
Adaptive wavelet regression in random design and general errors with
weakly dependent data

Christophe Chesneau
University of Caen (LMNO), Caen, France. Email: chesneau@math.unicaen.fr

Abstract

We investigate function estimation in a nonparametric regression model having the fol-
lowing particularities: the design is random (with a known distribution), the errors
admit finite moments of order 2 and the data are weakly dependent; the exponentially
strongly mixing case is considered. In this general framework, we construct a new
adaptive estimator. It is based on wavelets and the combination of two hard thresh-
olding rules. We determine an upper bound of the associated mean integrated squared
error and prove that it is sharp for a wide class of regression functions.
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1 Introduction

Let (Xi, Yi)i∈Z be a bivariate stationary random process where, for any i ∈ Z,

Yi = f(Xi) + ξi, (1.1)

f : [0, 1] → R is an unknown function, (Xi)i∈Z is a sequence of identically distributed
random variables having the common known density g : [0, 1] → [0,∞) and (ξi)i∈Z is
a sequence of identically distributed variables independent of (Xi)i∈Z satisfying E(ξ1) =
0 and E(ξ21) < ∞. We suppose that (Xi, Yi)i∈Z is strongly mixing (to be defined in
Section 2). Given n observations (X1, Y1), . . . , (Xn, Yn) drawn from (Xi, Yi)i∈Z, we aim
to estimate f globally on [0, 1].

To measure the performance of an estimator f̂ of f , we use the Mean Integrated Squared
Error (MISE) defined by:

R(f̂ , f) = E
(∫ 1

0

(f̂(x)− f(x))2dx
)
.

Our goal is to construct f̂ such that the associated MISE is as small as possible. Many
methods can be considered (kernel, spline, wavelets,. . . ) (see e.g. [31]). In this study, we
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focus our attention on the wavelet methods. They are attractive for nonparametric func-
tion estimation because of their spatial adaptivity, computational efficiency and asymptotic
optimality properties. Further details can be found in [1] and [22].

In the litterature, when (X1, Y1), . . . , (Xn, Yn) are i.i.d., various wavelet methods have
been developed. See, e.g., [14–16], [17], [21], [2, 3], [4], [30], [5, 6] [7, 8], [10], [29],
[13], [33], [23] and [9]. When ξ1, . . . , ξn have some kind of dependence (long memory,
ρ-mixing,. . . ), see e.g. [18], [19], [25], [26] and [24]. To the best of our knowledge, the
wavelet estimation of f when (X1, Y1), . . . , (Xn, Yn) are weakly dependent has only been
investigated by [26]. More precisely, [26] constructs a linear nonadaptive wavelet estimator
of f which attained a sharp rate of convergence under the uniform risk over Besov balls.
However, the adaptive wavelet estimation of f , more realistic, has never been addressed
earlier and motivates this study. In addition to this new challenge, we relax some classical
assumptions on the errors: the common distribution of ξ1, . . . , ξn can be unknown; only
E(ξ1) = 0 and E(ξ21) <∞ are required.

We construct a new adaptive wavelet estimator based on the following steps: we esti-
mate the unknown wavelet coefficients of f by a new thresholded versions of the empirical
ones, we operate a term-by-term selection of these estimators via a hard thresholding rule,
then we reconstruct the selected estimators by taking the initial wavelet basis and choos-
ing appropriate levels. Naturally, the definitions of both thresholds take into account the
dependence of the data and are chosen to minimize the associated MISE. Assuming that f
belongs to a Besov balls Bsp,q(M) (to be defined in Section 3), we prove that our estimator
f̂ satisfies

R(f̂ , f) ≤ C
(
lnnθ
nθ

)2s/(2s+1)

,

where C > 0 is a constant (independent of n), nθ = nθ/(θ+1) and θ refers to the exponen-
tially strong mixing case.

The paper is organized as follows. Section 2 clarifies the assumptions on the model and
introduces some notations. Section 3 describes the wavelet basis on [0, 1] and the Besov
balls Bsp,q(M). Our wavelet hard thresholding estimator is presented in Section 4. The
results are set in Section 5. Section 6 is devoted to the proofs.

2 Assumptions and notations

Dependence assumption on (Xi, Yi)i∈Z. Set, for any i ∈ Z, Zi = (Xi, Yi). We suppose
that Z = (Zi)i∈Z is stationary and exponentially strongly mixing. Let us now clarify
this kind of dependence.

For any m ∈ Z, we define the m-th strongly mixing coefficient of Z by

am = sup
(A,B)∈FZ−∞,0×FZm,∞

|P(A ∩B)− P(A)P(B)| ,
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where, for any i ∈ Z, FZ−∞,i is the σ-algebra generated by . . . , Zi−1, Zi and FZi,∞ is
the σ-algebra generated by Zi, Zi+1, . . .. The bivariate random process Z is said to
be strongly mixing if limm→∞ am = 0. The exponentially strongly mixing condition
is characterized by the following inequality: there exists three known constants, γ >
0, c > 0 and θ > 0 such that, for any m ∈ Z,

am ≤ γexp
(
−c|m|θ

)
. (2.1)

This assumption is satisfied by a large class of processes (ARMA processes, ARCH
process, . . . ). See e.g. [32], [20] and [28]. Remark that, when θ →∞, Z = (Zi)i∈Z

becomes a bivariate sequence of i.i.d. random variables.

Boundedness assumption on f . We suppose that there exists a known constant C∗ > 0

such that

sup
x∈[0,1]

|f(x)| ≤ C∗. (2.2)

Boundedness ssumption on g. We suppose that there exists a known constant c∗ > 0

such that

inf
x∈[0,1]

g(x) ≥ c∗. (2.3)

3 Wavelet bases and Besov balls

3.1 Wavelet basis

Let N ∈ N∗ (the set of positive integers), and φ and ψ be the initial wavelet functions
of the Daubechies wavelets dbN . Set

φj,k(x) = 2j/2φ(2jx− k), ψj,k(x) = 2j/2ψ(2jx− k).

Then, with an appropriate treatments at the boundaries, there exists an integer τ satisfying
2τ ≥ 2N such that, for any integer ` ≥ τ ,

B = {φ`,k(.), k ∈ {0, . . . , 2`−1}; ψj,k(.); j ∈ N−{0, . . . , `−1}, k ∈ {0, . . . , 2j−1}},

is an orthonormal basis of L2([0, 1]) = {h : [0, 1]→ R;
∫ 1

0
h2(x)dx <∞}. See [11].

For any integer ` ≥ τ , any h ∈ L2([0, 1]) can be expanded on B as

h(x) =

2`−1∑
k=0

α`,kφ`,k(x) +

∞∑
j=`

2j−1∑
k=0

βj,kψj,k(x),

where αj,k and βj,k are the wavelet coefficients of h defined by

αj,k =

∫ 1

0

h(x)φj,k(x)dx, βj,k =

∫ 1

0

h(x)ψj,k(x)dx. (3.1)
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3.2 Besov balls

Let M > 0, s > 0, p ≥ 1 and r ≥ 1. A function h belongs to Bsp,r(M) if, and
only if, there exists a constant M∗ > 0 (depending on M ) such that the associated wavelet
coefficients (3.1) satisfy

2τ(1/2−1/p)

(
2τ−1∑
k=0

|ατ,k|p
)1/p

+

 ∞∑
j=τ

2j(s+1/2−1/p)

2j−1∑
k=0

|βj,k|p
1/p


r

1/r

≤ M∗.

In this expression, s is a smoothness parameter and p and r are norm parameters. For a
particular choice of s, p and r, the Besov balls contain the standard Hölder and Sobolev
balls. See [27].

4 Estimators

4.1 Wavelet coefficient estimators and some of their statistical properties

The first step to estimate f in (1.1) consists in expanding f on the wavelet basis B.
Then we aim to estimate the unknown wavelet coefficients: αj,k =

∫ 1

0
f(x)φj,k(x)dx and

βj,k =
∫ 1

0
f(x)ψj,k(x)dx. The considered estimators are described below.

Set

γn = µ

√
nθ
lnnθ

where nθ = nθ/(θ+1), θ is the one in (2.1) and µ =
√
(C2
∗ + E(ξ21))/c∗.

For any integer j ≥ τ and any k ∈ {0, . . . , 2j − 1},

• we estimate αj,k by

α̂j,k =
1

n

n∑
i=1

Yi
g(Xi)

φj,k(Xi)1I{∣∣∣ Yi
g(Xi)

φj,k(Xi)
∣∣∣≤γn}, (4.1)

where, for any random event A, 1IA is the indicator function on A.

• we estimate βj,k by

β̂j,k =
1

n

n∑
i=1

Yi
g(Xi)

ψj,k(Xi)1I{∣∣∣ Yi
g(Xi)

ψj,k(Xi)
∣∣∣≤γn}. (4.2)

Remark that α̂j,k and β̂j,k are thresholded versions of the standard empirical wavelet es-
timators for (1.1) (see, e.g., [14–16]). Such an observation thresholding has been intro-
duced by [13] for (1.1) when (X1, Y1), . . . , (Xn, Yn) are i.i.d.. In our study, it allows
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us to have non restrictive assumptions on ξ1, . . . , ξn and treat the weak dependence of
(X1, Y1), . . . , (Xn, Yn).

Propositions 4.1 and 4.2 below show moments properties for (4.1) and (4.2).

Proposition 4.1. Consider (1.1) under the assumptions of Section 2. For any integer j ≥ τ
and any k ∈ {0, . . . , 2j − 1}, let βj,k =

∫ 1

0
f(x)ψj,k(x)dx and β̂j,k be (4.2). Then there

exists a constant C > 0 such that

E
(
(β̂j,k − βj,k)2

)
≤ C lnnθ

nθ
.

This inequality holds with αj,k =
∫ 1

0
f(x)φj,k(x)dx instead of βj,k and α̂j,k defined by

(4.1) instead of β̂j,k.

Proposition 4.2. Consider (1.1) under the assumptions of Section 2. For any integer j ≥ τ
and any k ∈ {0, . . . , 2j − 1}, let βj,k =

∫ 1

0
f(x)ψj,k(x)dx and β̂j,k be (4.2). Then there

exists a constant C > 0 such that

E
(
(β̂j,k − βj,k)4

)
≤ C.

Proposition 4.3 below determines a concentration inequality for (4.2).

Proposition 4.3. Consider (1.1) under the assumptions of Section 2. For any integer j ≥ τ
and any k ∈ {0, . . . , 2j − 1}, let βj,k =

∫ 1

0
f(x)ψj,k(x)dx, β̂j,k be (4.2) and

λn = µ

√
lnnθ
nθ

.

Then, for any κ ≥ 2+ 16/(3u) + 4
√
(1/u)(16/9u2 + 2) with u = (1/2)(c/8)1/(θ+1), we

have
P
(
|β̂j,k − βj,k| ≥ κλn/2

)
≤ 2(1 + 4e−2γ)

1

n4θ
.

4.2 Hard thresholding estimator

We define the hard thresholding estimator f̂ by

f̂(x) =

2τ−1∑
k=0

α̂τ,kφτ,k(x) +

j1∑
j=τ

2j−1∑
k=0

β̂j,k1I{|β̂j,k|≥κλn}ψj,k(x), (4.3)

where α̂τ,k is defined by (4.1) with j = τ , β̂j,k by (4.2), j1 is the integer satisfying

1

2
nθ < 2j1 ≤ nθ,

κ ≥ 2 + 16/(3u) + 4
√

(1/u)(16/9u2 + 2) with u = (1/2)(c/8)1/(θ+1) and

λn = µ

√
lnnθ
nθ

.

The feature of f̂ is to only estimate the “large” unknown wavelet coefficients of f because
they are those which contain his main characteristics.
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5 Results

Theorem 5.1. Consider (1.1) under the assumptions of Section 2. Let f̂ be (4.3). Suppose
that f ∈ Bsp,r(M) with r ≥ 1, {p ≥ 2 and s > 0} or {p ∈ [1, 2) and s > 1/p}. Then there
exists a constant C > 0 such that

R(f̂ , f) ≤ C
(
lnnθ
nθ

)2s/(2s+1)

,

where nθ = nθ/(θ+1).

The proof of Theorem 5.1 uses a suitable decomposition of the MISE with the results
in Propositions 4.1, 4.2 and 4.3.

If we restrict our study to independent (X1, Y1), . . . , (Xn, Yn) i.e. θ → ∞, our rate
of convergence becomes (lnn/n)2s/(2s+1) which is the standard “near optimal” one in the
minimax sense. See e.g. [22] and [13].

Note that the rate of convergence (lnnθ/nθ)
2s/(2s+1) is also achieved by the abstract

minimum complexity regression estimator in [28, Theorem 2.1] but for a slightly different
regression problem with more restrictions on (X1, Y1), . . . , (Xn, Yn), ξ1, . . . , ξn and f

(see [28, Section II. B.]).

6 Proofs

In this section, C represents a positive constant which may differ from one term to
another.
Proof of Proposition 4.1. For any i ∈ {1, . . . , n}, set

Wi,j,k =
Yi

g(Xi)
ψj,k(Xi).

Since X1 and ξ1 are independent and E(ξ1) = 0, we have

E(W1,j,k) = E
(

Y1
g(X1)

ψj,k(X1)

)
= E

(
f(X1)

g(X1)
ψj,k(X1)

)
+ E(ξ1)E(

1

g(X1)
ψj,k(X1))

= E
(
f(X1)

g(X1)
ψj,k(X1)

)
=

∫ 1

0

f(x)

g(x)
ψj,k(x)g(x)dx

=

∫ 1

0

f(x)ψj,k(x)dx = βj,k.

Hence, since W1,j,k, . . . ,Wn,j,k are identically distributed,

βj,k = E (W1,j,k) = E
(
W1,j,k1I{|W1,j,k|≤γn}

)
+ E

(
W1,j,k1I{|W1,j,k|>γn}

)
= E

(
1

n

n∑
i=1

Wi,j,k1I{|Wi,j,k|≤γn}

)
+ E

(
W1,j,k1I{|W1,j,k|>γn}

)
. (6.1)
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This with the elementary inequality (x+ y)2 ≤ 2(x2 + y2), (x, y) ∈ R2, imply that

E
(
(β̂j,k − βj,k)2

)
≤ 2(A+B), (6.2)

where

A = E

( 1

n

n∑
i=1

(
Wi,j,k1I{|Wi,j,k|≤γn} − E(Wi,j,k1I{|Wi,j,k|≤γn})

))2


and
B =

(
E
(
|W1,j,k|1I{|W1,j,k|>γn}

))2
.

Let us bound B and A.

Upper bound for B. Since 1I{|W1,j,k|>γn} ≤ |W1,j,k|/γn, we have

E
(
|W1,j,k|1I{|W1,j,k|>γn}

)
≤

E(W 2
1,j,k)

γn
.

Let us now bound E(W 2
1,j,k). Since X1 and ξ1 are independent and E(ξ1) = 0, we have

E(W 2
1,j,k) = E

(
Y 2
1

g2(X1)
ψ2
j,k(X1)

)
= E

(
(f(X1) + ξ1)

2

g2(X1)
ψ2
j,k(X1)

)
= E

(
f2(X1)

g2(X1)
ψ2
j,k(X1)

)
+ 2E(ξ1)E

(
f(X1)

g2(X1)
ψ2
j,k(X1)

)
+ E

(
ξ21
)
E
(

1

g2(X1)
ψ2
j,k(X1)

)
= E

(
f2(X1)

g2(X1)
ψ2
j,k(X1)

)
+ E(ξ21)E

(
1

g2(X1)
ψ2
j,k(X1)

)
.

Using (2.2), (2.3) and
∫ 1

0
ψ2
j,k(x)dx = 1, we obtain

E
(
f2(X1)

g2(X1)
ψ2
j,k(X1)

)
≤ C2

∗E
(

1

g2(X1)
ψ2
j,k(X1)

)
= C2

∗

∫ 1

0

1

g2(x)
ψ2
j,k(x)g(x)dx = C2

∗

∫ 1

0

1

g(x)
ψ2
j,k(x)dx

≤ C2
∗
c∗

∫ 1

0

ψ2
j,k(x)dx =

C2
∗
c∗
.

And, in a similar way,

E
(

1

g2(X1)
ψ2
j,k(X1)

)
=

∫ 1

0

1

g2(x)
ψ2
j,k(x)g(x)dx =

∫ 1

0

1

g(x)
ψ2
j,k(x)dx

≤ 1

c∗

∫ 1

0

ψ2
j,k(x)dx =

1

c∗
.
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So

E(W 2
1,j,k) ≤

1

c∗
(C2
∗ + E(ξ21)) = µ2 = C. (6.3)

Therefore

B =
(
E
(
|W1,j,k|1I{|W1,j,k|>γn}

))2 ≤ (E(W 2
1,j,k)

γn

)2

≤ C 1

γ2n
≤ C lnnθ

nθ
. (6.4)

Upper bound for A. We have

A = V

(
1

n

n∑
i=1

Wi,j,k1I{|Wi,j,k|≤γn}

)

=
1

n2

n∑
v=1

n∑
`=1

C
(
Wv,j,k1I{|Wv,j,k|≤γn},W`,j,k1I{|W`,j,k|≤γn}

)
=

1

n
V(W1,j,k1I{|W1,j,k|≤γn}) +

2

n2

n∑
v=2

v−1∑
`=1

C
(
Wv,j,k1I{|Wv,j,k|≤γn},W`,j,k1I{|W`,j,k|≤γn}

)
≤ 1

n
V(W1,j,k1I{|W1,j,k|≤γn}) +

2

n2

∣∣∣∣∣
n∑
v=2

v−1∑
`=1

C
(
Wv,j,k1I{|Wv,j,k|≤γn},W`,j,k1I{|W`,j,k|≤γn}

)∣∣∣∣∣ .
(6.5)

Using (6.3), we obtain

V(W1,j,k1I{|W1,j,k|≤γn}) ≤ E(W 2
1,j,k1I{|W1,j,k|≤γn}) ≤ E(W 2

1,j,k) ≤ µ2 = C. (6.6)

It follows from the stationarity of (Xi, Yi)i∈Z that∣∣∣∣∣
n∑
v=2

v−1∑
`=1

C
(
Wv,j,k1I{|Wv,j,k|≤γn},W`,j,k1I{|W`,j,k|≤γn}

)∣∣∣∣∣
=

∣∣∣∣∣
n∑

m=1

(n−m)C
(
W0,j,k1I{|W0,j,k|≤γn},Wm,j,k1I{|Wm,j,k|≤γn}

)∣∣∣∣∣
≤ n

n∑
m=1

∣∣C (W0,j,k1I{|W0,j,k|≤γn},Wm,j,k1I{|Wm,j,k|≤γn}
)∣∣ .

By the Davydov inequality for strongly mixing processes (see [12]), the inequality
|W0,j,k|1I{|W0,j,k|≤γn} ≤ max(γn, |W0,j,k|) and (6.3), for any q ∈ (0, 1), we have∣∣C (W0,j,k1I{|W0,j,k|≤γn},Wm,j,k1I{|Wm,j,k|≤γn}

)∣∣
≤ 10aqm

(
E
(
|W0,j,k|2/(1−q)1I{|W0,j,k|≤γn}

))1−q
= 10aqm

(
E
(
|W0,j,k|2q/(1−q)1I{|W0,j,k|≤γn}W

2
0,j,k1I{|W0,j,k|≤γn}

))1−q
≤ Caqm

(
γ2q/(1−q)n

)1−q (
E
(
W 2

0,j,k

))1−q ≤ Caqm( nθ
lnnθ

)q
.
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Due to (2.1), we have
∑n
m=1 a

q
m ≤ γ

∑∞
m=1 exp

(
−cq|m|θ

)
= C. So∣∣∣∣∣

n∑
v=2

v−1∑
`=1

C
(
Wv,j,k1I{|Wv,j,k|≤γn},W`,j,k1I{|W`,j,k|≤γn}

)∣∣∣∣∣ ≤ Cn
(

nθ
lnnθ

)q
. (6.7)

Taking q = 1/θ, we have nqθ/n = 1/nθ. It follows from (6.5), (6.6) and (6.7) that

A ≤ C
(
1

n
+

1

n2
n

(
nθ
lnnθ

)q)
≤ C

nqθ
n

= C
1

nθ
≤ C lnnθ

nθ
. (6.8)

It follows from (6.2), (6.4) and (6.8) that

E
(
(β̂j,k − βj,k)2

)
≤ C lnnθ

nθ
. (6.9)

Replacing φ instead of ψ in the previous proof, one can show that (6.9) holds with αj,k =∫ 1

0
f(x)φj,k(x)dx instead of βj,k and α̂j,k defined by (4.1) instead of β̂j,k.
The proof of Proposition 4.1 is complete.

�

Proof of Proposition 4.2. We have

|β̂j,k − βj,k| ≤ |β̂j,k|+ |βj,k|.

We have

|β̂j,k| ≤
1

n

n∑
i=1

∣∣∣∣ Yi
g(Xi)

ψj,k(Xi)

∣∣∣∣ 1I{∣∣∣ Yi
g(Xi)

ψj,k(Xi)
∣∣∣≤γn} ≤ γn = µ

√
nθ

lnnθ
.

It follows from (2.2), the Cauchy-Schwarz inequality and
∫ 1

0
ψ2
j,k(x)dx = 1 that

|βj,k| ≤
∫ 1

0

|f(x)||ψj,k(x)|dx ≤ C∗
∫ 1

0

|ψj,k(x)|dx

≤ C∗

(∫ 1

0

ψ2
j,k(x)dx

)1/2

= C∗ ≤ C
√

nθ
lnnθ

.

Therefore

|β̂j,k − βj,k| ≤ C
√

nθ
lnnθ

. (6.10)

By (6.10) and Proposition 4.1, we have

E
(
(β̂j,k − βj,k)4

)
≤ C nθ

lnnθ
E
(
(β̂j,k − βj,k)2

)
≤ C nθ

lnnθ

lnnθ
nθ

= C.

�
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Proof of Proposition 4.3. For any i ∈ {1, . . . , n}, set

Wi,j,k =
Yi

g(Xi)
ψj,k(Xi).

By (6.1), we have

|β̂j,k − βj,k|

=

∣∣∣∣∣ 1n
n∑
i=1

(
Wi,j,k1I{|Wi,j,k|≤γn} − E

(
Wi,j,k1I{|Wi,j,k|≤γn}

))
− E

(
W1,j,k1I{|W1,j,k|>γn}

)∣∣∣∣∣
≤

∣∣∣∣∣ 1n
n∑
i=1

(
Wi,j,k1I{|Wi,j,k|≤γn} − E

(
Wi,j,k1I{|Wi,j,k|≤γn}

))∣∣∣∣∣+ E
(
|W1,j,k|1I{|W1,j,k|>γn}

)
.

Using (6.3), we obtain

E
(
|W1,j,k|1I{|W1,j,k|>γn}

)
≤

E(W 2
1,j,k)

γn
≤ µ2 1

µ

√
lnnθ
nθ

= λn.

Hence

P
(
|β̂j,k − βj,k| ≥ κλn/2

)
≤ P

(∣∣∣∣∣ 1

wn

n∑
i=1

(
Wi,j,k1I{|Wi,j,k|≤γn} − E

(
Wi,j,k1I{|Wi,j,k|≤γn}

))∣∣∣∣∣ ≥ (κ/2− 1)λn

)
.

(6.11)

Let us now present a Bernstein inequality for exponentially strongly mixing process. This
is a slightly modified version of [28, Theorem 4.2].

Lemma 6.1 ( [28]). Let γ > 0, c > 0, θ > 1 and (Si)i∈Z be a stationary process such
that, for any m ∈ Z, the associated m-th strongly mixing coefficient satisfies

am ≤ γexp(−c|m|θ).

Let n ∈ N∗, h : R → R be a measurable function and, for any i ∈ Z, Ui = h(Si). We
assume that E(U1) = 0 and there exists a constant M > 0 satisfying |U1| ≤ M < ∞.
Then, for any λ > 0, we have

P

(∣∣∣∣∣ 1n
n∑
i=1

Ui

∣∣∣∣∣ ≥ λ
)
≤ 2(1 + 4e−2γ) exp

(
− uλ2nθ/(θ+1)

2 (E (U2
1 ) + λM/3)

)
,

where u = (1/2)(c/8)1/(θ+1).

Set, for any i ∈ {1, . . . , n},

Ui,j,k =Wi,j,k1I{|Wi,j,k|≤γn} − E
(
Wi,j,k1I{|Wi,j,k|≤γn}

)
.
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Then U1,j,k, . . . , Un,j,k are identically distributed, depend on the stationary strongly mix-
ing process (Xi, Yi)i∈Z which satisfies (2.1), E(U1,j,k) = 0,

|U1,j,k| ≤ |W1,j,k| 1I{|W1,j,k|≤γn} + E
(
|W1,j,k|1I{|W1,j,k|≤γn}

)
≤ 2γn

and, by (6.3),

E(U2
1,j,k) = V

(
W1,j,k1I{|W1,j,k|≤γn}

)
≤ E(W 2

1,j,k) ≤ µ2.

It follows from Lemma 6.1 that

P

(∣∣∣∣∣ 1n
n∑
i=1

Ui,j,k

∣∣∣∣∣ ≥ (κ/2− 1)λn

)

≤ 2(1 + 4e−2γ) exp

(
− u(κ/2− 1)2λ2nnθ
2 (µ2 + 2(κ/2− 1)λnγn/3)

)
. (6.12)

We have

λnγn = µ

√
lnnθ
nθ

µ

√
nθ
lnnθ

= µ2, λ2n = µ2 lnnθ
nθ

.

Combining (6.11) and (6.12), for any κ ≥ 2+16/(3u)+ 4
√

(1/u)(16/9u2 + 2), we have

P
(
|β̂j,k − βj,k| ≥ κλn/2

)
≤ 2(1 + 4e−2γ) exp

(
− u(κ/2− 1)2 lnnθ
2 (1 + 2(κ/2− 1)/3)

)
= 2(1 + 4e−2γ)n

− u(κ/2−1)2

2(1+2(κ/2−1)/3)

θ ≤ 2(1 + 4e−2γ)
1

n4θ
.

This ends the proof of Proposition 4.3.

�

Proof of Theorem 5.1. We expand the function f on B as

f(x) =

2τ−1∑
k=0

ατ,kφτ,k(x) +

∞∑
j=τ

2j−1∑
k=0

βj,kψj,k(x), x ∈ [0, 1],

where

ατ,k =

∫ 1

0

f(x)φτ,k(x)dx, βj,k =

∫ 1

0

f(x)ψj,k(x)dx.

We have, for any x ∈ [0, 1],

f̂(x)− f(x)

=

2τ−1∑
k=0

(α̂τ,k − ατ,k)φτ,k(x) +
j1∑
j=τ

2j−1∑
k=0

(
β̂j,k1I{|β̂j,k|≥κλn} − βj,k

)
ψj,k(x)

−
∞∑

j=j1+1

2j−1∑
k=0

βj,kψj,k(x).
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Since B is an orthonormal basis of L2([0, 1]), we can write

R(f̂ , f) = E
(∫ 1

0

(f̂(x)− f(x))2dx
)

= R+ S + T, (6.13)

where

R =

2τ−1∑
k=0

E
(
(α̂τ,k − ατ,k)2

)
, S =

j1∑
j=τ

2j−1∑
k=0

E
(
(β̂j,k1I{|β̂j,k|≥κλn} − βj,k)

2
)

and

T =

∞∑
j=j1+1

2j−1∑
k=0

β2
j,k.

Let us bound R, T and S.

Upper bound for R. Using Proposition 4.1 and 2s/(2s+ 1) < 1, we obtain

R ≤ C2τ lnnθ
nθ
≤ C

(
lnnθ
nθ

)2s/(2s+1)

. (6.14)

Upper bound for T . For r ≥ 1 and p ≥ 2, we have Bsp,r(M) ⊆ Bs2,∞(M). Since
2s/(2s+ 1) < 2s, we have

T ≤ C
∞∑

j=j1+1

2−2js ≤ C2−2j1s ≤ Cn−2sθ ≤ C
(
lnnθ
nθ

)2s

≤ C
(
lnnθ
nθ

)2s/(2s+1)

.

For r ≥ 1 and p ∈ [1, 2), we have Bsp,r(M) ⊆ B
s+1/2−1/p
2,∞ (M). Since s > 1/p, we have

s+ 1/2− 1/p > s/(2s+ 1). So

T ≤ C

∞∑
j=j1+1

2−2j(s+1/2−1/p) ≤ C2−2j1(s+1/2−1/p)

≤ Cn
−2(s+1/2−1/p)
θ ≤ C

(
lnnθ
nθ

)2(s+1/2−1/p)

≤ C
(
lnnθ
nθ

)2s/(2s+1)

.

Hence, for r ≥ 1, {p ≥ 2 and s > 0} or {p ∈ [1, 2) and s > 1/p}, we have

T ≤ C
(
lnnθ
nθ

)2s/(2s+1)

. (6.15)

Upper bound for S. We have

S = S1 + S2 + S3 + S4, (6.16)

where

S1 =

j1∑
j=τ

2j−1∑
k=0

E
(
(β̂j,k − βj,k)21I{|β̂j,k|≥κλn}1I{|βj,k|<κλn/2}

)
,
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S2 =

j1∑
j=τ

2j−1∑
k=0

E
(
(β̂j,k − βj,k)21I{|β̂j,k|≥κλn}1I{|βj,k|≥κλn/2}

)
,

S3 =

j1∑
j=τ

2j−1∑
k=0

E
(
β2
j,k1I{|β̂j,k|<κλn}1I{|βj,k|≥2κλn}

)
and

S4 =

j1∑
j=τ

2j−1∑
k=0

E
(
β2
j,k1I{|β̂j,k|<κλn}1I{|βj,k|<2κλn}

)
.

Let us investigate the bounds of S1, S2, S3 and S4.
Upper bounds for S1 and S3. We have{

|β̂j,k| < κλn, |βj,k| ≥ 2κλn

}
⊆
{
|β̂j,k − βj,k| > κλn/2

}
,

{
|β̂j,k| ≥ κλn, |βj,k| < κλn/2

}
⊆
{
|β̂j,k − βj,k| > κλn/2

}
and {

|β̂j,k| < κλn, |βj,k| ≥ 2κλn

}
⊆
{
|βj,k| ≤ 2|β̂j,k − βj,k|

}
.

So

max(S1, S3) ≤ C
j1∑
j=τ

2j−1∑
k=0

E
(
(β̂j,k − βj,k)21I{|β̂j,k−βj,k|>κλn/2}

)
.

It follows from the Cauchy-Schwarz inequality, Propositions 4.2 and 4.3 that

E
(
(β̂j,k − βj,k)21I{|β̂j,k−βj,k|>κλn/2}

)
≤

(
E
(
(β̂j,k − βj,k)4

))1/2 (
P
(
|β̂j,k − βj,k| > κλn/2

))1/2
≤ C

(
1

n4θ

)1/2

= C
1

n2θ
.

Since 2s/(2s+ 1) < 1, we have

max(S1, S3) ≤ C
1

n2θ

j1∑
j=τ

2j ≤ C 1

n2θ
2j1 ≤ C 1

nθ
≤ C

(
lnnθ
nθ

)2s/(2s+1)

. (6.17)

Upper bound for S2. Using again Proposition 4.1, we obtain

E
(
(β̂j,k − βj,k)2

)
≤ C lnnθ

nθ
.

Hence

S2 ≤ C
lnnθ
nθ

j1∑
j=τ

2j−1∑
k=0

1I{|βj,k|>κλn/2}.
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Let j2 be the integer defined by

1

2

(
nθ

lnnθ

)1/(2s+1)

< 2j2 ≤
(

nθ
lnnθ

)1/(2s+1)

. (6.18)

We have

S2 ≤ S2,1 + S2,2,

where

S2,1 = C
lnnθ
nθ

j2∑
j=τ

2j−1∑
k=0

1I{|βj,k|>κλn/2}

and

S2,2 = C
lnnθ
nθ

j1∑
j=j2+1

2j−1∑
k=0

1I{|βj,k|>κλn/2}.

We have

S2,1 ≤ C
lnnθ
nθ

j2∑
j=τ

2j ≤ C lnnθ
nθ

2j2 ≤ C
(
lnnθ
nθ

)2s/(2s+1)

.

For r ≥ 1 and p ≥ 2, since Bsp,r(M) ⊆ Bs2,∞(M), we have

S2,2 ≤ C
lnnθ
nθλ2n

j1∑
j=j2+1

2j−1∑
k=0

β2
j,k ≤ C

∞∑
j=j2+1

2j−1∑
k=0

β2
j,k ≤ C2−2j2s

≤ C

(
lnnθ
nθ

)2s/(2s+1)

.

For r ≥ 1, p ∈ [1, 2) and s > 1/p, using 1I{|βj,k|>κλn/2} ≤ C|βj,k|p/λpn, Bsp,r(M) ⊆
B
s+1/2−1/p
2,∞ (M) and (2s+ 1)(2− p)/2 + (s+ 1/2− 1/p)p = 2s, we have

S2,2 ≤ C
lnnθ
nθλ

p
n

j1∑
j=j2+1

2j−1∑
k=0

|βj,k|p ≤ C
(
lnnθ
nθ

)(2−p)/2 ∞∑
j=j2+1

2−j(s+1/2−1/p)p

≤ C

(
lnnθ
nθ

)(2−p)/2

2−j2(s+1/2−1/p)p ≤ C
(
lnnθ
nθ

)2s/(2s+1)

.

So, for r ≥ 1, {p ≥ 2 and s > 0} or {p ∈ [1, 2) and s > 1/p}, we have

S2 ≤ C
(
lnnθ
nθ

)2s/(2s+1)

. (6.19)

Upper bound for S4. We have

S4 ≤
j1∑
j=τ

2j−1∑
k=0

β2
j,k1I{|βj,k|<2κλn}.
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Let j2 be the integer (6.18). Then

S4 ≤ S4,1 + S4,2,

where

S4,1 =

j2∑
j=τ

2j−1∑
k=0

β2
j,k1I{|βj,k|<2κλn}, S4,2 =

j1∑
j=j2+1

2j−1∑
k=0

β2
j,k1I{|βj,k|<2κλn}.

We have

S4,1 ≤ C
j2∑
j=τ

2jλ2n = C
lnnθ
nθ

j2∑
j=τ

2j ≤ C lnnθ
nθ

2j2 ≤ C
(
lnnθ
nθ

)2s/(2s+1)

.

For r ≥ 1 and p ≥ 2, since Bsp,r(M) ⊆ Bs2,∞(M), we have

S4,2 ≤
∞∑

j=j2+1

2j−1∑
k=0

β2
j,k ≤ C2−2j2s ≤ C

(
lnnθ
nθ

)2s/(2s+1)

.

For r ≥ 1, p ∈ [1, 2) and s > 1/p, using β2
j,k1I{|βj,k|<2κλn} ≤ Cλ2−pn |βj,k|p, Bsp,r(M) ⊆

B
s+1/2−1/p
2,∞ (M) and (2s+ 1)(2− p)/2 + (s+ 1/2− 1/p)p = 2s, we have

S4,2 ≤ Cλ2−pn

j1∑
j=j2+1

2j−1∑
k=0

|βj,k|p = C

(
lnnθ
nθ

)(2−p)/2 j1∑
j=j2+1

2j−1∑
k=0

|βj,k|p

≤ C

(
lnnθ
nθ

)(2−p)/2 ∞∑
j=j2+1

2−j(s+1/2−1/p)p ≤ C
(
lnnθ
nθ

)(2−p)/2

2−j2(s+1/2−1/p)p

≤ C

(
lnnθ
nθ

)2s/(2s+1)

.

So, for r ≥ 1, {p ≥ 2 and s > 0} or {p ∈ [1, 2) and s > 1/p}, we have

S4 ≤ C
(
lnnθ
nθ

)2s/(2s+1)

. (6.20)

It follows from (6.16), (6.17), (6.19) and (6.20) that

S ≤ C
(
lnnθ
nθ

)2s/(2s+1)

. (6.21)

Combining (6.13), (6.14), (6.15) and (6.21), we have, for r ≥ 1, {p ≥ 2 and s > 0} or
{p ∈ [1, 2) and s > 1/p},

R(f̂ , f) ≤ C
(
lnnθ
nθ

)2s/(2s+1)

.

The proof of Theorem 5.1 is complete.

�
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