversely if there exist an ADE, then πn−1 ≤ p∗ and inequalities (Ĩ1), (Ĩ2),..., (Ĩn−1) hold.In parti
ular, the delay n is the �rst stage su
h that πn−1 ≤ p∗.This theorem enables us to know when there exists an ADE: as we will see in some examples(Se
tion 1.5) and in 
orollary 1.2 below, this depends on the settings of the game (i.e. δ, p0,
fθ, fθ). One 
an show that inequalities (Ĩm) and πn−1 < p∗ are the ne
essary and su�
ient
onditions for the existen
e of an equilibrium in the same game but with a 
ontinuum ofplayers. Our theorem is then similar to the results of A. Caplin and J. Leahy [7℄.If inequalities (Ĩm) and πn−1 ≤ p∗ hold with at least an equality, the existen
e of an ADE isun
ertain. For example if (Ĩm) is an equality, two phenomenons 
ompete when N is gettinglarge: on the one hand the fa
t that there are more players may reveal the state at stage nwith better a

ura
y; on the other hand, more and more players may have 
riti
al bad news atstagem and this 
ould entail a signi�
ant number of exits before stage n. The balan
e betweenthis two phenomenons is linked with the equivalent of x 7→ P(pim−1 ≤ x) in a neighbourhoodof πm−1.Corollary 1.2. • For any n ≥ 2, there exists settings of the game for whi
h there existsan ADE with delay n.

• There exists settings of the game for whi
h there is no ADE.7



Thus there are more asymptoti
 equilibria than equilibria in the 
ontinuum of player game.Moreover even if an ADE exists, it is not ne
essarily the unique asymptoti
 equilibrium. Wehave a uniqueness result though but, 
ontrary to theorem 1.1, its hypothesis does not onlyrely on 
onditions on the settings of the game.Proposition 1.3. If (ΦN ) is a sequen
e of equilibria su
h that P(k
(N)
n−1 = 0) −−−−−→

N→+∞
0 and if

πn−1 < p∗, then (ΦN ) is an ADE with delay n.This result takes up the same ideas as before: players wait for stage n, then a fra
tion of themgets a belief below p∗ and reveals it by leaving, whi
h enables the others to learn the state.The following se
tion des
ribes what happens when limit equilibrium play is not deterministi
and exhibits randomness.1.4 Other asymptoti
 equilibria and Poisson aggregate behaviourLet us �rst deal with symmetri
 equilibria. If a sequen
e of equilibria is not A.D. and if playersdelay their departures until stage n, then they limit themselves to only a few exits for thestate not to be revealed at on
e. The distribution of this number of exits is asymptoti
ally aPoissonian, the parameter of whi
h depends on the state.Theorem 1.4. Let (ΦN )N≥1 be a sequen
e of symmetri
 equilibria. Assume that there existsa delay, i.e. a stage n su
h that:
P(k

(N)
n−1 = 0) −−−−−→

N→+∞
1 and lim sup

N→+∞
P(k(N)

n = 0) < 1,and assume also that πn−1 > p∗.Then there exists two bounded sequen
es (λθ,N )N≥1 and (λθ,N )N≥1, with (λθ,N)N≥1 boundedaway from zero su
h that:
∀θ ∈ {θ, θ}, Pθ(k

(N)
n = k|k

(N)
n−1 = 0) ∼

N→+∞
e−λθ,N

(λθ,N )k

k!
.Note that the result still holds for a subsequen
e (i.e. for a sequen
e (Φϕ(N)

)

N≥1
, where

ϕ : N → N is a non-de
reasing fun
tion). Thus the 
ondition of existen
e of a delay is notreally binding, be
ause any sequen
e of equilibria 
an be divided into subsequen
es for whi
hthere exists a delay.What strikes most is that the average number of exits at stage n stands bounded no matter howlarge the number of players N 
an be. This extents to non symmetri
 equilibria, as expressedin the following proposition whi
h 
an be viewed as an alternative result of propostion 1.3.Proposition 1.5. If (ΦN ) is a sequen
e of equilibria su
h that P(k
(N)
n−1 = 0) −−−−−→

N→+∞
1 and if

πn−1 > p∗, then the sequen
e (Eθ[k
(N)
n |k

(N)
n−1 = 0]

)

N≥1
is bounded.Nevertheless it is not sure that we will always observe a Poisson distribution. For example,it 
ould be that only a given group of players (say player 1 to player n0, where n0 does notdepend on N) may leave at stage n. Every other player may a�ord to stay one more stage8



be
ause this would enable them to learn the useful information left by this group.To 
omplete our study, let us 
omment the 
ase of a sequen
e of equilibria (ΦN ) su
h that
P(k

(N)
n−1 = 0) −−−−−→

N→+∞
1 and if πn−1 = p∗. This limit 
ase does not entirely �t our alternative,and what we observe in this 
ase is a sort of weak ADE. The number of exits Eθ[k

(N)
n |k

(N)
n−1 = 0]tends to +∞ and this enables the players to dis
ern the state, but the number of exits 
an beless than order N and the revelation is not as 
lear as in an ADE. One 
an show that:

• ∀i ≥ 1, Pθ(α
i,N
n+1 = N) −−−−−→

N→+∞
0

• ∀i ≥ 1, ∀l ≥ n, Pθ(α
i,N
n = α

i,N
l ) −−−−−→

N→+∞
1.This is mu
h weaker than in our de�nition of ADE.As a 
on
lusion, the s
enario des
ribed in our introdu
ing example (se
tion 1.3.1) is notgeneral. If we do not assume that players 
an be arbitrarily pessimisti
 after the �rst stage,the s
enario is either delayed and still deterministi
, either 
ompletely di�erent: in parti
ularthe pro
ess of learning exhibits randomness.1.5 ExamplesAs an illustration of previous results, we would like to know when there exists ADE and tosee how the parameters of the game a�e
t this existen
e. We 
all the delay (and denote it

n) the stage when �rst players exit. In the 
ase of ADE, n is the smallest integer su
h that
πn−1 < p∗.The setting is the following : the distribution of the Xi

n+1 is exponential, with parameters λθif the state is High, and λθ if the state is Low. To avoid trivial 
ase, we must have λθ > 1 > λθ,as Eθ[X
i
n] =

1
λθ

− 1.On Figures 2, 3 and 4, x-axis is the prior p0 and y-axis is the dis
ount rate δ. The 
olorshading from left to right shows the in
rease of the delay n, ex
ept for darkest zones whi
hare the values of p0 and δ for whi
h there 
an not be ADE.
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Figure 2: λθ = 1.1, λθ = 0.9
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Figure 3: λθ = 1.5, λθ = 0.9.
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Figure 4: λθ = 1.1, λθ = 0.5With a delay of n = 1, we have p0 < p∗ and no player 
an a�ord to enter the game. Thissituation (an ADE with delay n = 1) is not 
onsidered as an ADE here (left of the �gures).The other possible values of n are bordered by 
urves πk = p∗, k = 0, 1, 2, ....For given values of λθ and λθ, an in
rease of λθ (whi
h is equivalent to a de
rease of θ) thereare less possible ADE (see Fig. 2 and Fig. 3). Even if the delay is shorter (for given values of
p0 and δ), it that seems players 
an not wait for the revelation. Indeed, their average payo�sbefore the revelation is not high enough.On the 
ontrary, a de
rease λθ is an in
entive for players to wait to learn the state. Thus, inthe parti
ular 
ase of Fig. 4, there always exists ADE.Similarly, an in
rease of δ seems to a
t as an in
entive to wait, be
ause after the revelationthe reward is higher when in the High state. Indeed there always exists ADE if δ is 
lose to 1.Lastly, when δ goes to 0, the game be
omes basi
 be
ause only the following stage is signif-i
ant. Thus strategies are straightforward: when it be
omes possible that some players areobliged to quit be
ause they do not expe
t a positive reward for the next stage, they leave andtheir departures reveals the state to the others. Consequently there are more ADE in this 
ase.
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2 Sket
h of the proofsWe want to show that, ex
ept for some limit 
ases, asymptoti
 equilibria are either determin-isti
 (when the 
onditions of existen
e of theorem 1.1 apply), or the state is not revealed when�rst players leave and in this 
ase the average number of exits is bounded w.r.t to N (as intheorem 1.4 and 1.2).More pre
isely, we are interested in any sequen
e of equilibria (ΦN )N≥1 for whi
h we 
ande�ne a delay n, whi
h is asymptoti
ally the �rst stage where some players 
ould de
ide toleave:
P(k

(N)
n−1 = 0) −−−−−→

N→+∞
1 and lim sup

N→+∞
P(k(N)

n = 0) < 1.Remember that any sequen
e of equilibria 
an be divided into subsequen
es for whi
h we 
ande�ne a delay. What we are going to explain still hold for subsequen
es.Note also that when N is large, all players always remain a
tive before stage n and we 
annot derive any information from their behaviour. That is why player i's belief over the stateat any stage m < n is assumed to be equal to his private belief pim.Let us denote n0 = min{m ≥ 1|πm ≤ p∗}. To avoid a limit 
ase, we assume that πn0
< p∗.Stage n0+1 is then the maximum value of the delay n. Indeed if we had n > n0+1, it wouldimply that P(k

(N)
n0+1 = 0) −−−−−→

N→+∞
1. Thus, for N large enough, every player would de
ide toremain at stage n0 + 1, whereas a non negligible fra
tion of them would have a belief below

p∗.What we will see is that the behaviour of the players is di�erent whether n = n0 + 1 or
n < n0 + 1. In the �rst 
ase, players stay a
tive until a fra
tion of them gets a belief below
p∗ and leaves, whi
h enable other players to learn the state. In the se
ond 
ase, the �rstdepartures happen before any player 
an get a belief below p∗. There 
an not be too manyexits: if not this would give relevant information about the state and staying would be adominant strategy for any player, as all of them has a belief greater than p∗.2.1 n = n0 + 1: the Asymptoti
ally Deterministi
 
aseFirst, let us study the asymptoti
 equilibrium when n = n0 + 1.In this 
ase, players wait at least until stage n0+1 before dropping out. Then a non negligiblepart of them gets a belief below p∗, and is obliged to drop out. Thus there is a signi�
antfra
tion of players who leave at stage n0 + 1. As players get on average better news in theHigh state than in the Low state, this fra
tion depends on the state.On the other hand, players who de
ide to remain a
tive after stage n0 + 1 
an observe thisfra
tion and learn the state very a

urately when N is large. So if player i de
ides to stay, hewill get a n0+1-th payo� (the expe
tation of whi
h is pin0

θ+(1− pin0
)θ), and then by lookingat the fra
tion of exits he will be able to play in a

ordan
e to the state: stay forever if it isHigh and drop out if it is Low. On average, player i's asymptoti
 
ontinuation payo� is then:

pin0
θ + (1− pin0

)θ + δ

(

pin0

θ

1− δ
+ (1− pin0

)0

)

=
pin0

θ

1− δ
+ (1− pin0

)θ.Therefore, by de�nition of p∗, if pin0
> p∗ this payo� is non-negative and player i will not dropout. 13



This dis
ussion enables us to 
on
lude that players tend to play with 
uto� p∗ at stage n0+1.Now let us see on what 
onditions this strategi
 pro�le is an asymptoti
 equilibrium.We 
onsider the de
ision of player i at stage m ∈ {1, ..., n0}. If he follows the strategy pro�ledes
ribed above, he is going to get n0−m+1 payo�s, then at stage n he will remain a
tive if
pin > p∗, and then he will play in a

ordan
e to the state. The average payo� of this strategyis:

(1 + δ + ...+ δn−m−1)
(
pim−1θ + (1− pim−1)θ

)

+δn−m

(

pim−1

θ

1− δ
Pθ(p

i
n−1 > p∗|pim−1) + (1− pim−1)θPθ(p

i
n−1 > p∗|pim−1)

)

.This payo� has to be positive. If not this strategy would not be optimal be
ause player iwould have better leave, whi
h yields a 
ontinuation payo� of 0. This even has to be positivefor all players in any 
ase. Consequently, this payo� is still positive for a player who got theworst news from his private payo�s, i.e. whose private belief is πm−1. That gives us inequality
(Ĩm):

(1 + δ + ...+ δn−m−1)
(
πm−1θ + (1− πm−1)θ

)

+δn−m

(

πm−1

θ

1− δ
Pθ(p

i
n−1 > p∗|pim−1 = πm−1)

+(1− πm−1)θPθ(p
i
n−1 > p∗|pim−1 = πm−1)

)

≥ 0.Conversely if stri
t inequality (Im) hold for any m ∈ {1, ..., n0} and if N is large enough, ourstrategi
 pro�le is an equilibrium. Indeed, any player at any stage m ∈ {1, ..., n0} 
an expe
ta non negative payo� if he stays, whereas leaving would give him 0. Then at stage n ea
hplayer plays with 
uto� p∗ whi
h, as explained before, is the optimal strategy.2.2 n < n0 + 1: the average number of exits is boundedNow, let us 
onsider the 
ase n < n0 + 1.This 
ondition is equivalent to πn−1 > p∗, and in this situation the asymptoti
 proportion ofleaving players at stage n is either 0 or 1. Indeed if the fra
tion were in-between, it woulddepend on the state be
ause players averagely get worse beliefs in the Low state. Then, asexplained in the former 
ase, any player who de
ides to leave at stage n should deviate andstay, be
ause staying would enable him to wat
h the fra
tion of exits, and thus he 
ould learnthe state and rea
t a

ordingly. This strategy would yield a positive payo� be
ause privatebeliefs are greater than p∗.In fa
t the fra
tion of exits 
an not be 1 either. Indeed, the 
ondition P(k
(N)
n−1 = 0) −−−−−→

N→+∞
1means that, asymptoti
ally, every players have planned to stay until the end of stage n − 1,and being that optimisti
 is not 
onsistent with dropping out for sure at the next stage.Thus there are few exits at stage n. We denote by λθ,N and λθ,N the average number ofleaving players at stage n, in the N -player equilibrium ΦN , respe
tively in the High and inthe Low state:

λθ,N = Eθ[k
(N)
n |k

(N)
n−1 = 0], λθ,N = Eθ[k

(N)
n |k

(N)
n−1 = 0].14



What we have showed is that λ
θ,N

N and λθ,N

N go to zero as N goes to +∞. In fa
t λθ,N and
λθ,N are bounded w.r.t. to N be
ause too many exits would still enable a
tive players tohave a good guess on the state if N is large enough. λθ,N is also bounded away from zero:by de�nition of the delay n some players are likely to leave the game at stage n (that is the
ondition lim sup

N→+∞
P(k

(N)
n = 0) < 1), and there are more exits in the Low state than in theHigh state.Now let us 
onsider the 
ase of symmetri
 equilibria. As players all play the same strategy,the probability to leave at stage n for ea
h of them is λθ,N

N
, whi
h depends on the state(θ ∈ {θ, θ}). At stage n the de
ision only depends on private payo�s, whi
h are independenta
ross players 
onditionally to the state. Therefore the number of exits k

(N)
n is the sum of

N independent Bernoulli r.v. with the same parameter λθ,N

N . So the distribution of k(N)
n is abinomial, whi
h is usually equivalent to a Poisson distribution when N is large:

∀θ ∈ {θ, θ}, Pθ(k
(N)
n = k|k

(N)
n−1 = 0) ∼

N→+∞
e−λθ,N

λk
θ,N

k!
.Let us sum up our two 
ases: we have an alternative between a massive and deterministi
dropping out of a fra
tion of players (if πn−1 < p∗), and a bounded average number of exits(if πn−1 > p∗). In the �rst 
ase we have established that some inequalities must hold for thissituation to be an equilibrium. That is the 
ontent of theorem 1.1, 1.4 and 1.5.3 Proofs3.1 Preliminary resultsThe proof of the main theorems requires some preliminary results that are given in the presentse
tion.3.1.1 BeliefsLet us give a more detailed presentation of beliefs.As pi1 has a density, the payo�s Xi

1 have a density fθ under Pθ.By means of Bayes rule, we then have an expli
it formula:
pin

1− pin
=

p0

1− p0

fθ(X
i
1)

fθ(X
i
1)

· · ·
fθ(X

i
m)

fθ(Xi
m)

· · ·
fθ(X

i
n)

fθ(Xi
n)

,and in parti
ular we have
pin

1− pin
=

pim
1− pim

fθ(X
i
m+1)

fθ(X
i
m+1)

· · ·
fθ(X

i
n)

fθ(Xi
n)

. (1)Now assume that others' strategy pro�le is �xed.All the information gathered by player i at stage n is then given by his Posterior Belief,denoted qin:
qin = P(Θ = θ|Xi

n, ...,X
i
1, ~α

−i,N
n ).15



Similarly, we have the following formula by Bayes rules:
qin

1− qin
=

pin
1− pin

Pθ(~α
−i,N
n = ~α)

Pθ(~α
−i,N
n = ~α)

,whenever ~α−i,N
n = ~α.We will often debate the 
ase of every player remaining a
tive until a 
ertain stage n as

N is getting large, i.e. P(k
(N)
n = 0) −−−−−→

N→+∞
1. The number of departure observed byplayer i is k

−i,N
n , de�ned as #

{

j ∈ {1, · · · , N}\{i}|αj,N
n 6= N

} . As k
−i,N
n ≤ k

(N)
n , we have

P(k−i,N
n = 0) −−−−−→

N→+∞
1, and be
auseP(k−i,N

n = 0) = p0Pθ(k
−i,N
n = 0)+(1−p0)Pθ(k

−i,N
n = 0)one 
an write:

Pθ(k
−i,N
n = 0) −−−−−→

N→+∞
1 and Pθ(k

−i,N
n = 0) −−−−−→

N→+∞
1.The events {~α−i,N

n = ~N} and {k−i,N
n = 0} are equal, so that player i's posterior belief isequivalent to his private belief when k

(N)
n = 0:

qin
1− qin

=
pin

1− pin

Pθ(k
−i,N
n = 0)

Pθ(k
−i,N
n = 0)

⇒ qin =
pinPθ(k

−i,N
n = 0)

pinPθ(k
−i,N
n = 0) + (1− pin)Pθ(k

−i,N
n = 0)

∼
N→+∞

pinThis explain the fa
t mentioned in se
tion 2 that player i 
an not derive publi
 informationfrom his opponents, the latter being expe
ted to remain a
tive no matter what their privatepayo�s 
ould be.3.1.2 Spe
ial Cut-o�sOne player 
ut-o� π∗ When there is only one player, the game redu
es to an optimalstopping problem whi
h is equivalent to the 
lassi
 one-arm bandit problem (see [9℄ and [10℄)where exit de
isions 
an be assumed reversible. Indeed, if the player �nds it optimal not toplay at a given stage, it will remain optimal for the following stages. In this 
ase, the optimalpoli
y is to leave as soon as the belief pin drops below a time-independent given 
ut-o�, denoted
π∗ .Note that, in our multi-player model, if qin ≥ π∗ player i will �nd it optimal to remain a
tive:in this situation, even if he 
ould not observe the others any more, staying would still be thebest de
ision.Myopi
 
ut-o� p A simple way to de
ide to stay is to a

ount just for the next stage. Itsexpe
ted payo�, that we 
all myopi
 payo� and denote myop(qin), equals qinθ + (1− qin)θ.The myopi
 
ut-o�, denoted p is de�ned as the only value su
h that myop(p) = 0. It is readilyseen that if qin ≥ p, player i has to stay at least one more stage. As this is still true in theone-player game, one has also p ≥ π∗.
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Best optimal 
ontinuation payo� 
ut-o� p∗ We have already introdu
ed the 
uto� p∗.Let us give an another presentation based on the notion of optimal 
ontinuation payo�.When fa
ing the de
ision at the beginning of stage n, a player has to balan
e two things. Onthe one hand, there is the next payo� with expe
tation myop(qin). On the other hand if hestays he 
an expe
t to be informed better for the next de
ision, thanks to the the payo� Xi
nand to other players' behavior. At most, he 
ould learn the state nearly perfe
tly. Thus, if hestays he 
an not expe
t more than the best optimal 
ontinuation payo�:

opt(qin) = myop(qin) +
δqinθ

1− δ
=

qinθ

1− δ
+ (1− qin)θwhi
h is possible to get if at stage n + 1 he leaves when the state is Low, or stays forever ifthe state is High.In [14℄, it is showed that, a strategy pro�le being �xed, the optimal 
ontinuation payo�, i.e.the expe
ted payo� player i 
an get from a stage n + 1 if he stays at stage n + 1 and thenplays optimally, is a fun
tion ω

i,N
n whi
h only depends on pin and ~α

−i,N
n . This means that theoptimal strategy 
onsists in staying a
tive as long as ωi,N

n (pin, ~α
−i,N
n ) ≥ 0. And from what isexplained above, we dedu
e that opt(qin) ≥ ω

i,N
n (pin, ~α

−i,N
n ).We de�ne the best optimal 
ontinuation payo� p∗ as the unique 
ut-o� su
h that opt(p∗)=0.A simple property of p∗ is that if qin ≤ p∗, it is a dominant strategy to leave.On the 
ontrary, if qin > p∗ player i has to stay if he is optimisti
 enough and/or if he expe
tsto get a good pie
e of information looking at other players' behavior. In parti
ular, the moreplayers there are, the more information he 
an expe
t.The optimal 
ontinuation payo� has a role in our results. In an ADE with delay n, when theend of stage n is rea
hed, a wave of exits reveals the state with more and more a

ura
y as Nis getting large. Asymptoti
ally, any player i is fa
ing the optimal 
ontinuation payo� whenmaking his de
ision at stage n. Consequently, at stage m, player i expe
ts a 
ontinuationpayo� of:

(1 + δ + ...+ δn−m−1)myop(pim−1) + δn−m
E[max

(
0, opt(pin−1)

)
|pim−1].Asmyop is non de
reasing and pin−1 is in
reasing w.r.t. to pim−1 (equation (1)), this expressionis non de
reasing w.r.t. pim−1: this explains explains the intuitive fa
t that a player is all themore willing to stay in the game as his belief is higher. Moreover, one 
an show that:

pim−1

θ

1− δ
Pθ(p

i
n−1 ≥ p∗|pim−1) + (1− pim−1)θPθ(p

i
n−1 ≥ p∗|pim−1)

= E[max
(
0, opt(pin−1)

)
|pim−1]Combining the last two equalities and with pim−1 = πm−1, we �nd an other expression ofequalities (Im) and (Ĩm). It has to be positive for any player to be right to remain a
tive atstage m (leaving only yields a payo� of 0).It is also worth noti
ing that, the left side of equality (Ĩm) being an expression of a 
on-tinuation payo� with belief πm−1, it is stri
tly lower than opt(πm−1). Consequently if (Ĩm)holds then πm−1 > p∗. This explains the last part of theorem 1.1: in an ADE, the delay n isne
essarily the �rst stage su
h that πn−1 ≤ p∗.17



No let us give some results about how a player behaviour a�e
ts the other players' beliefs.We want to formalize the fa
t that players get on average better news in the High state thanin the Low state, and as a 
onsequen
e it is good news for a player to observe his opponentsremaining a
tive.3.1.3 Staying is always good newsIf a player i (with 
ut-o�s πi
m(~t)) stays until stage n + 1, his 
ontribution to other a
tiveplayers' beliefs is given by the following likelihood ratio:

Pθ(p
i
n ≥ π

i,N
n (~α−i,N

n ), pin−1 ≥ π
i,N
n−1(~α

−i,N
n−1 ), ..., pi1 ≥ π

i,N
1 (~α−i,N

1 ))

Pθ(pin ≥ π
i,N
n (~α−i,N

n ), pin−1 ≥ π
i,N
n−1(~α

−i,N
n−1 ), ..., pi1 ≥ π

i,N
1 (~α−i,N

1 ))
.Now, if this player is still a
tive at stage n+ 2, the former 
ontribution has to be updated bymultiplying by:

Pθ(p
i
n+1 ≥ π

i,N
n+1(~α

−i,N
n+1 )|pin ≥ π

i,N
n (~α−i,N

n ), ..., pi1 ≥ π
i,N
1 (~α−i,N

1 ))

Pθ(p
i
n+1 ≥ π

i,N
n+1(~α

−i,N
n+1 )|pin ≥ π

i,N
n (~α−i,N

n ), ..., pi1 ≥ π
i,N
1 (~α−i,N

1 ))
.The fa
t that this ratio is always greater than 1, i.e. that it is always good news to observe aplayer staying a
tive, is a by-produ
t of proposition 3.2 thereafter. To obtain this result weneed the following lemma, the proof of whi
h 
an be found in the appendix.Lemma 3.1. For ea
h stage n and ea
h 
uto� π1, ..., πn−1 ∈ [0, 1], the likelihood ratio

π 7→
Pθ(p

i
n ≥ π, pin−1 ≥ πn−1, ..., p

i
1 ≥ π1)

Pθ(pin ≥ π, pin−1 ≥ πn−1, ..., p
i
1 ≥ π1)is in
reasing.We now 
ome to our proposition.Proposition 3.2. (Conditional sto
hasti
 dominan
e)For ea
h stage n and k ∈ {0, 1, ..., n − 1}, x1, x2, ..., xn ∈ [0, 1],

Pθ(p
i
n ≥ xn, ..., p

i
k+1 ≥ xk+1|p

i
k ≥ xk, ..., p

i
1 ≥ x1) ≥ Pθ(p

i
n ≥ xn, ..., p

i
k+1 ≥ xk+1|p

i
k ≥ xk, ..., p

i
1 ≥ x1)Proof. Thanks to Lemma 3.1, as xn ≥ 0, we 
an write:

Pθ(p
i
n ≥ xn, p

i
n−1 ≥ xn−1, ..., p

i
1 ≥ x1)

Pθ(pin ≥ xn, p
i
n−1 ≥ xn−1, ..., p

i
1 ≥ x1)

≥
Pθ(p

i
n ≥ 0, pin−1 ≥ xn−1, ..., p

i
1 ≥ x1)

Pθ(pin ≥ 0, pin−1 ≥ xn−1, ..., p
i
1 ≥ x1)

≥
Pθ(p

i
n−1 ≥ xn−1, ..., p

i
1 ≥ x1)

Pθ(p
i
n−1 ≥ xn−1, ..., p

i
1 ≥ x1)

.Hen
e:
Pθ(p

i
n ≥ xn, p

i
n−1 ≥ xn−1, ..., p

i
1 ≥ x1)

Pθ(p
i
n−1 ≥ xn−1, ..., p

i
1 ≥ x1)

≥
Pθ(p

i
n ≥ xn, p

i
n−1 ≥ xn−1, ..., p

i
1 ≥ x1)

Pθ(p
i
n−1 ≥ xn−1, ..., p

i
1 ≥ x1)

,18



whi
h is exa
tly the desired result for k = n− 1.We derived from this the whole proposition, as:
Pθ(p

i
n ≥ xn, ..., p

i
k+1 ≥ xk+1|p

i
k ≥ xk, ..., p

i
1 ≥ x1)

= Pθ(p
i
n ≥ xn|p

i
n−1 ≥ xn−1, ..., p

i
1 ≥ x1)×Pθ(p

i
n−1 ≥ xn−1|p

i
n−2 ≥ xn−2, ..., p

i
1 ≥ x1)

×...×Pθ(p
i
k+1 ≥ xk+1|p

i
k ≥ xk, ..., p

i
1 ≥ x1).Let us mention a simple 
onsequen
e of proposition 3.2 whi
h will be useful subsequently,and whi
h shows that publi
 information is in
reasing from stage to stage as long as no moreplayers leave.Corollary 3.3. For all 
uto� strategy pro�les, for all stages n > m, and for all i ∈ {1, · · · , N},

Pθ

(

k
−i,N
n = k

−i,N
m |~α−i,N

m

)

Pθ

(

k
−i,N
n = k

−i,N
m |~α−i,N

m

) ≥ 1 a.s.Proof. As the payo�s are independent a
ross players 
onditionally to the state, the above ratiois equal to
∏

j 6=i|αj
m=N

Pθ(p
j
n ≥ π

j,N
n (~α−j,N

m ), ..., pjm+1 ≥ π
−j,N
m+1 (~α

−j,N
m )|pjm ≥ π

j
m(~α−j,N

m ), ..., pj1 ≥ π
j,N
1 (~α−j,N

1 ))

Pθ(p
j
n ≥ π

j,N
n (~α−j,N

m ), ..., pjm+1 ≥ π
j,N
m+1(~α

−j,N
m )|pjm ≥ π

j,N
m (~α−j,N

m ), ..., pj1 ≥ π
j,N
1 (~α−j,N

1 ))
,and all the fa
tors in this produ
t are greater than 1 be
ause of proposition 3.2.Thus, it has been showed that a player staying a
tive in
reases his 
ontribution in otherplayers' posterior beliefs from stage to stage. But this is an in
rease in a large sense, as his
ontribution 
an remain 
onstant. For instan
e, in an ADE every player asymptoti
ally staya
tive until the revelation stage no matter what their private information may be, and theirpubli
 
ontribution remain equal to 1.Now we will show that someone leaving after a stage where all players were still a
tive repre-sents a stri
t de
rease of his 
ontribution to others' posterior belief.3.1.4 Leaving is bad newsWhat we want to study spe
i�
ally is what happens when �rst players exit. To this aim, weintrodu
e the probability Pn,θ = Pθ(· · · |k

(N)
n = 0) and En,θ the 
orresponding expe
tation (asequen
e of equilibria being given). Let F i
n,θ be the 
.d.f. of pin under this probability:

F i
n,θ(x) = Pθ

(

pin ≤ x
∣
∣ k(N)

n = 0
)

.Note that F i
n,θ(x) = Pθ

(

pin ≤ x
∣
∣ pin−1 ≥ π

i,N
n−1(N), ..., p

i
1 ≥ π

i,N
1 (N)

) by independen
e of pay-o�s a
ross players 
onditionally to the state. In parti
ular, by de�nition of 
uto� strategieswe have:
Pθ(i leaves at stage n+ 1|k(N)

n = 0) = F i
n,θ(π

i,N
n (N)).19



To show that leaving is meaningful, we need to prove that one 
an not fore
ast with 
ertaintythat a player i will stop at a given stage. If not, this exit 
annot give us any information asit was due to happen, no matter what player i's private information is.The following lemma states that, in an equilibrium where every player have planned to stayuntil stage n, the probability that a rational player leaves the game at stage n+1 is uniformlyless than 1. Indeed, being too pessimisti
 would not be 
onsistent with staying until stage n.Lemma 3.4. Let (ΦN ) be a sequen
e of equilibrium su
h that P(k
(N)
n = 0) −−−−−→

N→+∞
1.There exists N0 ≥ 0 and βθ, βθ ∈ [0, 1) su
h that:

∀N ≥ N0, ∀θ ∈ {θ, θ}, Pn,θ(i leaves at stage n+ 1|pin−1) ≤ βθ Pn,θ − a.s.In parti
ular:
∀N ≥ N0, ∀θ ∈ {θ, θ}, Pn,θ(i leaves at stage n+ 1) = F i

n,θ(π
i,N
n (~N)) ≤ βθ.Proof. Let us �rst prove the existen
e of βθ.We are studying the de
ision of player i at stage n + 1, given that his private belief at stage

n, pin−1, is known. As we are working under the probability Pn,θ, we 
an also assume that hehas not observe any departure from other players yet. So his posterior belief at stage n is alsoknown:
qin−1

1− qin−1

=
pin−1

1− pin−1

Pθ(k
−i,N
n−1 = 0)

Pθ(k
−i,N
n−1 = 0)

.The fa
t that player i will not de
ide to leave at stage n + 1 too often is the 
onsequen
e ofone of two 
ases: either he has got news good so far and he will mostly remain optimisti
 atstage n+ 1, either he has not but the fa
t that he has not dropped out until stage n anywayshows that he is still expe
ting something and will not leave too soon.Case n◦1: player i is optimisti
 enough to get a posterior belief at stage n greater than themyopi
 
uto� p.From the inequality θ < 0 < θ, it is easy to show that there exists ǫ, ǫ′ > 0 su
h that
Pθ

(
f
θ
(Xi

n)

fθ(Xi
n)

≥ 1 + ǫ
)

≥ ǫ′. Assume that qin−1

1−qin−1
> p

1−p
1

1+ǫ . As it is a stri
tly dominant strategyto stay when the belief is greater than p, we have:
Pn,θ(i stays at stage n+ 1|pin−1) ≥ Pn,θ(q

i
n ≥ p|pin−1) = Pn,θ

(
qin

1− qin
≥

p

1− p

∣
∣
∣
∣
pin−1

)

= Pn,θ









qin−1

1− qin−1

fθ(X
i
n)

fθ(Xi
n)

Pθ(k
−i,N
n−1 = 0|k−i,N

n−2 = 0)

Pθ(k
−i,N
n−1 = 0|k−i,N

n−2 = 0)
︸ ︷︷ ︸

≥1 see corollary3.3

≥
p

1− p

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

pin−1









≥ Pn,θ

(
p

1− p

1

1 + ǫ

fθ(X
i
n)

fθ(Xi
n)

≥
p

1− p

∣
∣
∣
∣
pin−1

)

= Pn,θ

(
fθ(X

i
n)

fθ(Xi
n)

≥ 1 + ǫ

∣
∣
∣
∣
pin−1

)

As pin−1 and k
(N)
n are measurable w.r.t. σ

(

X
j
m, 1 ≤ m ≤ N, 1 ≤ m ≤ n− 1

), they are inde-20



pendent from Xi
n under Pθ, and we have:
Pn,θ

(
fθ(X

i
n)

fθ(Xi
n)

≥ 1 + ǫ

∣
∣
∣
∣
pin−1

)

= Pθ

(
fθ(X

i
n)

fθ(Xi
n)

≥ 1 + ǫ

)

≥ ǫ′.Case n◦2: he is not that optimisti
 but he still had to experiment.In this 
ase, we have:
qin−1

1− qin−1

≤
p

1− p

1

1 + ǫ
.We are working under probability Pn,θ, so we assume that k

(N)
n = 0. In parti
ular player

i de
ides to remain a
tive at stage n and pin−1 ≥ π
i,N
n−1(~N). Consequently the 
ontinuationpayo� that he was expe
ting to get at stage n is positive. Let us overestimate this 
ontinuationpayo�.At the beginning of stage n, player i's de
ision is based on the information k

(N)
n−1 = 0 and on

pin−1. When he stays, he �rst gets a myopi
 payo� of expe
tation myop(qin−1). Then, if heobserves k−i,N
n = 0 he will stay if pin ≥ π

i,N
n (~N). Let us say this will never happen in the Lowstate and, if he stays in the High state, he will remain a
tive forever (whi
h yields on average

θ
1−δ ). Moreover, we 
an overestimate his 
ontinuation payo� when k

−i,N
n 6= 0 by θ

1−δ in theHigh state and by 0 in the Low state. So we have the following overestimation:
myop(qin−1) +

qin−1δθ

1− δ
Pθ(p

i
n ≥ πi,N

n (~N)|k−i,N
n = 0, k

(N)
n−1 = 0, pin−1)Pθ(k

−i,N
n = 0|k

(N)
n−1 = 0, pin−1)

+ qin−1Pθ(k
−i,N
n 6= 0|k

(N)
n−1 = 0, pin−1)

θ

1− δ
.As pin−1 ≥ π

i,N
n−1(~N), we have α

i,N
n = N and 
onditioning by k

−i,N
n = 0, k

(N)
n−1 = 0, pin−1 isequivalent to 
onditioning by k

(N)
n = 0, pin−1. As a 
onsequen
e we have:

Pθ(p
i
n ≥ πi,N

n (~N)|k−i,N
n = 0, k

(N)
n−1 = 0, pin−1) = Pn,θ(p

i
n ≥ πi,N

n (~N)|pin−1).The same argument, together with the fa
t other players' de
isions do not depend on is pin−1but only on α
i,N
n , enables us to write:

Pθ(k
−i,N
n 6= 0|k

(N)
n−1 = 0, pin−1) = Pθ(k

−i,N
n 6= 0, αi,N

n = N|k
(N)
n−1 = 0, pin−1)

≤ Pθ(k
(N)
n 6= 0|k

(N)
n−1 = 0, pin−1)

≤ Pθ(k
(N)
n 6= 0).Moreover we 
an simply overestimate Pθ(k

−i,N
n = 0|k

(N)
n−1 = 0, pin−1) by 1.Consequently player i's 
ontinuation payo� is less than:

myop(qin−1) +
qin−1δθ

1− δ
Pn,θ(p

i
n ≥ πi,N

n (~N)|pin−1)

+ qin−1Pθ(k
(N)
n 6= 0)

θ

1− δ
.21



And than:
myop(

p

1 + ǫ(1− p)
) +

δθ

1− δ
Pn,θ(p

i
n ≥ πi,N

n (~N)|pin−1)

+ Pθ(k
(N)
n 6= 0)

θ

1 − δ
.As player i did de
ide to remain a
tive at stage n, this payo� is ne
essarily positive: if not hewould have better leave, whi
h yields a payo� of 0. Consequently we have:

Pn,θ(p
i
n ≥ πi,N

n (~N)|pin−1) ≥ −
1− δ

δθ

(

myop(
p

1 + ǫ(1− p)
) +Pθ(k

(N)
n 6= 0)

θ

1− δ

)

.As P(k
(N)
n = 0) −−−−−→

N→+∞
1, one 
an �nd N0 ≥ 1 su
h that, for any N ≥ N0:

−
1− δ

δθ

(

myop(
p

1 + ǫ(1− p)
) +Pθ(k

(N)
n 6= 0)

θ

1− δ

)

≥ −
1− δ

2δθ
myop(

p

1 + ǫ(1− p)
).As a 
on
lusion of the two 
ases, we 
an set βθ = max(1− ǫ′, 1 +myop( p

1+ǫ(1−p))
1−δ

2δθ
).Now, we will prove the existen
e of βθ.Let Gθ be the 
.d.f. of f

θ
(Xi

n)

fθ(Xi
n)

under Pθ. We have:
Pn,θ(p

i
n ≤ πi,N

n (~N)|pin−1) = Pn,θ

(

pin
1− pin

≤
π
i,N
n (~N)

1− π
i,N
n (~N)

∣
∣
∣
∣
∣
pin−1

)

= Pn,θ

(

fθ(X
i
n)

fθ(Xi
n)

pin−1

1− pin−1

≤
π
i,N
n (~N)

1− π
i,N
n (~N)

∣
∣
∣
∣
∣
pin−1

)

= Gθ

(

π
i,N
n (~N)

1− π
i,N
n (~N)

1− pin−1

pin−1

) (2)be
ause Xi
n is independent from pin−1 and k

(N)
n under Pθ.As Gθ is 
ontinuous and in
reasing, we 
an 
onsider the real r = maxG−1

θ
({βθ}). Then

Gθ(r) = βθ < 1, and, a

ording to equation (2) by the property of βθ we have:
π
i,N
n (~N)

1− π
i,N
n (~N)

1− pin−1

pin−1

≤ r Pn,θ − a.s.This is equivalent to:
Pθ

(
{

k(N)
n = 0

}

∩

{

π
i,N
n (~N)

1− π
i,N
n (~N)

1− pin−1

pin−1

> r

})

= 0.And to:
Pθ













⋂

i = 1, ..., N
l = 1, ..., n − 1

pil ≥ π
i,N
l (~N)







∩

{

π
i,N
n (~N)

1− π
i,N
n (~N)

1− pin−1

pin−1

> r

}







= 0.22



As the private beliefs have the same support under Pθ and Pθ, we have:
Pθ













⋂

i = 1, ..., N
l = 1, ..., n − 1

pil ≥ π
i,N
l (~N)







∩

{

π
i,N
n (~N)

1− π
i,N
n (~N)

1− pin−1

pin−1

> r

}







= 0,and equivalently:
π
i,N
n (~N)

1− π
i,N
n (~N)

1− pin−1

pin−1

≤ r Pn,θ − a.s.Then, by means of equation (2):
Pn,θ(p

n
i ≤ πi,N

n (~N)|pin−1) = Gθ

(

π
i,N
n (~N)

1− π
i,N
n (~N)

1− pin−1

pin−1

)

≤ Gθ(r) Pn,θ − a.s.As f
θ
(Xi

n)

fθ(Xi
n)

has the same support under Pθ and Pθ, Gθ(r) < 1 so that we 
an set βθ = Gθ(r).Remark 1. The proof shows us that the existen
e of βθ and βθ 
an be written as the existen
eof a non-negative real r su
h that π
i,N
n (~αi

n−1)

1−π
i,N
n (~αi

n−1)

1−pin−1

pin−1
≤ r Pn,θ−a.s. Then βθ = Gθ(r), where

Gθ is the 
.d.f. of f
θ
(Xi

n)

fθ(Xi
n)

under Pθ.As a 
onsequen
e of Lemma 3.4, the lemma thereafter states that a player leaving wheneverybody is still a
tive implies a stri
t pessimism for the others. Indeed, the evolution of his
ontribution in publi
 information is then
Pθ(p

i
n ≤ π

i,N
n (~N)|pin−1 ≥ π

i,N
n−1(~N), ..., p

i
1 ≥ π

i,N
1 (~N))

Pθ(pin ≤ π
i,N
n (~N)|pin−1 ≥ π

i,N
n−1(~N), ..., p

i
1 ≥ π

i,N
1 (~N))

=
F i
n,θ

(πi,N
n (~N))

F i
n,θ(π

i,N
n (~N))and is smaller than a 
onstant γ < 1.Proposition 3.5. Let (ΦN ) be a sequen
e of equilibria su
h that P(k

(N)
n = 0) −−−−−→

N→+∞
1.There exists N0 ≥ 0 and γ ∈ [0, 1) su
h that:

∀N ≥ N0, ∀i ∈ {1, ..., N}, F i
n,θ

(πi,N
n (~N)) ≤ γF i

n,θ(π
i,N
n (~N)).Proof. We �rst show that there exists as an upper bound γ < 1 of G
θ

Gθ
on (ν, r], where Gθ and

r have been introdu
ed in Lemma 3.4, and where ν is the in�mum of the support of f
θ
(Xi

n)

fθ(Xi
n)(for G

θ

Gθ
to be de�ned).Noti
e that:

∀x ∈ [0, r], Gθ(x) =

∫

{

f
θ
(u)

fθ(u)
≤x

} fθ(u)du ≤

∫

{

f
θ
(u)

fθ(u)
≤x

} xfθ(u)du = xGθ(x) ≤ rGθ(x).Consequently if r < 1, setting γ = r enables us to 
on
lude. If not, thanks to the presen
e ofbad news, there exists γ1 < 1 su
h that Gθ(γ1) > 0. Then γ1 > ν, and just as before we have:
∀x ∈ [0, γ1], Gθ(x) ≤ γ1Gθ(x).23



In parti
ular:
Gθ(γ1) < Gθ(γ1) =⇒

1−Gθ(γ1)

1−Gθ(γ1)
> 1.On the other hand the fun
tion

x 7→
1−Gθ(x)

1−Gθ(x)
=

Pθ

(
f
θ
(Xi

n)

fθ(Xi
n)

≥ x
)

Pθ

(
f
θ
(Xi

n)

fθ(Xi
n)

≥ x
)is well de�ned on [γ1, r] (be
ause x ≤ r implies that Gθ(x) ≤ Gθ(r) < 1) and in
reasing (seeLemma 3.1). Thus:

∀x ∈ [γ1, r],
1−Gθ(x)

1−Gθ(x)
≥

1−Gθ(γ1)

1−Gθ(γ1)
> 1,and:

∀x ∈ [γ1, r], Gθ(x) < Gθ(x).Going ba
k to the fun
tion G
θ

Gθ
, we then see that, on the segment [γ1, r], its values are all in

(0, 1). As this fun
tion is 
ontinuous, we have by 
ompa
tness:
max
[γ1,r]

Gθ

Gθ
< 1.To 
on
lude, we 
an set γ = max(γ1,max[γ1,r]

G
θ

Gθ
), so that:

∀x ∈ [0, r], Gθ(x) ≤ γGθ(x). (3)
γ is indeed the upper bound we were looking for.Now, let us see why γ applies to the 
on
lusion of our lemma. We 
hoose N0 as given byLemma 3.4.We have:
F i
n,θ(π

i,N
n (~N)) = Pn,θ(p

i
n ≤ πi,N

n (~N)) = En,θ

(
Pn,θ(p

i
n ≤ πi,N

n (~N)|pin−1)
)

= Eθ

(

Gθ

(

π
i,N
n (~N)

1− π
i,N
n (~N)

1− pin−1

pin−1

)∣
∣
∣
∣
∣
pin−1 ≥ π

i,N
n−1(~N), ..., p

i
1 ≥ π

i,N
1 (~N)

)by means of equation (2), and be
ause 
onditioning by k
(N)
n = 0 is equivalent to 
onditioningby {pin−1 ≥ π

i,N
n−1(~N), ..., p

i
1 ≥ π

i,N
1 (~N)} by independen
e of payo�s a
ross player 
onditionallyto the state.As π

i,N
n (~N)

1−π
i,N
n (~N)

1−pin−1

pin−1
≤ r, (3) applies and one 
an write by positivity of expe
tation:

F i
n,θ

(πi,N
n (~N)) = Eθ

(

Gθ

(

π
i,N
n (~N)

1− π
i,N
n (~N)

1− pin−1

pin−1

)∣
∣
∣
∣
∣
pin−1 ≥ π

i,N
n−1(~N), ..., p

i
1 ≥ π

i,N
1 (~N)

)

≤ γEθ

(

Gθ

(

π
i,N
n (~N)

1− π
i,N
n (~N)

1− pin−1

pin−1

)∣
∣
∣
∣
∣
pin−1 ≥ π

i,N
n−1(~N), ..., p

i
1 ≥ π

i,N
1 (~N)

)

.24



In order to 
on
lude, we need to repla
e Eθ by Eθ. As Gθ

(
π
i,N
n (~N)

1−π
i,N
n (~N)

1−pin−1

pin−1

) is positive andde
reasing w.r.t. pin−1, this 
an be done by approximation by positive linear 
ombination offun
tions of the form 1pin−1<π, with π in [0, 1]. Consequently, it remains to show that:
Pθ

(

pin−1 < π|pin−1 ≥ π
i,N
n−1(~N), ..., p

i
1 ≥ π

i,N
1 (~N)

)

≤ Pθ

(

pin−1 < π|pin−1 ≥ π
i,N
n−1(~N), ..., p

i
1 ≥ π

i,N
1 (~N)

)

,whi
h is equivalent to:
Pθ

(

pin−1 ≥ π|pin−1 ≥ π
i,N
n−1(~N), ..., p

i
1 ≥ π

i,N
1 (~N)) ≥ Pθ(p

i
n−1 ≥ π|pin−1 ≥ π

i,N
n−1(~N), ..., p

i
1 ≥ π

i,N
1 (~N)

)

.If π ≤ π
i,N
n−1(~N), both terms of the inequality equal 1. If not, the former inequality 
an bewritten as:
Pθ

(

pin−1 ≥ π, ..., pi1 ≥ π
i,N
1 (~N)

)

Pθ

(

pin−1 ≥ π
i,N
n−1(~N), ..., p

i
1 ≥ π

i,N
1 (~N)

) ≥
Pθ

(

pin−1 ≥ π, ..., pi1 ≥ π
i,N
1 (~N)

)

Pθ

(

pin−1 ≥ π
i,N
n−1(~N), ..., p

i
1 ≥ π

i,N
1 (~N)

) ,and:
Pθ

(

pin−1 ≥ π, ..., pi1 ≥ π
i,N
1 (~N)

)

Pθ

(

pin−1 ≥ π, ..., pi1 ≥ π
i,N
1 (~N)

) ≥
Pθ

(

pin−1 ≥ π
i,N
n−1(~N), ..., p

i
1 ≥ π

i,N
1 (~N)

)

Pθ

(

pin−1 ≥ π
i,N
n−1(~N), ..., p

i
1 ≥ π

i,N
1 (~N)

) .The result then follows from Lemma 3.1.3.2 Main theorems3.2.1 Proposition 1.5 and 
onsequen
esFirst, let us demonstrate proposition 1.5, and then draw some useful 
onsequen
es.Proof. Assume for 
ontradi
tion that (Eθ[k
(N)
n |k

(N)
n−1 = 0]

)

N≥1
=
(
∑N

i=1 F
i
n−1,θ(π

i,N
n−1(~N))

)

N≥1is not bounded. Up to a subsequen
e, one has
lim

N→+∞
Eθ[k

(N)
n |k

(N)
n−1 = 0] = +∞.Let us show that this assumption enables to learn the state at the following stage if N is largeenough, by 
omparing k

(N)
n to MN =

E
θ
[k

(N)
n |k

(N)
n−1=0]+Eθ[k

(N)
n |k

(N)
n−1=0]

2 . Indeed k
(N)
n tends to begreater than MN in the Low state and lower than MN in the High State, be
ause players get
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worse news in the Low state and leave more often. Let us prove this:
Pθ

(

k(N)
n < MN

∣
∣
∣ k

(N)
n−1 = 0

)

= Pθ



k(N)
n <

∑N
i=1 F

i
n−1,θ

(πi,N
n−1(~N)) + F i

n−1,θ(π
i,N
n−1(~N))

2

∣
∣
∣
∣
∣
∣

k
(N)
n−1 = 0





= Pθ









N∑

i=1

F i
n−1,θ(π

i,N
n−1(~N))− k(N)

n >

N∑

i=1

F i
n−1,θ(π

i,N
n−1(~N))− F i

n−1,θ
(πi,N

n−1(~N))

2
︸ ︷︷ ︸

>0

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

k
(N)
n−1 = 0









≤ Pθ





∣
∣
∣
∣
∣

N∑

i=1

F i
n−1,θ(π

i,N
n−1(~N))− k(N)

n

∣
∣
∣
∣
∣
>

N∑

i=1

F i
n−1,θ(π

i,N
n−1(~N))− F i

n−1,θ
(πi,N

n−1(~N))

2

∣
∣
∣
∣
∣
∣

k
(N)
n−1 = 0





≤ 4

∑N
i=1 F

i
n−1,θ(π

i,N
n−1(~N))− F i

n−1,θ(π
i,N
n−1(~N))

2

(
∑N

i=1 F
i
n1,θ

(πi,N
n−1(~N))− F i

n−1,θ
(πi,N

n (~N))
)2by means of T
heby
hev's inequality.Moreover, thanks to proposition 3.5:

γF i
n−1,θ(π

i,N
n−1(~N)) ≥ F i

n−1,θ
(πi,N

n−1(~N))with γ ∈ [0, 1) and N large enough, so that:
Pθ

(

k(N)
n < MN

∣
∣
∣ k

(N)
n−1 = 0

)

≤ 4

∑N
i=1 F

i
n−1,θ(π

i,N
n−1(~N))

(1− γ)2
(
∑N

i=0 F
i
n−1,θ(π

i,N
n−1(~N))

)2

≤
4

(1− γ)2
∑N

i=1 F
i
n−1,θ(π

i,N
n−1(~N))

=
4

(1− γ)2Eθ[k
(N)
n |k

(N)
n−1 = 0]

−−−−−→
N→+∞

0.Similarly, one 
an show that:
Pθ

(

k(N)
n ≥ MN

∣
∣
∣ k

(N)
n−1 = 0

)

≤ 4

∑N
i=1 F

i
n−1,θ(π

i,N
n−1(~N))

(1 − γ)2
(
∑N

i=0 F
i
n−1,θ(π

i,N
n−1(~N))

)2 ≤ 4

∑N
i=1 F

i
n−1,θ

(πi,N
n−1(~N))

(1 − γ)2
(
∑N

i=0 F
i
n−1,θ(π

i,N
n−1(~N))

)2

=
4

(1− γ)2
∑N

i=1 F
i
n−1,θ(π

i,N
n−1(~N))

=
4

(1− γ)2Eθ[k
(N)
n |k

(N)
n−1 = 0]

−−−−−→
N→+∞

0.Now let us see how this a�e
ts player i's de
ision. He is able to make to make a similar
26




omparison, between k
−i,N
n and M i

N =
E

θ
[k−i,N

n |k
(N)
n−1=0]+Eθ[k

−i,N
n |k

(N)
n−1=0]

2 . In this 
ase we have:
Pθ

(

k−i,N
n < M i

N

∣
∣ k

(N)
n−1 = 0

)

≤
4

(1− γ)2Eθ[k
−i,N
n |k

(N)
n−1 = 0]

≤
4

(1− γ)2
(

Eθ[k
(N)
n |k

(N)
n−1 = 0]− 1

) (4)and
Pθ

(

k−i,N
n ≥ M i

N

∣
∣ k

(N)
n−1 = 0

)

≤
4

(1− γ)2
(

Eθ[k
(N)
n |k

(N)
n−1 = 0]− 1

) . (5)Consider the strategy 
onsisting in leaving if k−i,N
n ≥ M i

N and staying forever otherwise, wheneverybody is still a
tive at the end of stage n − 1, i.e. k(N)
n−1 = 0. The overall expe
ted payo�after stage n− 1 is:

opt(qin−1) −
δqin−1θ

1− δ
Pθ

(

k−i,N
n ≥ M i

N

∣
∣ k

(N)
n−1 = 0

)

+
(1 − qin−1)δθ

1− δ
Pθ

(

k
−i,N
n−1 < M i

N

∣
∣
∣ k

(N)
n−1 = 0

)

.Thanks to equation 4 and 5, one 
an underestimate this by:
opt(qin−1)−

4δ(θ − θ)

(1− δ)(1 − γ)2
(

Eθ[k
(N)
n |k

(N)
n−1 = 0]− 1

) (6)In our 
ase qin−1

1−qin−1
=

pin−1

1−pin−1

P
θ
(k

(N)
n−1=0)

Pθ(k
(N)
n−1=0)

≥
pin−1

1−pin−1
thanks to Lemma 3.3, so that qin−1 ≥ pin−1 ≥

πn−1. Therefore, our strategy yields at least an average payo� of:
opt(πn−1)−

4δ(θ − θ)

(1− δ)(1 − γ)2
(

Eθ[k
(N)
n |k

(N)
n−1 = 0]− 1

)

−−−−−→
N→+∞

πn

θ

1− δ
+ (1− πn−1)θ = opt(πn−1) > 0, as πn−1 > p∗.Consequently, this payo� is non-negative for any qin−1 and for N large enough and any playershould stay a
tive at stage n. This is absurd be
ause the equilibrium strategy leads someplayers to leave in some non negligible 
ases: if not, the sequen
e (Eθ[k

(N)
n |k

(N)
n−1 = 0]

)

N≥1would not 
onverge to +∞.Remark 2. In this proof, noti
e that we 
ompared k
(N)
n toMN =

Eθ[k
(N)
n |k

(N)
n−1=0]+E

θ
[k

(N)
n |k

(N)
n−1=0]

2 ,but we 
ould equivalently have 
ompared it to any stri
t 
onvex 
ombination of Eθ[k
(N)
n |k

(N)
n−1 =

0] and Eθ[k
(N)
n |k

(N)
n−1 = 0]. 27



More generally, for every sequen
e (aN )N≥1 
onverging to a ∈ (0, 1), and if (Eθ[k
(N)
n |k

(N)
n−1 =

0])N≥1 
onverges to +∞:
Pθ

(

k(N)
n < aNEθ[k

(N)
n |k

(N)
n−1 = 0] + (1− aN )Eθ[k

(N)
n |k

(N)
n−1 = 0]

∣
∣
∣ k

(N)
n−1 = 0

)

−−−−−→
N→+∞

{
1 if θ = θ

0 if θ = θ
.Others 
on
lusion 
an be drawn by the former proof, that generalizes the large game resultwhi
h 
an be found in [14℄.Proposition 3.6. For any sequen
e (πi,N

m (~t)
)

N≥1
of equilibria su
h that

P(k
(N)
n−1 = 0) −−−−−→

N→+∞
1 and Eθ[k

(N)
n |k

(N)
n−1 = 0] −−−−−→

N→+∞
+∞,the 
uto�s π

i,N
n−1(~N) uniformly 
onverge to p∗, i.e.:

sup
i∈{1,··· ,N}

|πi,N
n−1(~N)− p∗| −−−−−→

N→+∞
0.Moreover there exists a sequen
e of real numbers (KN )N≥1 su
h that KN −−−−−→

N→+∞
0 and:

opt(qin−1) ≥ ω
i,N
n−1(p

i
n−1, ~N) ≥ opt(qin−1)−KN a.s.Proof. A

ording to the de�nition of p∗, a player whose posterior belief qin−1 is below p∗should exit. Moreover if no player has left until the end of stage n− 1, we have that qin−1

1−qin−1
=

P
θ
(k−i,N

n−1 =0)

Pθ(k
−i,N
n−1 =0)

pin−1

1−pin−1
. Consequently we 
an underestimate π

i,N
n−1(~N):

π
i,N
n−1(~N)

1− π
i,N
n−1(~N)

≥
Pθ(k

−i,N
n−1 = 0)

Pθ(k
−i,N
n−1 = 0)

p∗

1− p∗

⇔ π
i,N
n−1(~N) ≥ p∗

Pθ(k
−i,N
n−1 = 0)

(1− p∗)Pθ(k
−i,N
n−1 = 0) + p∗Pθ(k

−i,N
n−1 = 0)

.Now we want an overestimation, and for this we have to �nd a 
uto� that makes player ioptimisti
 enough to stay. In the former proof, we provided a strategy that guarantees atleast a payo� of opt(qin−1)−KN , where
KN =

4δ(θ − θ)

(1− δ)(1 − γ)2
(

Eθ[k
(N)
n |k

(N)
n−1 = 0]− 1

) ,and with γ ∈ [0, 1) and N large enough (see equation 6).If our strategy yields a positive payo�, player i has to stay. This is the 
ase if qin−1 ≥ p∗+∆N ,where
∆N =

4δ(θ − θ)

(1− γ)2(θ − (1− δ)θ)
(

Eθ[k
(N)
n |k

(N)
n−1 = 0]− 1

) .A straightforward 
al
ulus leads us to the overestimation of πi,N
n (~N) we were looking for:

π
i,N
n−1(~N) ≤

Pθ(k
−i,N
n−1 = 0)(p∗ +∆N )

Pθ(k
−i,N
n−1 = 0)(1− p∗ −∆N ) +Pθ(k

−i,N
n−1 = 0)(p∗ +∆N )

.28



Both sides of our estimation tends to p∗. The 
onvergen
e is uniform w.r.t. to i be
ause
Pθ(k

(N)
n−1 = 0) ≤ Pθ(k

−i,N
n−1 = 0) ≤ 1. That gives us the �rst part of the proposition.The fa
t we have a strategy that guarantees a payo� of opt(qin−1)−KN implies that ωi

n−1(p
i
n−1, ~N) ≥

opt(qin−1) − KN by de�nition of ωi
n−1. The inequality opt(qin−1) ≥ ωi

n−1(p
i
n−1, ~N) is also aby-produ
t of the de�nition of ωi

n−1 (see se
tion 3.1.2), hen
e the se
ond part of the proposi-tion.3.2.2 Theorem 1.1, Ne
essary 
onditionsOur aim is to show that if there exists an ADE with delay n, then πn−1 ≤ p∗ and inequalities
(Im), 1 ≤ m ≤ n − 1, hold. We will rea
h this goal by dividing the proof into simplerintermediate results.Lemma 3.7. If there exists an ADE with delay n, then Eθ[k

(N)
n |k

(N)
n−1 = 0] −−−−−→

N→+∞
+∞.Proof. We pro
eed using redu
tio ad absurdum. Up to a subsequen
e, (Eθ[k

(N)
n |k

(N)
n−1 = 0]

)

N≥1
=

(
∑N

i=1 F
i
n−1,θ(π

i,N
n−1(~N))

)

N≥1
is bounded.And we have:

Pθ(k
(N)
n = 0) = Pθ(k

(N)
n = 0|k

(N)
n−1 = 0)Pθ(k

(N)
n−1 = 0)

= Pθ

(
n⋂

i=1

{i stays at stage n}

∣
∣
∣
∣
∣
k
(N)
n−1 = 0

)

Pθ(k
(N)
n−1 = 0)

=

N∏

i=1

(

1− F i
n−1,θ(π

i,N
n−1(~N))

)

Pθ(k
(N)
n−1 = 0),and

logPθ(k
(N)
n = 0) =

N∑

i=1

log
(

1− F i
n−1,θ(π

i,N
n−1(~N))

)

+ log
(

Pθ(k
(N)
n−1 = 0)

)

.The sum has the same behaviour as −∑N
i=1 F

i
n−1,θ(π

i,N
n−1(~N)), for we know that

F i
n−1,θ(π

i,N
n−1(~N)) ≤ βθ < 1 (see Lemma 3.4) so that, by 
on
avity:

log(1− F i
n−1,θ(π

i,N
n−1(~N))) ≥

log(1− βθ)

βθ
F i
n−1,θ(π

i,N
n−1(~N)).Combining these fa
ts and the fa
t that Pθ

(

k
(N)
n−1 = 0

)

−−−−−→
N→+∞

1, we get:
∃α > 0, ∃N0 ≥ 1, ∀N ≥ N0, Pθ(k

(N)
n = 0) > α.And in these 
onditions (see 
orollary 3.3) Pθ(k

(N)
n = 0) > α, so that we have:

Pθ(k
(N)
n+1 6= 0|k(N)

n = 0) = Pθ(k
(N)
n+1 6= k(N)

n |k(N)
n = 0) ≤

Pθ(k
(N)
n+1 6= k

(N)
n )

Pθ(k
(N)
n = 0)

≤
Pθ(k

(N)
n+1 6= k

(N)
n )

α
−−−−−→
N→+∞

029



by means of the third 
ondition in the de�nition of ADE. Therefore we have:
Pθ(k

(N)
n+1 = 0|k(N)

n = 0) −−−−−→
N→+∞

1.And then:
Pθ(k

(N)
n+1 = 0) = Pθ(k

(N)
n+1 = 0|k(N)

n = 0)Pθ(k
(N)
n = 0) ≥ αPθ(k

(N)
n+1 = 0|k(N)

n = 0)so that Pθ(k
(N)
n+1 = 0) ≥ α

2 for N large enough.In parti
ular:
Pθ

(

p11 ≥ π
1,N
1 (~N), p12 ≥ π

1,N
2 (~N), ..., p1n ≥ π1,N

n (~N)
)

≥
α

2
.Up to a subsequen
e, one 
an assume that:

∀l ∈ {1, · · · , n}, ∃πl ∈ [0, 1], π
1,N
l (~N) −−−−−→

N→+∞
πl.Consequently, we have Pθ

(
p11 ≥ π1, p

1
2 ≥ π2, ..., p

1
n ≥ πn

)
≥ α

2 and by 
ontinuity:
∃π̃1 > π1, ∃π̃2 > π2, ..., ∃π̃n > πn, Pθ

(
p11 ≥ π̃1, p

1
2 ≥ π̃2, ..., p1n ≥ π̃n

)
≥

α

4
.As the private beliefs have the same support under Pθ and under Pθ, one 
an write:

∃β > 0, Pθ

(
p11 ≥ π̃1, p

1
2 ≥ π̃2, ..., p1n ≥ π̃n

)
≥ β.Therefore, one have, for N large enough:

Pθ

(

p11 ≥ π
1,N
1 (~N), p12 ≥ π

1,N
2 (~N), ..., p1n ≥ π1,N

n (~N)
)

≥ β.And then:
Pθ(k

(N)
n+1 ≤ N − 1) ≥ Pθ (Player 1 is still active at stage n + 1)

≥ Pθ

(

{Player 1 is still active at stage n + 1} ∩ {k(N)
n = 0}

)

= Pθ(k
(N)
n = 0)Pθ

(

Player 1 is still active at stage n + 1|k(N)
n = 0

)

≥ αPθ

(

p1n ≥ π1,N
n (~N)

∣
∣ p1n−1 ≥ π

1,N
n−1(~N), ..., p

1
1 ≥ π

1,N
1 (~N)

)

≥ αPθ

(

p1n ≥ π1,N
n (~N), p1n−1 ≥ π

1,N
n−1(~N), ..., p

1
1 ≥ π

1,N
1 (~N)

)

≥ αβ > 0.This 
ontradi
ts the fa
t that Pθ(k
(N)
n+1 = N) −−−−−→

N→+∞
1.Corollary 3.8. If there exists an ADE with delay n, then πn−1 ≤ p∗.Proof. This is a dire
t 
onsequen
e of proposition 1.5 and lemma 3.7.Lemma 3.9. If there exists an ADE with delay n then the inequalities (Ĩm), 1 ≤ m ≤ n− 1,hold. 30



Proof. Let us prove inequality (Ĩm). To this aim, we �x an ADE with delay n and we overes-timate the 
ontinuation payo� that player i gets at stage m in su
h a strategi
 pro�le whenno player has left, i.e. k(N)
m−1 = 0.Let us say that if any player leaves before stage n, player i 
ould at best play in perfe
ta

ordan
e to the state: stay forever in the High state and drop out in the Low state . Ifnot, he will stay in the game until stage n, and then stay i� the optimal optimal 
ontinuationpayo� ω

i,N
n−1(p

i
n−1, ~α

−i,N
n−1 ) is positive (see se
tion 3.1.2). The 
orresponding overestimation isthe following:

Pθ(k
(N)
n−1 6= 0|k

(N)
m−1 = 0, pim−1)q

i
m−1

θ

1− δ

+ P(k
(N)
n−1 = 0|k

(N)
m−1 = 0, pim−1)

[

(1 + δ + ...+ δn−m−1)
(
myop(qim−1)

)

+δn−m
E

[

max
(

0, ωi,N
n−1(p

i
n−1, ~N)

)∣
∣
∣ pim−1

]
]

,where qim−1

1−qim−1
=

pim−1

1−pim−1

P
θ
(k

(N)
m−1=0)

Pθ(k
(N)
m−1=0

. We denote by fN
m (pim−1) this upper bound.We have that {fN

m (pim−1) < 0} ∩ {k
(N)
m−1 = 0} ⊆ {k

(N)
n−1 6= 0}: if fN

m (pim−1) < 0 and k
(N)
m−1 = 0,player i prefers to leaves at stage m (whi
h yields at payo� of 0) be
ause his 
ontinuationpayo� is non-positive. Consequently we have

P

(

{fN
m (pim−1) < 0} ∩ {k

(N)
m−1 = 0}

)

≤ P

(

k
(N)
n−1 6= 0

)

−−−−−→
N→+∞

0,and:
P

(

fN
m (pim−1) ≥ 0

∣
∣ k

(N)
m−1 = 0

)

−−−−−→
N→+∞

1. (7)On the other hand the fa
t that P(k
(N)
n−1 = 0) −−−−−→

N→+∞
1 implies that

P(k
(N)
n−1 = 0|k

(N)
m−1 = 0, pim−1) −−−−−→

N→+∞
1 a.s.As qin =

pinPθ
(k−i,N

n =0)

pinPθ
(k−i,N

n =0)+(1−pin)Pθ(k
−i,N
n =0)

, it also implies that:
qim−1 −−−−−→

N→+∞
pim−1 a.s.Then thanks to lemma 3.7 and proposition 3.6 we have fN

m (pim−1) −−−−−→
N→+∞

fm(pim−1) a.s.,where:
fm(pim−1) = (1 + δ + ...+ δn−m−1)

(
pim−1θ + (1− pim−1)θ

)

+δn−m
E
[
max

(
0, opt(pin−1)

)∣
∣ pim−1

]
.This fun
tion is non-de
reasing (see se
tion 3.1.2). Consequently there is at most one valueof pim−1 for whi
h fm(pim−1) = 0, and be
ause the law pim−1 is 
ontinuous, we have:

1fN
m (pim−1)≥0 −−−−−→

N→+∞
1fm(pim−1)≥0 a.s.31



Finally we have that P(k
(N)
m−1 = 0) −−−−−→

N→+∞
1 and, up to a subsequen
e, 1

k
(N)
m−1=0

−−−−−→
N→+∞

1 a.s.From this we dedu
e that:
P

(

fN
m (pim−1) ≥ 0

∣
∣ k

(N)
m−1 = 0

)

=

P

(

1fN
m (pim−1)≥01k(N)

m−1=0

)

P

(

k
(N)
m−1 = 0

) −−−−−→
N→+∞

P
(
fm(pim−1) ≥ 0

)
.Then fm(pim−1) ≥ 0 a.s. by means of equation (7). As fm is 
ontinuous, one 
an 
on
ludethat fm(πm−1) ≥ 0, whi
h is the desired equation (Ĩm).The �rst part of theorem 1.1 is then the 
onjun
tion of 
orollary 3.8 and lemma 3.9.3.2.3 Theorem 1.1, Su�
ient 
onditionsTo prove the se
ond part of theorem 1.1, we �rst need to show proposition 1.3, and beforethat we will begin by two useful lemmas.In proposition 1.3 we have P(k

(N)
n−1 = 0) −−−−−→

N→+∞
0 and πn−1 < p∗. After stage n, a signi�
antproportion of players have to leave be
ause their private beliefs are less than p∗, and thisproportion depends on the state. That is the 
ontent of the following lemma.Lemma 3.10. Assume that πn−1 < p∗. For any sequen
e (πi,N

m (~t)
)

N≥1
of equilibria su
hthat P(k

(N)
n−1 = 0) −−−−−→

N→+∞
1, we have:

∀θ ∈ {θ, θ}, Eθ[k
(N)
n |k

(N)
n−1 = 0] ∼

N→+∞
NFn−1,θ(p

∗).In parti
ular Eθ[k
(N)
n |k

(N)
n−1 = 0] −−−−−→

N→+∞
+∞.Proof. As in the proof of proposition 3.6, the fa
t that a player whose posterior belief is below

p∗ will ne
essarily leave implies that: πi,N
n−1(~N) ≥ p∗

P
θ
(k−i,N

n−1 =0)

(1−p∗)Pθ(k
−i,N
n−1 =0)+p∗P

θ
(k−i,N

n−1 =0)
.Therefore we have:

F i
n−1,θ(π

i,N
n−1(~N)) = Pθ(p

i
n−1 ≤ π

i,N
n−1(~N)|k

(N)
n−1 = 0) ≥

Pθ(p
i
n−1 ≤ π

i,N
n−1(~N))−Pθ(k

(N)
n−1 6= 0)

Pθ(k
(N)
n−1 = 0)

≥

Pθ

(

pin−1 ≤ p∗
P

θ
(k−i,N

n−1 =0)

(1−p∗)Pθ(k
−i,N
n−1 =0)+p∗P

θ
(k−i,N

n−1 =0)

)

−Pθ(k
(N)
n−1 6= 0)

Pθ(k
(N)
n−1 = 0)

≥

Fn−1,θ

(

p∗
P

θ
(k−i,N

n−1 =0)

(1−p∗)Pθ(k
−i,N
n−1 =0)+p∗P

θ
(k−i,N

n−1 =0)

)

−Pθ(k
(N)
n−1 6= 0)

Pθ(k
(N)
n−1 = 0)

.The term p∗
P

θ
(k−i,N

n−1 =0)

(1−p∗)Pθ(k
−i,N
n−1 =0)+p∗P

θ
(k−i,N

n−1 =0)

onverges to p∗, and the 
onvergen
e is uniform
32



w.r.t. i be
ause Pθ(k
(N)
n−1 = 0) ≤ Pθ(k

−i,N
n−1 = 0) ≤ 1. Consequently we have:

Eθ[k
(N)
n |k

(N)
n−1 = 0] =

N∑

i=1

F i
n−1,θ(π

i,N
n−1(~N))

≥
N∑

i=1

Fn−1,θ

(

p∗
P

θ
(k−i,N

n−1 =0)

(1−p∗)Pθ(k
−i,N
n−1 =0)+p∗P

θ
(k−i,N

n−1 =0)

)

−Pθ(k
(N)
n−1 6= 0)

Pθ(k
(N)
n−1 = 0)

∼
N→+∞

NFn−1,θ(p
∗). (8)In parti
ular Eθ[k

(N)
n |k

(N)
n−1 = 0] −−−−−→

N→+∞
+∞, and by means of proposition 3.6 the 
uto�s

π
i,N
n−1(~N) uniformly 
onverge to p∗. Moreover we have that:

F i
n−1,θ(π

i,N
n−1(~N)) = Pθ(p

i
n−1 ≤ π

i,N
n−1(~N)|k

(N)
n−1 = 0)

≤
Pθ

(

pin−1 ≤ π
i,N
n−1(~N)

)

Pθ(k
(N)
n−1 = 0)

=
Fn,θ(π

i,N
n−1(~N))

Pθ(k
(N)
n−1 = 0)

.And:
Eθ[k

(N)
n |k

(N)
n−1 = 0] =

N∑

i=1

F i
n−1,θ(π

i,N
n−1(~N)) ≤

N∑

i=1

Fn,θ(π
i,N
n−1(~N))

Pθ(k
(N)
n−1 = 0)

∼
N→+∞

NFn−1,θ(p
∗). (9)Equations (8) and (9) together give the result we were looking for.The basi
 idea is that, after the wave of exits, in the Low state qin is mostly below p∗ so thatany player will leave, and in the High state qin is mostly high enough for all the future believesto be greater than p, so that any remaining player will stay forever.Remember that the posterior belief of player i (after stage n) is expressed by:

qin
1− qin

=
pin

1− pin
×

Pθ(~α
−i,N
n = ~α)

Pθ(~α
−i,N
n = ~α)whenever the status of the players is ~α. This 
an also be written as:

qin
1− qin

=
pin

1− pin
×

∏

j 6=i,p
j
n−1<π

j,N
n−1(~N)

F
j

n−1,θ
(πj,N

n−1(~N))

F
j
n−1,θ(π

j,N
n−1(~N))

×
∏

j 6=i,p
j
n−1≥π

j,N
n−1(~N)

1− F
j

n−1,θ
(πj,N

n−1(~N))

1− F
j
n−1,θ(π

j,N
n−1(~N))

.The terms F
j
n−1,θ(π

j,N
n−1(~N)) 
onverges to Fn−1,θ(p

∗), be
ause P(k
(N)
n−1 = 0) −−−−−→

N→+∞
1 andbe
ause of lemma 3.10 and proposition 3.6. This leads us to set ρ∗ su
h that :

ρ∗ log
Fn−1,θ(p

∗)

Fn−1,θ(p∗)
+ (1− ρ∗) log

1− Fn−1,θ(p
∗)

1− Fn−1,θ(p∗)
= 0.Using 
onvexity properties, it is readily seen that Fn−1,θ(p

∗) < ρ∗ < Fn−1,θ(p
∗). The real ρ∗represents a 
riti
al fra
tion of players leaving at stage n above whi
h the posterior beliefswill de
rease exponentially to 0 and under whi
h it will in
rease exponentially, as stated inthe lemma below. 33



Lemma 3.11. Let (ΦN ) be a sequen
e of equilibria su
h that P(k
(N)
n−1 = 0) −−−−−→

N→+∞
0, andassume that πn−1 < p∗. For every ρ > ρ∗, there exists K > 0 and N0 ≥ 1 su
h that:

∀N ≥ N0,∀i ∈ {1, ..., N},∀~β−i ∈ {N, n}N−1 s.t. #
{
j ∈ {1, ..., N}\{i}, βj 6= N

}
≥ Nρ,

Pθ(~α
−i,N
n = ~β−i)

Pθ(~α
−i,N
n = ~β−i)

≤ e−KN .Similarly, for every ρ < ρ∗, there exists K > 0 and N0 su
h that:
∀N ≥ N0,∀i ∈ {1, ..., N},∀~β−i s.t. #

{
j ∈ {1, ..., N}\{i}, αj 6= N

}
< Nρ :

Pθ(~α
−i,N
n = ~β−i)

Pθ(~α
−i,N
n = ~β−i)

≥ eKN .The proof of this lemma is in the appendix.Let us now prove proposition 1.3.Proof. First let us show the se
ond 
ondition in the de�nition of ADE.We just have to show that Pn−1,θ(k
(N)
n+1 < N) −−−−−→

N→+∞
0, be
ause then:

Pθ(k
(N)
n+1 = N) = 1−Pθ(k

(N)
n+1 < N) = 1−Pθ(k

(N)
n+1 < N, k

(N)
n−1 = 0)−Pθ(k

(N)
n+1 < N, k

(N)
n−1 6= 0)

≥ 1−Pn−1,θ(k
(N)
n+1 < N)P(k

(N)
n−1 = 0)−Pθ(k

(N)
n−1 6= 0) −−−−−→

N→+∞
1.We set ρ =

Fn−1,θ(p
∗)+ρ∗

2 . As Eθ[k
(N)
n |k

(N)
n−1 = 0] ∼ NFn−1,θ(p

∗) (lemma 3.10), and be
ause ρ∗is a 
onvex 
ombination of Fn−1,θ(p
∗) and Fn−1,θ(p

∗), remark 2 enables us to write:
lim

N→+∞
Pn−1,θ

(

k(N)
n ≤ Nρ

)

= 0. (10)Then we have:
Pn−1,θ(k

(N)
n+1 < N) = Pn−1,θ

(

k
(N)
n+1 < N, k(N)

n > Nρ
)

+Pn−1,θ

(

k
(N)
n+1 < N, k(N)

n ≤ Nρ
)

≤ Pn−1,θ(k
(N)
n+1 < N |k(N)

n > Nρ)Pn−1,θ(k
(N)
n > Nρ) +Pn−1,θ(k

(N)
n ≤ Nρ)

≤ Pn−1,θ(k
(N)
n+1 < N |k(N)

n > Nρ) +Pn−1,θ(k
(N)
n ≤ Nρ)As Pn−1,θ(k

(N)
n ≤ Nρ) −−−−−→

N→+∞
0, we fo
us on the other term. We use the basi
 idea that wementioned before, i.e. the posterior belief of a
tive player is ne
essarily greater than p∗:

Pn−1,θ(k
(N)
n+1 < N |k(N)

n > Nρ) = Pn−1,θ

(

∃i ∈ {1, ..., N}, αi,N
n+1 = N

∣
∣
∣ k(N)

n > Nρ
)

≤ Pn−1,θ

(

∃i ∈ {1, ..., N}, qin ≥ p∗ and αi,N
n = N

∣
∣ k(N)

n > Nρ
)

≤ NPn−1,θ

(

qin ≥ p∗ and αi,N
n = N

∣
∣ k(N)

n > Nρ
)

= NPn−1,θ

(
qin

1− qin
≥

p∗

1− p∗
and αi,N

n = N

∣
∣
∣
∣
k(N)
n > Nρ

)

= NPn−1,θ

(

pin
1− pin

Pθ(~α
−i,N
n = ~α)

Pθ(~α
−i,N
n = ~α)

≥
p∗

1− p∗
, αi,N

n = N

∣
∣
∣
∣
∣
k(N)
n > Nρ

)

.34



The fa
t that k(N)
n > Nρ and that i is still a
tive implies that, for N large enough and for agiven K > 0, P
θ
(~α−i,N

n =~α)

Pθ(~α
−i,N
n =~α)

≤ e−KN by means of lemma 3.11. This enables us to write:
Pn−1,θ(k

(N)
n+1 < N |k(N)

n > Nρ) ≤ NPn−1,θ

(
pin

1− pin
e−KN ≥

p∗

1− p∗
, αi,N

n = N

∣
∣
∣
∣
k(N)
n > Nρ

)

.And then:
Pn−1,θ(k

(N)
n+1 < N |k(N)

n > Nρ) ≤ N
Pθ

(
pin

1−pin
e−KN ≥ p∗

1−p∗ , α
i,N
n = N, k

(N)
n > Nρ, k

(N)
n−1 = 0

)

Pn−1,θ(k
(N)
n > Nρ)Pθ(k

(N)
n−1 = 0)

≤ N
Pθ

(
pin

1−pin
e−KN ≥ p∗

1−p∗

)

Pn−1,θ(k
(N)
n > Nρ)Pθ(k

(N)
n−1 = 0)

≤ Ne−KN
(1− p∗)Eθ

(
pin

1−pin

)

p∗Pn−1,θ(k
(N)
n > Nρ)Pθ(k

(N)
n−1 = 0)by means of Markov inequality.This last term 
onverges to 0. Indeed we have:

• Ne−KN −−−−−→
N→+∞

0,
• Pn−1,θ(k

(N)
n > Nρ) −−−−−→

N→+∞
1 (see equation (10))

• Pθ(k
(N)
n−1 = 0) −−−−−→

N→+∞
1 by hypothesis.And

Eθ

(
fθ(X

i
1)

fθ(X
i
1)

)

=

∫
fθ(u)

fθ(u)
fθ(u)du =

∫

fθ(u)du = 1,so that:
Eθ

(
pin

1− pin

)

= Eθ

(
p0

1− p0

fθ(X
i
n)

fθ(Xi
n)

...
fθ(X

i
1)

fθ(X
i
1)

)

=
p0

1− p0
Eθ

(
fθ(X

i
1)

fθ(X
i
1)

)n

=
p0

1− p0by independen
e of payo�s 
onditionally to the state.We are then able to 
on
lude that Pθ(k
(N)
n+1 = N) −−−−−→

N→+∞
1, hen
e the se
ond 
ondition inthe de�nition of ADE.Now, let us show the third 
ondition.Similarly to equation (10) we have

lim
N→+∞

Pn−1,θ

(

k(N)
n < Nρ

)

= 1,where ρ =
F
n−1,θ(p

∗)+ρ∗

2 . And, as in the former point, we just have to show that:
Pn−1,θ

(

∃l ≥ n, k
(N)
l+1 6= k(N)

n

∣
∣
∣ k(N)

n < Nρ
)

−−−−−→
N→+∞

0.35



We use the fa
t that a player whose posterior belief is greater than p ne
essarily remainsa
tive:
Pn−1,θ

(

∃l ≥ n, k
(N)
l+1 6= k(N)

n

∣
∣
∣ k(N)

n < Nρ
)

= Pn−1,θ

(

∃l ≥ n, k
(N)
l+1 6= k(N)

n and k
(N)
l = k(N)

n

∣
∣
∣ k(N)

n < Nρ
)

≤ Pn−1,θ

(

∃l ≥ n,∃i ∈ {1, ..., N}, i leaves at stage l + 1 and k
(N)
l = k(N)

n

∣
∣
∣ k(N)

n < Nρ
)

≤ Pn−1,θ

(

∃l ≥ n,∃i ∈ {1, ..., N}, qil ≤ p and k
(N)
l = k(N)

n

∣
∣
∣ k(N)

n < Nρ
)

≤ Pn−1,θ

(

∃l ≥ n,∃i ∈ {1, ..., N},
qil

1− qil
≤

p

1− p
and k

(N)
l = k(N)

n

∣
∣
∣
∣
k(N)
n < Nρ

)

≤
∑

l ≥ n

i ∈ {1, ..., N}

Pn−1,θ

(
qil

1− qil
≤

p

1− p
and k

(N)
l = k(N)

n

∣
∣
∣
∣
k(N)
n < Nρ

)

.Sin
e
qil

1− qil
=

pil
1− pil

Pθ(~α
−i,N
l = ~α)

Pθ(~α
−i,n
l = ~α)

=
pin

1− pin
×

l∏

m=n+1

fθ(X
i
m)

fθ(Xi
m)

×
Pθ(~α

−i,N
n = ~α)

Pθ(~α
−i,N
n = ~α)

×
Pθ(k

−i,N
l = k

−i,N
n |~α−i,N

n )

Pθ(k
−i,N
l = k

−i,N
n |~α−i,N

n )
,and k

−i,N
n ≤ k

(N)
n < Nρ, we 
an underestimate qi

l

1−qi
l

using lemma 3.11 and 
orollary 3.3:
qil

1− qil
≥

πn

1− πn

×

l∏

m=n+1

fθ(X
i
m)

fθ(Xi
m)

× eKN × 1for N large enough and for a given K > 0.Consequently:
∑

l ≥ n

i ∈ {1, ..., N}

Pn−1,θ

(
qil

1− qil
≤

p

1− p
and k

(N)
l = k(N)

n

∣
∣
∣
∣
k(N)
n < Nρ

)

≤
∑

l ≥ n

i ∈ {1, ..., N}

Pn−1,θ

(
l∏

m=n+1

fθ(X
i
m)

fθ(Xi
m)

≤
p

1− p

1− πn

πn

e−KN

∣
∣
∣
∣
∣
k(N)
n < Nρ

)

=
∑

l≥n

NPθ

(
l∏

m=n+1

fθ(X
i
m)

fθ(Xi
m)

≤
p

1− p

1− πn

πn

e−KN

) (11)
= Pθ

(

1 ≤
p

1− p

1− πn

πn

e−KN

)

︸ ︷︷ ︸

=0 for N large enough

+
∑

l≥n+1

NPθ

(
l∏

m=n+1

fθ(X
i
m)

fθ(Xi
m)

≤
p

1− p

1− πn

πn

e−KN

)

.Equality (11) is a by-produ
t of the independen
e of payo�s 
onditionally to the state.36



Then, we set the r.v. Y i
m = log

f
θ
(Xi

m)

fθ(Xi
m)
, and denote by y its expe
tation under Pθ. We have:

Eθ

[
fθ(X

i
m)

fθ(X
i
m)

]

=

∫
fθ(u)

fθ(u)
fθ(u)du =

∫

fθ(u)du = 1,whi
h gives thanks to Jensen inequality:
0 = logEθ

[
fθ(X

i
m)

fθ(X
i
m)

]

≥ Eθ

[

log
fθ(X

i
m)

fθ(X
i
m)

]

= −y.And be
ause f
θ
(Xi

m)

fθ(Xi
m)

is not 
onstant (it has a density) and log is not a�ne, y > 0. Moreover,we 
an assume that the r.v. Y i
m are upper bounded and y is �nite: if not, one 
an repla
e

Y i
m by Ỹ i

m = sup(Y i
m, L) with L with large enough for the 
orrespondent expe
tation ỹ tobe non-negative (whi
h is made possible by dominated 
onvergen
e). Plus, the estimationsthereafter will hold a fortiori be
ause Ỹ i

m ≤ Y i
m.We also de�ne Si

l =
∑l

m=n+1(Y
i
m − y) and s = log

(
p

1−p

1−πn

πn

). Then, we have:
∑

l≥n+1

NPθ

(
l∏

m=n+1

fθ(X
i
m)

fθ(Xi
m)

≤
p

1− p

1− πn

πn

e−KN

)

≤
∑

l≥n+1

NPθ(S
i
l ≤ s−KN − (l − n)y).The r.v. Y i

m − v are upper bounded by a real M , and lower bounded by a real M ′. UsingHoe�ding's inequality we have (with N large enough to have NK > s):
Pθ(S

i
l ≤ s−KN − (l − n)y) ≤ exp

−2(s−NK − (l − n)y)2

(l − n)(M −M ′)2
.This leads us to the �nal 
on
lusion sin
e

∑

l≥n+1

NPθ(S
i
l ≤ s−KN − (l − n)y) ≤

∑

l≥n+1

N exp
−2(s−NK − (l − n)y)2

(l − n)(M −M ′)2

≤
∑

l≥1

N exp
−2(s−NK − ly)2

l(M −M ′)2and by dominated 
onvergen
e this 
onverges to 0 as N → +∞.Now let us prove the se
ond part of theorem 1.1.Proposition 3.12. If πn−1 < p∗ and if inequalities (Im) (1 ≤ m ≤ n − 1) hold, then thereexists an ADE with delay n.Proof. Consider the game where ea
h player is obliged to stay until stage n, and is still obligedto stay then if pin−1 > πn−2. This game is very similar to the original one, there still existsequilibria and all of them are in 
uto� strategy. In this new game, we have:
Pθ(i leaves at stage n|k(N)

n = 0, pin−2) ≤ Pθ(p
i
n−1 ≤ πn−2|p

i
n−2)

≤ Pθ(p
i
n−1 ≤ πn−2|p

i
n−2 = πn−2) = Pθ

(
fθ(X

i
n−1)

fθ(X
i
n−1)

≤ 1

)

< 1.37



By setting β̃θ = Pθ(p
i
n−1 ≤ πn−2|p

i
n−2 = πn−2) (and r̃ = 1) we get the same inequality asin Lemma 3.4, and all that was proven thereafter is still true with these new bounds. Inparti
ular, the fa
t that P(k

(N)
n = 0) = 1 and that πn−1 < p∗ implies thanks to the previoustheorem (1.3) that any sequen
e of equilibria is an ADE.Let (ΦN ) be a sequen
e of su
h equilibria. Our goal is to show that there exists N0 su
h that

(ΦN )N≥N0 is a sequen
e of equilibria in the original game.First, thanks to lemma 3.10 and to proposition 3.6, the 
uto�s πi,N
n (~N) uniformly tend to p∗.Inequality (In−1) implies that πn−2 > p∗ (see se
tion 3.1.2), so that the rule whi
h 
ompelsplayer i to remain a
tive if pin−1 > πn−2 is still obeyed in the original game for N large enough.Now let us see if any player i is not tempted to deviate unilaterally by leaving at a stagem < n.If this player sti
ks to his strategy in the 
onstrained game, he will remain a
tive until stage

n, and then stay i� his 
ontinuation payo� ω
i,N
n−1(p

i
n−1, ~α

−i,N
n−1 ) is positive (see se
tion 3.1.2).In the 
onstrained game we have Pθ

(

k
−i,N
l = 0

)

= Pθ

(

k
−i,N
l = 0

)

= 1 (1 ≤ l ≤ n − 1),this implies that pil = qil (see se
tion 3.1.1) and that ~α
−i,N
l = ~N. This gives us the followingunderestimation of the payo� that player i gets from stage m if he stays and follows hisstrategy in the 
onstrained game:

(1 + δ + ...+ δn−m−1)myop(pim−1) + δn−m
E

[

max
(

0, ωi,N
n−1(p

i
n−1, ~N)

)∣
∣
∣ pim−1

]By lemma 3.10 and propostion 3.6, we have ωi,N
n−1(p

i
n−1, ~N) ≥ opt(pin−1)−KN , whereKN −−−−−→

N→+∞

0 (irrespe
tive to i). Consequently, by staying at stage m, player i 
an expe
t at least a payo�of:
(1 + δ + ...+ δn−m−1)myop(pim−1) + δn−m

E
[
max

(
0, opt(pin−1)

)∣
∣ pim−1

]
− δn−mKNAs mentioned in se
tion 3.1.2 this lower bound is nearly the left side of inequality (Im) and isin
reasing in pim−1. Consequently, it is non-negative for N large enough, and player i is rightto stay at stage m be
ause leaving would yield a payo� of 0.To 
on
lude the results about ADE, note that the proof of 
orollary 1.2 
an be found in theappendix.Our last proof deals with other asymptoti
 equilibria.3.2.4 Theorem 1.4Proof. Let (ΦN ) be a sequen
e of symmetri
 equilibria su
h that P(k

(N)
n−1 = 0) −−−−−→

N→+∞
1and lim sup

N→+∞
P(k

(N)
n = 0) < 1. We also assume that πn−1 ≥ p∗. Then by theorem 1.5 thesequen
e (Eθ[k
(N)
n |k

(N)
n−1 = 0]

)

N≥1
is bounded, and so is the sequen
e (Eθ[k

(N)
n |k

(N)
n−1 = 0]

)

N≥1by sto
hasti
 dominan
e. Let us set λθ,N = Eθ[k
(N)
n |k

(N)
n−1 = 0]. As lim sup

N→+∞
P(k

(N)
n = 0) < 1and Pθ(k

(N)
n = 0) ≥ Pθ(k

(N)
n = 0) by sto
hasti
 dominan
e, Pθ(k

(N)
n = 0) is bounded awayfrom 1 and λθ,N is bounded away from zero. We 
an also assert that Pθ(k

(N)
n = 0) < 1 for Nlarge enough, be
ause k

(N)
n is measurable w.r.t. the pim (1 ≤ i ≤ N and 1 ≤ m ≤ n − 1) andthe pim have the same support under Pθ and Pθ. Therefore λN,θ > 0 for N large enough.38



As the equilibria are symmetri
, players all play the same strategy and the probability under
Pθ(·|k

(N)
n−1 = 0) to leave at stage n for ea
h of them is λθ,N

N
(θ ∈ {θ, θ}). Moreover ea
hde
ision only depends on private payo�s, whi
h are independent a
ross players 
onditionallyto the state. Therefore the number of exits k(N)

n is the sum of N independent Bernoulli r.v.with the same parameter λθ,N

N . So the distribution of k(N)
n is a binomial distribution:

∀N ≥ 1, ∀k ∈ {0, ..., N}, Pθ(k
(N)
n = k|k

(N)
n−1 = 0) = Ck

N

(
λθ,N

N

)k (

1−
λθ,N

N

)N−k

.This asymptoti
ally equals a Poisson distribution:
Pθ(k

(N)
n = k|k

(N)
n−1 = 0) = Ck

N

(
λθ,N

N

)k (

1−
λθ,N

N

)N−k

=
N(N − 1) · · · (N − k + 1)

Nk

(λθ,N )k

k!

(

1−
λθ,N

N

)N (

1−
λθ,N

N

)−k

∼
N→+∞

(λθ,N )k

k!
e
N log

(

1−
λθ,N
N

)

∼
N→+∞

(λθ,N )k

k!
e−λθ,N .
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AppendixProof of Lemma 3.1Proof. As the link between pik and the likelihood ratio pi
k

1−pi
k

is an in
reasing bije
tion between
[0, 1] and [0,+∞), we 
an restate the result as:

x 7→
Pθ

(
f
θ
(Xi

n)

fθ(Xi
n)

f
θ
(Xi

n−1)

fθ(X
i
n−1)

...
f
θ
(Xi

1)

fθ(X
i
1)

≥ x,
f
θ
(Xi

n−1)

fθ(X
i
n−1)

...
f
θ
(Xi

1)

fθ(X
i
1)

≥ xn−1, ...,
f
θ
(Xi

1)

fθ(X
i
1)

≥ x1

)

Pθ

(
f
θ
(Xi

n)

fθ(Xi
n)

f
θ
(Xi

n−1)

fθ(X
i
n−1)

...
f
θ
(Xi

1)

fθ(X
i
1)

≥ x,
f
θ
(Xi

n−1)

fθ(X
i
n−1)

...
f
θ
(Xi

1)

fθ(X
i
1)

≥ xn−1, ...,
f
θ
(Xi

1)

fθ(X
i
1)

≥ x1

)is in
reasing, with xi =
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.We 
onsider two positive reals x and x′ with x′ > x. We have to show that:

Pθ(x
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′) ≥ 0.First, note that:
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(
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.Combining this with (12), we get:
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.Using similar arguments, we �nd that Pθ(x

′) ≥ x′Pθ(x
′).Then : Pθ(x

′)Pθ(x)− Pθ(x)Pθ(x
′) ≥ 0, and the result follows.41



Proof of lemma 3.11Proof. First noti
e that the fun
tion
gN,θ : (x, j) 7→ Pθ

(

p
j
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j
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)uniformly 
onverges to Fn−1,θ as N → +∞. Indeed, on the one hand we have that:
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onverges to 1− Fn−1,θ as N → +∞.Now let us set ρ > ρ∗. By sto
hasti
 dominan
e Fn−1,θ(p
∗) < Fn−1,θ(p

∗) whi
h implies thatthe fun
tion
x 7→ x log
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es mentioned above and by 
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< −K. (13)By lemma 3.10 and proposition 3.6, one 
an also 
hoose N0 large enough su
h that:

∀N ≥ N0, ∀j ∈ {1, ..., N}, p∗ − ǫ ≤ π
N,j
n−1(~N) ≤ p∗ + ǫ.
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Then, for all N ≥ N0:
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≤ −KN.The proof of the se
ond assertion of the lemma is very similar.Proof of 
orollary 1.2Proof. The se
ond point of the 
orollary is a by-produ
t of the examples in se
tion 1.5.Let us prove the �rst point. We �x n ≥ 2, and set µ = ess inf
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ept for p0 and δ and weshow that, when δ is 
lose enough to 1 and under 
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es, all the inequalities43



(Im) (1 ≤ m ≤ n− 1) are satis�ed so that there exists an ADE with delay n.Let us study inequality (Im). First we set Λn,m,θ = Pθ
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.We want this limit to be non-negative for any m ∈ {1, · · · , n− 1}. To be more expli
it, we setthe distribution of Xi
m + 1 as an exponential law of parameter λθ, as in se
tion 1.5. In this
ase µ =
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, and thanks to the property of summation of gamma distributions we get that:
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This is 
learly the 
ase if µ is small enough and λθ(λθ − λθ) is large enough, e.g. λθ = 10 and
λθ =

1
2 .As a 
on
lusion, with these values of λθ and with δ 
lose enough to 1, all inequalities (Im)hold so that there exists an ADE with delay n.
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