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Abstract. The Vlasov equation is well known to provide a good desariptif the dynamics
of mean-field systems in thd — co limit. This equation has an infinity of stationary states
and the case ohomogeneoustates, for which the single-particle distribution functiis
independent of the spatial variable, is well characteriaedlytically. On the other hand,
the inhomogeneous case often requires some approximdtioren analytical treatment:
the dynamics is then best treated in action-angle varialaled the potential generating
inhomogeneity is generally very complex in these new véembWe here treat analytically
the linear stability of toy-models where the inhomogené&tyreated by an external field.
Transforming the Vlasov equation into action-angle vdgabwe derive a dispersion relation
that we accomplish to solve for both the growth rate of theainiity and the stability threshold
for two specific models: the Hamiltonian Mean-Field modahvwadditional asymmetry and
the mean-field* model. The results are compared with numerical simulatigrise N-body
dynamics. When thenhomogeneoustate is stationary stable, we expect to observe in the
N-body dynamics Quasi-Stationary-States (QSS), whostiniéediverges algebraically with
N.
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1. Introduction

Long-range forces can be found in a wide variety of physigatesns, including self-
gravitating systems, Coulomb systems, wave-plasma &tterss and two-dimensional
hydrodynamics. The interest in studying long-range foricas been revived in the last
decade, not only because of the broad domain of physica¢mgsinvolving such forces,
but also because of the presence of unusual phenomena, tetuidbrium and out of
equilibrium. Let us mention negative specific heat, temjpeeajumps, broken ergodicity
and quasi-stationary states. Reviews and books have beentlsepublished in this field
[m.2.B.855!

A particular, but interesting, case is the onentéan-fieldinteractions, for which each
particle is directly coupled to all the others with equakstth, whatever their distance.
Although this is an idealization, it serves as a useful appration and appears, in addition,
to give at least the good trend. Moreover, there are physiitadtions in which particles are all
in interaction via a field, whose dynamics is in turn detemdiby the motion of the particles
themselves: this is for example the case of wave-parti¢kractions in plasmag][7], Free
Electron Lasers[]8], Collective Atomic Recoil Lasef$ [9]dafraveling Wave TubedT1LO].
This self-consistentfect can also be obtained in systems composed only of partigle
introducing a coupling to anrder parameteras it is done for the Hamiltonian Mean Field
(HMF) model [I1,[IR[3], which has been widely studied irerecyears as a paradigm for
systems with long-range interactior} [1] .

The kinetics of models witiN particles and only mean-field interactions is exactly
described, in the infinité limit, by the Vlasov equation[[14, 1L5]. This equation exksbi
an infinity of stationary solutions and its dynamical evwuatstarting from a generic initial
state can be extremely complex. Focusing on stationamgsstiiteir stability has been studied
using diferent methods, but mainly by restricting the analysi©iéonogeneoustationary
states, that are characterized by a single-particle kigtan function which is independent
of the spatial variable. These states are of major intendghietic theory, because they often
constitute the “supposed” physical equilibrium state. iRgtance a globally neutral plasma
has an equilibrium which is also locally neutral, givingp@mogeneousharge distribution. If
perturbed, this state is expected to be stable, showingaatebn back to the homogeneous
state ruled by Landau damping J16] 7] 18]. This phenomeyois also observed in the
HMF model [19], for which the homogeneous state is stablevalaogiven energy threshold,
which depends on the initial momentum distribution.

However, below this energy, the homogeneous state is Uastainl one observes a
dynamical evolution towards inhomogeneous states, wtiabdity properties are much more
difficult to determine. Inhomogeneous states appear for examglevitational dynamics
[RQ], because of the attractive nature of the Newton fordeifstability has been studied in
the context of the Vlasov equation, yet the necessity tortés@ction-angle variable§ 1]
makes the problem analytically tricky. Apart from numetie@proaches (see e.d. [22]),
one can project the dynamics onto a Fourier basis, yet at tafogerforming infinite
sums [2b[36]; then, only a truncation can yield tractabfilts. Such technique was also
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used in the context of plasmds]43] 24], where the waves agfesrerate inhomogeneous
states; expanding the dynamics along modes, such as Hewoliteomials [2]7], requires

anyhow a truncation in the sums. Analytical results wer® alstained on BGK modes,

whose stability properties were connected, in the smalbimbgeneity limit, to those of

homogeneous statgs [48) 29]. Later on, the unstable natyreriodic BGK modes under

specific perturbations was rigorously shoyn [B0, 31], batgioblem remains open for other
types of systems and perturbations. More recently, somergkariteria were proposed to
derive the stability of inhomogeneous states [32, 33].

Some toy models were also studied whose states are natunadlgnogeneous: this is
typically the case of systems when an external potentiatesent in addition to the self-
consistent one[[34, B, B6,]137]. A first interesting mode], 3%, [36.[3B] is the mean-field
¢* model: an Ising-like spin variable is represented by a sdahl in one dimension, acted
upon externally by a double-well potential which selects states; the mean-field term of the
Hamiltonian is a quadratic coupling of the scalar field at thifferent lattice sites. A second
interesting model is a generalized version of the Hamidoriviean-Field (HMF) model to
which an anisotropic external potential is added [37] .

In this paper we focus the above mentioned toy models, and wat one can treat
exactlythe stability of inhomogeneous states. The Vlasov equatithbe rewritten in action-
angle variableq]39, #0,}41] and we will focus on those inhgemeous stationary states whose
single-particle distribution function does not dependlmmangle variable, i.e. those that are
homogeneous in angle. We will derive a general stabilitieaon which, besides giving the
value of the threshold energy (action) at which these statipstates destabilize, will allow
us to obtain the growth-rate of the instability.

In SectiorP we will introduce and discuss the Vlasov equmiticaction-angle variables
and we will derive the stability condition for inhomogensaates and for generic mean-field
and external potentials. In Sectidis 3 &hd 4 we shall apelgémneral method introduced in
Section[R to the specific cases of the anisotropic HMF modibthe mean-fielgp* model,
deriving explicit analytical expressions for the stapithireshold and for the growth rate of the
instability. These theoretical predictions will be themymared with numerical simulations
performed withN-body Hamiltonians. Finally, in Sectidh 5, we will draw sor@nclusions
and we will discuss some perspectives of this work.

2. The Vlasov equation in action-angle variables and the shality relations

Let us consideN particles in one-dimension whose positions and momentqu®;),

j = 1L...,N. They interact through the two-body (symmetric) potenia);, gs) and, in
addition, each particle is trapped into the external padek¥(qg;). Hamilton’s equations for
such a system are

dj = pj, 1)
p; = —W(q;) — dq;V [{ak}] (a))s 2)
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whereV [{d}] (0;) = (1/N) X« v(0;. k) stands for the mean-field potential acting on particle
j. The YN term is a rescaling factof [#2] which allows one to perforra thean-field limit
discussed in Refs[[IL{,]15]. The prime will denote, from nowthe derivative with respect

to the position variable. Egs. [JL) and[{2) can be derived from the following Hamiltoni
2

i3 7 W(a) + 3V 1] @) ©

where the ¢;, pj) are couples of canonically conjugated variables. Let t®duce the so-
calledempirical measure

N
(@ P = > oa-aE)p- pi). @
=

It can be shown[[15] that, in thBl — oo limit, the single-particle distribution function
(g, p, t) obeys the following Vlasov equation

ot + pogf — (W'(q) + V'[f](a)) dpf =0, (5)
where

VIfl(a.n) = f do'dp’ f(q', p’, V(. q), (6)

is the averaged mean-field potential. One can also showlied-body dynamics is well
described by the Vlasov equation over times that are at tdamtder InN [[[§]. This makes
the Vlasov framework a natural one to study such systems wHarge number of particles
is involved.

The Vlasov equation can also be written in Hamiltonian forsing the following
functional

2
111 = [ dadp 1@ .0 (5 + W + 3viri@) )

After having introduced the appropriate Poisson braclatthie functional#\[ f] and B[ ]

0 0A doB 0 5A 0 6B
{A, B} = f dadp f(q, p.t) (a_pé_fa_qé_f - B_qé_fa_pé_f) ; (8)

the dynamics of\[ f] is given by
OA = {H, A} 9)

If one rewrites the single particle distribution functiam the functional formf(qg, p,t) =
ff dgdp’ f(q, p’,t)é(qg- q)é(p — p’), one obtains the evolution equation

ohof(aq, p.t) ohdf(q p.t)

= 0cf(a, p, ) + {h[f](a. p), f(a. p.)} = O (10)

whereh[f](q, p) = p?/2 + W(Q) + V[f](g) and the brackets are now the standard Poisson
brackets. This equation is nothing but the Vlasov equafin (

It is straightforward to check that the Boltzmann-Gibbs ikgiium distribution
fac(g, p) = Ztexp(ph(g, p)), with g an arbitrary constant and a normalization constant,
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is a stationary solution of this equation (i@&fgs = 0). In fact, all distributions that depend
on (g, p) only throughh are stationary. The existence of an infinity of stationasgrehutions

is actually responsible for the peculiar out-of-equilimi regimes in whichN-body long-
range systems get trapped over very long tinfies [1]. Moreiipaty, starting from a generic
unstable distribution, a long-range system typicallyxetatowards a “quasi-stationary” state,
which can be significantly éierent from Boltzmann-Gibbs equilibrium. Quasi-Statignar
States (QSS) can be interpreted as stable stationary stabesvlasov equation in thid — oo
limit. The relaxation to statistical equilibrium occurs pruch longer time scales, that were
observed to diverge either algebraically][19] or logariibaily [B7] with N, depending on
whether the “quasi-stationary” state corresponds to destaban unstable stationary state of
the Vlasov equation. Relaxation to equilibrium is not dueddisions but due to finiteN
effects (also called “granularity”), which can be modeled byvamient kinetic equations,
like Landau or Lenard-Balescu equatiofis[[1], L7, 18]. Statd@onary states of the Vlasov
equation are therefore of paramount importance in ordentietstand the dynamics of long-
range systems. It is therefore crucial to determine thergénenditions for stationarity and
stability, for both homogeneous and inhomogeneous states.

Let us consider the stationary stdt€q, p). If one focuses on the Lagrangian trajectory
of a single particle, one immediately realizes that it is astant energy trajectory of the
energy functional

p2

hlfol(a. p) = 5 + W(Q) + V[fol(a). (11)
which is a straightforward consequence of Efjs. (1) §hd (Bndd, it is convenient to cast the

dynamics into the appropriate variables associated withtthjectory, namely the “action-
angle” variables

o) = 5 P pb.a)d = 52 P VZE- W) -VI@dd  (12)
dq

_ , 13
* ) W@ V@) .

where the frequency is given by

-1
PSS S »
20 ] 2(h=W(@) - VITl(q)) 99
It is important to note that the conjugate variablek#] are not action-anglestricto
sensu Since Vlasov dynamics is infinite dimensional and only acfffzeset of conserved
guantities can be typically identified (e.g. the Hamiltonitotal momentum, the Casimirs
ff dgdp C(f(qg, p)), with C an analytic function), its integrability is not generic JJ43The
term action-angle variables comes from the fact that theadyos of a Lagrangian test-
particle is integrable if the single-particle distributidunction is stationary. Indeed, for a
stationary distributionfy, the potentialV[fy] is constant in time. Therefore, the dynamics
of the test-particle is that of a one—degree—of—freedortesysvith the associated conserved
quantity h[ fg], hence integrable. A dependence of the potential on tinusexh by a non-
stationary distributiorf (g, p, t) would introduce an extra/2 degree of freedom, thus breaking

integrabilitya priori.
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In this single particle framework and for stationary disitions, the energi depends
only on the actionJ, so that a particle evolves on a trajectory of constant 6actiJ at
the constant action-dependent angular speed d;h(J) = w(J). The change of variables
(9, p) — (¢, J) being canonical, the corresponding Poisson bracketshadpply to functions
of the phase-space, are equivalent

Using this equivalence and the conditiésh = 0, the Vlasov equatiorf](5) foly can be
recast in the following form

03(3)dy fo = w(I)Fyfo = 0. (16)

Hence, the stationarity conditioé,fo = 0, leads tofy = fp(J). This means in particular that
the stationary distributions are those that laoenogeneous in anglevith anydistribution in
actionJ. Such a result highlights the relevance of action-angleakéas for the analysis of
Vlasov stationary dynamics, but also for the study of QSS.

We shall now consider a perturbatiéh aroundfy, that isf (¢, J) = fo(J) +of (¢, J). The
linearity of the potential/ with respect to the distribution, as emphasized by its dedimin
Eq. (), impliesthaV[f] = V[fo] + V[ f]. Using property[(T5) for the Vlasov equatidih[(F,10)
and neglecting second-order termginleads to thdinearized Vlasov equation

05t + w(I)3,0 T — (0, fo)V'[6F](¢, J) = 0, (17)

where the factod, f, should be expressed in terms ¢f §) and the derivative oY/ is with
respect tog and then it is also expressed in terms ¢fJ). The study of this equation in
full generality would imply the solution of an initial valygroblem using a Laplace-Fourier
transform and then a transformation back to action-angiebigs using a Bromwich contour
[[7, [18]. We will be here less ambitious and we will focus or #tudy of an eigenmode
of(p,J;t) = e f_(qb, J) with the eigenvaluel determining the stability properties. Inserting
this ansatz solution in Eq._(17) one gets

(1 + w(9)d,) T = @pTo)V' || (4, 9) = 0. (18)

Assuming a non-zera (the frequencyw typically only vanishes on the separatrices of the
single particle phase-space) the above equation turas int

(eWw(J)f') ( J) (a fo)V' || (¢.9) = 0. (19)

After integration over the angle, and assuming that the integration constant vanishes, one
gets

e—/l¢/w(J) , _
- dg'e "D (@pfo)(¢. V' [T (¢, 9) = 0. (20)
w(J) Jo
This equation can be fully cast into action-angle variabkiag the following relation
d0fo 0J0fe(J) ohad p
— = — = ——15(J) = = f;(J 21
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which, inserted into Eq[(20), results in the followidigpersion relation

g 1¢/w(J)
oD\ | F
= fd¢ p(#, ) e OV [T] (¢, 3) = 0 (22)

It is convenient to express the integral in this latter equain terms of the position variable
q. Indeed, using Eq[ (IL3), theftBrential @’ can be calculated as a functiongfat constant
actionJ, which means along a single-particle trajectory. One gets

do’ w
do’ = “ - Y4 | 23
Y oW V@) P 23)

which allows one to put Eq[ (R2) into the following form

e [ w0y [F] (o)t = 0 24
= | [l@)da =0, (24)

in which the integral is performed at constant actlofl he interest of this alternative formula
is that it may be easier to solve in some cases. In particfilane focuses on the stability
threshold, given by taking = 0, the integral oveqn can be solved straightforwardly and
Eq. (2#) can be rewritten as

_ /). =
f=2oVifae. (25)

whereq is, in general, a function of both action and angle.

Since all functions in angle arerzeriodic, it is common to project the dispersion
relation in a Fourier bas¢ [8P,]41]. However, since in Ed) (2%2h thep term and the potential
V[f_] have generically a non trivial dependence on the angles,emls up with expressions
where all Fourier modes are coupled. The modes are decoaplgdvhen momentum does
not depend on angle, which is the case of homogeneous stategiich momentum coincide
with action (modulo a sign).

In what follows we will discuss a method which allows us to qute the stability
threshold and the growth ratewithout resorting to a Fourier expansion. The method is,
however, not generic and its application depends on theifspéarm of the interaction
potential. We will therefore discuss separately two exaspl

f- ()5~

f - f5(3)

3. The HMF model with additional asymmetry

Introduced in Ref. [[37], the HMF model with additional cosimn-site potential is a
generalization of the paradigmatic HMF modgl][LT] [3, 13ksi8les the mean-field term
v(d;j, 0k) = — Ccos @; — dk), an external potentidl of amplitudex is present

W(qj) = kcosq; . (26)
The Hamiltonian[(7) reads
2 1 4 / 7 / 7
i1 = [ [ dadp 1@ p)| 5+ keo$a- 5 [[ daap (. pycos - )| .27

At variance with the HMF model, the spatially-homogenedasesis no longer a stationary
state of the Vlasov equation, due to the presence of theterpgiential.
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Using formula [2R), one easily gets the dispersion reldiorthis model
eﬂ(ﬁ/w(J) ’ ’ ) £1 ’ £ ’
gy |, 9 P@. e M flsin((e’, ) - My[f] cosa(e’. )| = 0.(28)
where

M[f] = My[f]+iM[f] = fqudpf(q, p) cosq+if dadp f(qg, p) sinq(29)

stands for the magnetization. For the sake of simpligjtyy’ and p’ will respectively refer

to q(¢, J), q(¢’, J) and p(¢’, J) in the remaining of this section. Equatidn}(28) can be sblve
by multiplying each term by either cgsor sing, and then integrating over phase-space. One
gets the following equations

M 1 (1= 1y [ fol) + ML ]I« o] =0, (30)

MGl + MFT(1+ K[ fo]) =0, (31)
where

Pl _ 0( ) —Ap/w(J) q r A9 w(J) ’

ol = [ a1 Pase X [ dq e O v(@), 32)

and the labeK (resp.Y) stands for the cos (resp. sin) function. The inte@'m performed
over a single-particle trajectory.

Inhomogeneous stationary states of the Vlasov equaticesmond to solutions of the
linear system of equation§ {30}31) with non vanishiiy,(M,). They can be found only
when the determinant vanishes. This condition allows taitewhe dispersion relation in the
form

(1= 1y L fo]) (1 + 19xLfol) + Iyl o]l x[ fo] = O. (33)
The numerical resolution of this equation can be performedding the explicit expressions
of the action-angle coordinatgs [45], for a particle of ggdrand positiormg

-2 )] o5 5

K
) = 2320 4 (4) bos(ah) = 3220
where the Iabeih/outstands for insid@utside of the separatrix of the potentaos g, while
&, % and.# are elliptic integrals of the first kind.

In order to compute the growth rate Rgfrom Eg. (3B) it is necessary to choose a
specific unperturbed stationary distributiéyiJ). We here consider “waterbag” distributions
in action-angle space that are homogeneous in angle: these@level distributions, which
are nonzero and homogeneous between two lines of constant dc= J; andJ = J,

fol) = 2rt(J2 — J1)
where the first factor guarantees the normalization of tmsithef,, while ® is the Heaviside
step function. Morever, we here focus on waterbags deldrbiea given energy, i.e. we
consider all trajectories with energibs< U (so thatJ, = J,(U) andJ; = 0), such as those

(35)

(0 -d) -6 -2%), (36)
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L(a)

1S 2n 0 ‘

p H 2n
Figure 1. Waterbags in action-angle (panel a) anddnp) space (panel b). The waterbags
have increasing boundary energiés= 0.2, 0.4 and 055 and they are represented by filled

contours of lighter and lighter grey as the energy is in@da3he dashed line corresponds to
the separatrix, which has energy = 0.3 and actionls = 0.5.

0.2 0.3 0.4 0.5 0.6
U

Figure 2. Growth rate Re{) (full line) of the instability of the inhomogeneous wategastates
obtained by solving EquS) for waterbags with boundarygye . The crosses are the results
of numerical simulations of th&l-body Hamiltonian. The agreement between theory (which
decribes theN — oo limit) and numerics (which is performed bt = 3 x 10°) is reasonably
good apart from the region near the separatrix enékgy: 0.3 and the one near the critical
energyU. = 0.498, which is theoretically determined by solving Em (42).

represented in Fig] 1(a) and (b). It is interesting to renak, since the change of variables
(g, p) « (¢,J) is canonical,fs(q, p) is also a two-step distribution with the boundary given
by the curveh(g, p) = U. It should be pointed out that, altough the action fixes thergn
univocally, a trajectory of given energy is always splitiadtwo: those with positive and
negative momentump for U > Ug = 0.3, the separatrix energy, and the ones with § < «
andr < g < 2r for U < Ug. This has the consequence that, when performing integsatio
over the action-angle space, the two trajectories giveragpaontributions. Related to this
remark is for example the evaluation of the normalizatioyothe total area of the waterbag
is indeed 2x 27(J(U) — J(0)) = 4nJ(U).

For the waterbag initial conditions, the integral in Hq])(B2ads

2 _ 1 1 56 /() f Y el N oy
= 33— 33| P e X [ e o)
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= Pawer o [ager ). @)
w(%)

The numerical solution of Eq[ (B3), using Eff.](37), are themgared with the result
of simulations performed with thé&l-body Hamiltonian using a sixth-order integration
schemel[[46] with time step.D. Figure[R shows the growth rate Repbtained theoretically
(full line) as a function of the boundary energy The growth rate is determined numerically
by fitting an exponential to the short-time increase of theynedization. One notices the
existence of a threshold enertyy = 0.498 (determined more precisely in the following),
which separates a region where the waterbag is sthbte () from one where the waterbag
is unstablely < U., Re@) > 0). When the waterbag is stable, tNebody dynamics shows
a QSS regime with zero magnetization but withiaBhomogeneoudistribution of particles
in the g spatial coordinate. Let us remark that the theoreticalli®esthows a divergence of
Re(1) at the separatrix energdy = Ug = 0.3 where the frequenay(Js) = O: this divergence
is not reproduced by thid-body dynamics. Moreover, in tHé-body dynamics, the threshold
energy is found to be aroundl ~ 0.44, well below the theoretical value. Indeed, in the energy
region 044 < U < U, the growth of the magnetization is spoiled by finNeeffects, and its
exponential character is not clear any more. However, tleeggnl, is really the one where
we numerically observe a destabilization of the zero magawsbn state.

The critical energyU. beyond which the waterbags become stable can be explicitly
derived using Eq[(33) and by imposing= 0. Let us first note that, in this equation, the last
term vanishes, since botﬁ’x[fo] and IQY[ fo] yield an integral of simcosqg over a trajectory.
Consequently, the product @139 [fo])(1 + 19,[ fo]) should be zero. Then, considering that
Ipl = V2U¢ /1 - (k/U.) cog q, integrating overy, and using Eq.[(23) and then E{-](12), we
finally get

19,01 = o P dscoda 39)
~ cos’-q
-5 95 g (39)
cos’-
§| q \/UC—k((jo§ (40)
29§|dq| JU; - kcogq’

1 ‘(ﬁl q \/USI—n2K20§

- (41)

19 [f] = — = .
L ol 2 §1dg) /U — kcog q

Let us explain the meaning of the uncommon notajagh When integrating over segments
of the single-particle trajectory whemeis negative,q decreases. Thus, botly énd p are
negative, so that their ratio or product is positive. The afsthe diferential/dg| allows us to
unify notation for both the cases in whighand dj are positive or negative. The déeient 2
in front of the first integral originates from the double bdary of the waterbag, be it inside
or outside the separatrix. It can be shown that both expmesd&p) and[(41) are strictly
decreasing functions &f.. Moreover, integral[(40) tends to one in thie — « limit, so that

— IOY[ fo] is always positive. The threshold of stability is thus givgy solving the implicit
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equation

sirq
|dq =2 @ |dgl VU, — kcoZq. 42
56 q VU — kcogq q q (42)

The numerical resolution of the above equation«ct 0.3 yields the valudJ, ~ 0.498, in
excellent agreement with the energy value at whichiRegnishes (see Fif} 2).

We note that the above derivation of the threshold enekggorroborates with the result
derived in Ref.[[37], where the same result was obtained bgldping the single-particle
distribution as a sum of derivatives of Dirac distributiofitie truncation of the expansion to
the very first term allowed the authors of R€f.][37] to obtdia same implicit equatiot (42).
The approach presented here is more general, since it paidliispersion relation for any
stationary distribution, and allows us to derive the stgbdondition without any additional
hypothesis.

We devote the final part of this Section to the derivation a growth rate of the
instability and of the threshold energy for the HMF modelilie limit where the on-site
potential is turnedf (« = 0). Although this result was already obtaingd [[L], 44], @é8vhtion
in this new context allows us to point out the connection leefvaction-angle variables
(¢, J) and the canonical ones, (). In fact, when only the mean-field potential couples the
particles, the non-magnetized inhomogenerous statiostatgs become homogeneougjin
and, in correspondence, the action-angle variables rednodulo a sign, to the canonical
coordinates

- 5 ptr.cyda=p. 43)

=01, (44)
0] 7

¢ = wf dg = sign(p) 9. (45)

The presence of absolute values is due to the fact that tiheneamgle variables take into
account the direction of the motion along the trajectongich are now ballistic. Then,
inserting the following relations

quq'/p odd — gla/p 5

f sing'dq m( sing - cosq) (46)
qéq//p o elda/p _ 1

f cosq'dq’ = m (smq + 5 cosq), 47

into Eq. (32), one can explicitely write the dispersion tiela ([33) as

2 2
(1+ fdp fo(P) } [ folpIO2 ;(f)ﬂ ] = 0. (48)

The waterbag distribution is now homogeneouq and symmetric irp

1

o(p)—gﬁ((a(pwp) O(p—-Ap)), (49)
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and its derivative is given by

|
fo(p) = 27r2A (0(p+Ap) —o(p—Ap)). (50)
The second quadratic term in Ef.](48) vanishes, and onensbtai
fs
O=1+n fdp (p)z = ; (51)
(1+% 2Ap2(1+ %)
We finally obtain the complex growth rate
1
A== E - ApZ . (52)

which shows that the waterbag is stable beyond the threghmddgyU. = 1/12, since the
energy of the system is given by = Asz.

Fig. [3 shows the comparison of this analytical predictiothwthe numerical results
obtained for theN-body simulations of the HMF model: the agreement is exoelle

0.8 ‘ ‘ ;
Linear stability prediction
06 s x N-body simulations
T 0.4
x
0.2
O L L L BRI O ORISR OO IR
0 0.02 0.04 0.06 0.08 0.1 0.12

U

Figure 3. Growth rate Re{) of the instability (full line) as a function of the energyyfor the
HMF model (model[(37) with = 0), as obtained analytically in formul {52). The crosses ar
the results of exponential fits of the short-time evolutiéthe magnetization for thal-body
HMF Hamiltonian.

4. The mean-fieldy* model

The second example that we consider is the mean-fi€lshodel introduced by Desai and
Zwanzig [38]. It is a system where the particles are trappedn external double-well
potential, and are in addition coupled via a infinite-rarayeé. It is described by the following

Hamiltonian
P’ (d o\ _ ¢
ir) = [[ 1@ 5+ (5 - @-0%)- 30 [[wwar i@ a6

Notice that positive (resp. negative) values of the paramgtcorrespond to attractive
(resp. repulsive) mean-field forces. We have used the samaenp#ization introduced
in Ref. [38], which can be shown to be minimal by conveniemtdgcaling the variables
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and time. The magnetizatioM is now defined asM[f] = [/ dadp f(q, p)q, so that the
mean-field potential is given by[f](q) = —(6/2)gM[f], whereas the external potential is
W(q) = g*/4-(1-6)g?/2. It displays a double well fat < 1 and a single well otherwise. The
solution in the canonical ensemble has been recently dkenv®ef. [34], emphasizing that
the system exhibits a second order phase transition. Wheri/2, the critical temperature
has been found to bE, ~ 0.264, corresponding to a critical energy = T./2 ~ 0.132. The
model has been also solved in the microcanonical ensembi¢hanentropy as a function
of energy and magnetization has been derived using largaties [1,[3b,[36], giving
equivalent results. However, it has been shown that, in theoecanonical ensemble, magnetic
susceptibility can be negativie 36, 1].
For this system, the dispersion relatign](24) takes thefotg form
gWe® rd
q f e /*Odq = 0. (54)
w(J) 0
The magnetizatiowvl[f_] can be factored out by multiplying this latter expressigrgtand by
integrating it over the phase-space. One gets
g 19/0() a
1+6 f dJ f(J) 95 d¢ o f e¥'/“Odq = 0. (55)
w(J) 0

Before proceeding to the numerical solution of the aboveatson relation, let us derive
explicitly the expression that allows us to obtain the siigtthreshold by setting = 0 in the
previous formula. The last integral in E{.](55) gives triljiag, while d¢/w can be rewritten
as dy/p thanks to Eq.[(23). One finally gets

1+ efdJ £(J) 9§ q—:dq - 0. (56)

Let us now restrict to those stationary distributions forichhthe mean-field vanishes, i.e.
M[fo] = 0. This case includes those distributions that are symmeith respect tay = 0.
For clarity purposes, we shall also restrict to waterbadriigions that have a boundary
energyU > 0, i.e. fo(J) is constant for all actions & J < J(U) and zero ford > J(U).
Waterbags with both positive and negative boundary enégrgye shown in Fig[]4.

By introducing the following set of variables

q=xq, (57)
G= \ VA (L 0F - (1-6). (59)
_ | A A-92+(-0)
TN Vmra-p-a-e
the momentum of a particle with positive enelflggan be written as
~N2
p = =2~ W(@) =+ V7 AT+ ). (60)

Note thatx varies in the rangep; p], so that the maximum position along a trajectoryds
Now, the action-angles variablds][2,13) assume the falipform

__@ R Y.
- Z@TSE\/(,O X2)(1 + *?) dx (61)

f + oM f]}(J)

(59)
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- ‘_‘3—‘/5 [ (0% — 1)g(—p2) + (0% + 1)%(—,02)], (62)
o 2\/_
96 V(e? - x2)(1 +x2)  nq H ) ©
= W = wF l( —0? .
- fo Nra= x2)(1 + X2 o (p’ P ) 9

Using the following relation

q? x2dx
P e P e )
= aN2q|&(-p?) - A (—p%)] . (66)
one can show, taking also EgE.](62) ahd (63) into accourtt, tha
127J AnQPp?

56 0 |dal = - :
V2(h—W(Q)) P*-1) (p*-1w
Considering that?(p? — 1) = 2(1 - 6) andg?p?/(p? — 1) = 2h/(1 - 6), we eventually get the
following expression for the stability threshold

1+ % fao f5(J) (SJ 4h((:]])))dJ =0. (68)
Let us now consider the case of the waterbag defined by Bqwi@6); = 0 andJ, = J(U).
The dispersion relation for this waterbag reads

0 U

1_1T9(3_4—w(U)J(U))_O' (69)
Solving numerically this latter equation fér= 1/2 gives the threshold enerdy. ~ 0.144,
which turns out to be pretty close to the value of the staastransition energy); found in
Ref. [34]. We can also solve numerically the dispersionti@a(53) and obtain the growth
rate Req). In Fig. @ this growth rate is compared to a fit of the shartetiexponential
growth of the magnetization obtained by integrating nuoaly the N-body Hamiltonian.
Unfortunately the agreement is only qualitative, althotiyh stability threshold is correctly
reproduced.

(67)

5. Concluding remarks

Systems with mean-field interactions are well describedhbylasov equation in thd — oo
limit. Aninfinity of stationary states exists for such eqoatand the study of their stability is a
subject of paramount importance. Many exact results di@uiogeneoustationary appeared
in the literature and several stability criteria have begpliad. Also, inhomogeneous states
have been treated, but the study of their stability is moramex [32,[3B[3J7[ 394, #1].
Characterizing analytically the stability of stationagigions of the Vlasov equation will
have an impact also on the characterization of the slow cgewnee to equilibrium observed
in systems with long-range interaction$ [IL [R[I3[]4L]5, 6panticular on the study of Quasi-
Stationary-States (QSS), which are ubiquitous long-listdes in theN-body dynamics of
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0.5¢

0 0.05 0.1 0.15 0.2

Figure 4. Left panel: Representation in thg, p) plane of the waterbags in action-angle.
The boundary energies atke = —0.035, Q05 and 02 for lighter and lighter grey levels. The
dashed line corresponds to the separatrix, which has ehetg®. Right panel: Growth rate
Re) (full line) computed by numerically solving Ed. {55). Theosses represent the short-
time exponential rate of growth of the magnetization ot#eim numerical simulations of the
N-body Hamiltonian withN = 10°.

long-range systems. It has been shown that the lifetime & Q®%erges algebraically witN

in some simple models and it has been conjectured that thibaapen only when the QSS
corresponds to a stable stationary state of the Vlasov iequiff] (see also Ref[]47] for an
interesting mathematical result along this direction).akg most of the studies on QSS are
for thehomogeneousase.

In this paper, we have discussed a class of models wheredesetiie mean-field
interaction, particles are subjected to an external piatefithe dfect of the external potential
is that of creating an inhomogeneity in the spatial distidou Hence, these models are
naturally endowed with inhomogeneous stationary statéier Fewriting the Vlasov equation
in action-angle variables, we have shown that some of thismmogeneous stationary states in
conjugate coordinates transform into homogeneous stafi@tates that are homogeneous in
angle. We have therefore applied the standard tools ofristadility of the Vlasov equation
to derive a dispersion relation, given in formylal (24), whig the key result of this paper. We
have specialized this formula for two models: the HMF modéhadditional asymmetnf[37]
and the mean-fielg* model [3#,[3b[ 36 38]. For these two models it is possiblautther
simplify the dispersion relation and to obtain implicit egjons that, solved numerically, give
both the growth rate of the instability and the stabilityetbinold. When the real part of the
growth rate vanishes, the state is a stable stationary stdle Vlasov equation. We have
checked these results against the numerical simulatioheofHamiltonian dynamics of the
corresponding\N-body system. The stability thresholds are in general irdgmgreement with
the theoretical predictions, but for the growth rate thesagrent is only qualitative for the
¢* model. A case in which the growth rate turns out to be in péréggeement with the
simulations is the one of the HMF modgl1I] 7] 13].

Those inhomogeneous stationary states that are also ataljeod candidates to become
QSS at finiteN. We have therefore pointed out the existence of a new clastomogeneous
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QSS, for which it will be possible in the future to study therlaf divergence of the lifetime
with system size.
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