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Abstract

We investigate function estimation in a nonparametric regression model having the fol-
lowing particularities: the design is random (with a known distribution), the errors
admit finite moments of order 2 and the data are weakly dependent; the exponentially
strongly mixing case is considered. In this general framework, we construct a new
adaptive estimator. It is based on wavelets and the combination of two hard thresh-
olding rules. We determine an upper bound of the associated mean integrated squared
error and prove that it is sharp for a wide class of regression functions.
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1 Introduction

Let (X;, Y;)icz be a bivariate stationary random process where, for any i € Z,
Y = f(Xi) + &, (1.1)

f :]0,1] — R is an unknown function, (X;);cz is a sequence of identically distributed
random variables having the common known density ¢ : [0,1] — [0,00) and (&;)cz is
a sequence of identically distributed variables independent of (X;);cz satisfying E(&;) =
0 and E(£2) < oo. We suppose that (X;,Y;);cz is strongly mixing (to be defined in
Section 2). Given n observations (X1,Y7),...,(X,,Y,) drawn from (X;, Y;);cz, we aim
to estimate f globally on [0, 1].

To measure the performance of an estimator fof f, we use the Mean Integrated Squared
Error (MISE) defined by:

R0 =B ( [ () - 1))

Our goal is to construct f such that the associated MISE is as small as possible. Many
methods can be considered (kernel, spline, wavelets,...) (see e.g. [31]). In this study, we
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focus our attention on the wavelet methods. They are attractive for nonparametric func-
tion estimation because of their spatial adaptivity, computational efficiency and asymptotic
optimality properties. Further details can be found in [1] and [22].

In the litterature, when (X1,Y7),. .., (X,,Y,) are i.i.d., various wavelet methods have
been developed. See, e.g., [14-16], [17], [21], [2, 3], [4], [301, [5, 6] [7, 8], [10], [29],
[13], [33], [23] and [9]. When &, ..., &, have some kind of dependence (long memory,
p-mixing,...), see e.g. [18], [19], [25], [26] and [24]. To the best of our knowledge, the
wavelet estimation of f when (X1,Y7), ..., (X,,Y,) are weakly dependent has only been
investigated by [26]. More precisely, [26] constructs a linear nonadaptive wavelet estimator
of f which attained a sharp rate of convergence under the uniform risk over Besov balls.
However, the adaptive wavelet estimation of f, more realistic, has never been addressed
earlier and motivates this study. In addition to this new challenge, we relax some classical
assumptions on the errors: the common distribution of &1,.. ., &, can be unknown; only
E(¢1) = 0 and E(£7) < oo are required.

We construct a new adaptive wavelet estimator based on the following steps: we esti-
mate the unknown wavelet coefficients of f by a new thresholded versions of the empirical
ones, we operate a term-by-term selection of these estimators via a hard thresholding rule,
then we reconstruct the selected estimators by taking the initial wavelet basis and choos-
ing appropriate levels. Naturally, the definitions of both thresholds take into account the
dependence of the data and are chosen to minimize the associated MISE. Assuming that f
belongs to a Besov balls B, (M) (to be defined in Section 3), we prove that our estimator
f satisfies

Inng

R <0

ng

)

>2s/(2s+1)

where C' > 0 is a constant (independent of n), ny = n%/ (1) and 6 refers to the exponen-
tially strong mixing case.

The paper is organized as follows. Section 2 clarifies the assumptions on the model and
introduces some notations. Section 3 describes the wavelet basis on [0, 1] and the Besov
balls B, ,(M). Our wavelet hard thresholding estimator is presented in Section 4. The
results are set in Section 5. Section 6 is devoted to the proofs.

2 Assumptions and notations

Dependence assumption on (X;,Y;);cz. Set, forany i € Z, Z; = (X;,Y;). We suppose
that Z = (Z;),ez is stationary and exponentially strongly mixing. Let us now clarify
this kind of dependence.

For any m € Z, we define the m-th strongly mixing coefficient of Z by

Ay, = sup [P(AN B) —P(A)P(B)|,
(AB)EFZ _ (XFZ

m,co



Adaptive wavelet regression in random design and general errors with weakly dependent data 3

where, for any i € Z, ]-'foo’i is the o-algebra generated by ..., Z;_1, Z; and ]-'foo is
the o-algebra generated by Z;, Z; 11, . ... The bivariate random process Z is said to
be strongly mixing if lim,,, oo @, = 0. The exponentially strongly mixing condition
is characterized by the following inequality: there exists three known constants, v >
0, ¢ > 0 and 6 > 0 such that, for any m € Z,

Ay < yexp (—c|m|9) ) 2.1

This assumption is satisfied by a large class of processes (ARMA processes, ARCH
process, ...). See e.g. [32], [20] and [28]. Remark that, when 6 — oo, Z = (Z;)icz

becomes a bivariate sequence of i.i.d. random variables.

Boundedness assumption on f. We suppose that there exists a known constant C,, > 0
such that

sup |f(x)] < C.. (2.2)
z€[0,1]

Boundedness ssumption on g. We suppose that there exists a known constant ¢, > 0
such that

inf > Cy. 2.3
wér[hl]g(x)_c (2.3)

3 Wavelet bases and Besov balls

3.1 Wavelet basis

Let N € N* (the set of positive integers), and ¢ and v be the initial wavelet functions
of the Daubechies wavelets dbN. Set

Giu(x) =220 2x — k), Pip(x) =22z — k).

Then, with an appropriate treatments at the boundaries, there exists an integer 7 satisfying
27 > 2N such that, for any integer £ > T,

B={¢ox(), k€ {0,...,2°~1}; ¥ n(); j €N={0,..., =1}, k€ {0,...,27 —1}},

is an orthonormal basis of L2([0,1]) = {h : [0,1] — R; fol h?(z)dx < oo}. See [11].
For any integer £ > 7, any h € L?([0, 1]) can be expanded on B as

2¢—1 0o 271
h(z) = Z au kbe k() + Z Z Bt (@),
k=0 =t k=0

where o, and (3; ;, are the wavelet coefficients of h defined by

1

1
O[j7k:/0 hx)¢; i (z)dx, ﬂj’k:/o h(x)Y; k(x)de. 3.1
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3.2 Besov balls

Let M >0,s >0,p > 1and r > 1. A function h belongs to B;J,(M) if, and
only if, there exists a constant M/ * > 0 (depending on M) such that the associated wavelet

coefficients (3.1) satisfy

1 ) 1/p\ " 1/r
271 /P 0 271
o7(1/2-1/p) (Z s g p) + Z 9i(s+1/2—1/p) Z 1B;.k]P
k=0 j=r k=0
< M~

In this expression, s is a smoothness parameter and p and r are norm parameters. For a
particular choice of s, p and r, the Besov balls contain the standard Holder and Sobolev
balls. See [27].

4 Estimators

4.1 Wavelet coefficient estimators and some of their statistical properties

The first step to estimate f in (1.1) consists in expanding f on the wavelet basis B.
Then we aim to estimate the unknown wavelet coefficients: o j, = fol f(x)¢;x(z)dx and
Bik = fol f(2); x(x)dz. The considered estimators are described below.

Set
g
Tn = K nne
1 ng

where ng = n/(®*+1) ¢ is the one in (2.1) and pu = /(C2 + E(£2))/c..
For any integer j > 7 and any k € {0,...,27 — 1},

e we estimate a j by

Il Y
Xk = ; g(X¢)¢J7k( ’L)]I{‘g<§;i)¢],k(Xi) <} 4.1
where, for any random event .4, 1 4 is the indicator function on A.
e we estimate 3, i, by
~ 1<~ Y,
= = ——— i 1, (X)) 1 . . 4.2
BLk n Z g(XZ)wJ,k( ) {’ g(};”wj,k(xi) S’Yn} ( )

i=1

Remark that @; 5, and Bj,k are thresholded versions of the standard empirical wavelet es-
timators for (1.1) (see, e.g., [14—16]). Such an observation thresholding has been intro-
duced by [13] for (1.1) when (X7,Y7),...,(X,,Y,) are i.id.. In our study, it allows
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us to have non restrictive assumptions on &1, ...,&, and treat the weak dependence of
(X17Y1)7 R (Xna }/’rl)

Propositions 4.1 and 4.2 below show moments properties for (4.1) and (4.2).

Proposition 4.1. Consider (1.1) under the assumptions of Section 2. For any integer j > T
and any k € {0,...,29 — 1}, let B, = fol f(x)Y; k(x)dz and Ej,k- be (4.2). Then there
exists a constant C' > 0 such that

In 7]

E ((gj,k - Bj,k)Q) <C .

ng

This inequality holds with o j, = fol f(x)¢; k(x)dx instead of By and &,y defined by
(4.1) instead of B; 1.

Proposition 4.2. Consider (1.1) under the assumptions of Section 2. For any integer j > T
and any k € {0,...,29 — 1}, let B, = fol (@)Y 1 (x)dz and B; i, be (4.2). Then there
exists a constant C' > 0 such that
E ((Bj,k - 5j,k)4) <C.
Proposition 4.3 below determines a concentration inequality for (4.2).

Proposition 4.3. Consider (1.1) under the assumptions of Section 2. For any integer j > T
and any k € {0,...,27 — 1}, let B, 1 = fol [ (@)Y, (z)dz, Bk be (4.2) and
In 7]

An = 1 e

Then, for any k> 2+ 16/(3u) + 4/(1/u)(16/9u2 + 2) with u = (1/2)(c/8)1/OFY), we
have

B L, 1
P (ij - Bixl = H)\n/Q) < 2(1+4e 2,7)74.

Ng
4.2 Hard thresholding estimator
We define the hard thresholding estimator fby
R 271 g 27-1
flz) = Z Qr kbr k() + Z Z ﬁj,kH{‘gjﬂzmn}%,k(ff), (4.3)
k=0 j=7 k=0

where @, j, is defined by (4.1) with j = 7, Bj,k by (4.2), 71 is the integer satisfying

1 ,
ing < 27t < ny,

K> 2+ 16/(3u) + 4/ (1/u)(16/9u2 + 2) with u = (1/2)(c/8)*/(**1) and

lnng
Ap =1 .

The feature of fis to only estimate the “large” unknown wavelet coefficients of f because

they are those which contain his main characteristics.
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5 Results

Theorem 5.1. Consider (1.1) under the assumptions of Section 2. Let fbe (4.3). Suppose
that f € B, (M) withr > 1, {p > 2and s > 0} or {p € [1,2) and s > 1/p}. Then there
exists a constant C' > 0 such that

R(ﬁf)s@*(

In Ng

)

2s/(2s+1)
Ng )

where ng = n?/(0+1),

The proof of Theorem 5.1 uses a suitable decomposition of the MISE with the results
in Propositions 4.1, 4.2 and 4.3.

If we restrict our study to independent (X1,Y7),...,(X,,Y,) i.e. § — oo, our rate
of convergence becomes (Inn/n)?*/(23+1) which is the standard “near optimal” one in the
minimax sense. See e.g. [22] and [13].

Note that the rate of convergence (Inng/ng)?*/(?s+1) is also achieved by the abstract
minimum complexity regression estimator in [28, Theorem 2.1] but for a slightly different
regression problem with more restrictions on (X1,Y7),...,(X,,Y5), &1,...,&, and f
(see [28, Section II. B.]).

6 Proofs

In this section, C' represents a positive constant which may differ from one term to
another.
Proof of Proposition 4.1. For any ¢ € {1,...,n}, set
Y;
Wik = =~ 5k Xi)-
75 g(Xz) Js ( 7)

Since X and &; are independent and E(&;) = 0, we have

E(Wi k) = E(g(y)él)wj,k(Xl)>

(%)
B (L300 ) + BB 1 >m< D)
)

(
- o () - Bt

JU

1
| £@()dz = By

0
Hence, since W1y i, ..., Wy, ;1 are identically distributed,

Bik = EWijn) =EWijelgw, ;<) +E (Wiirlgw, ; i5ym))

1 n
= E (n > Wik H{|wi,j,k<vn}> +E (Wiinlgw, ,p>aa)) - 6D

i=1
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This with the elementary inequality (z + y)? < 2(2? + y?), (z,y) € R?, imply that
E ((@,k - ﬂj,k)2) <2(A+ B), (6.2)
where
1 n 2
(n Z 1k LW el <vm} — E(Wz‘,j,kﬂ{|wq-,,j,k|<%})))
i=1

and
2
B = (E(IWwiklTgw, ; 4541)) " -
Let us bound B and A.

Upper bound for B. Since Wjw, . 1>~,1 < |W1 k| /n» we have

E(WE; %)

E (|W. >

}) <

Let us now bound E(Wf]k) Since X and &; are independent and E(&;) = 0, we have

E(V2, ) 1 X1)> —E <(f(X’+“ )

(gg X1) 9*(X1)
+ E(&)E 92 ?’k(xl)>

(Gt e ).

Using (2.2), (2.3) and [, ¥2,(«)dz = 1, we obtain

f (X >¢ (X)) < C?E LW (X1)
g0 TR ) e
1 1
_ L 2 _e2 [ Ly
1
< E [y G
Cy Cy

2
(ZZ’) 7 k:( )
Jz-yk(x)dx =
And, in a similar way,
1
] ir(@)

E(tn) = [ i g(x)dx:/olg&)m )z

g*(w
1
1
/0 ?k(ac)dx = —.

Cx

IN

0
J
1

0

1

C
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So

EW?, ) < —(C2+E(E) =p* =C. (6.3)

1
Cy
Therefore

2
EWZ.,) 1 Inn
B = (E (W1l Lgwi,>m))” < (;”) SO <0 (64

n

Upper bound for A. We have

4 = ( ZWMH{IWHICK%})
i=1
1 n n
= > 2 CWuinlgw, <oy Weaslgwe ;1<)
v=1 /(=1
1 2 n v—1
= VWL w sy + o D0 D C (Wi lgw, s ui<an)s Wes b Lwe <))
v=2 (=1
9 n v—1
< SVWVLRwy <) + o5 C (Wo sk Wgw, i<y Weik Twe s i <vad) |-
v=2 (=1

(6.5)
Using (6.3), we obtain
VWi Tgw, ; <vny) < EOWVE i lgw,  c<vy) SEWE ) <p? =C. (6.6)

It follows from the stationarity of (X;,Y;);cz that
v—1

DD C(Wasngw, i<t Wesn Lgwe w<va))
v=2 (=1

Z WO]k]I{|WDJk‘<’YTt}’Wm1jvkll{‘wm,j,k|§')’n})

S n Z ’(C (Wox.j’k]I{‘WO‘j,HS’Yn}’ WmJak]I{IWm,j,k‘S'Yn})‘ :

m=1
By the Davydov inequality for strongly mixing processes (see [12]), the inequality
|W07j7k|11{|W0_’j,k|§%} < max(Vy, |Wo,;x|) and (6.3), for any ¢ € (0,1), we have

C (Wo ik Wy, w1<vmys Winik Tgwi s wl<va}) |
2/(1-q) ta
< 1008, (E (1Won 0 Uwy, 11500 ))

1—q
1002, (B (1Woua O~ Wi 10 W s Wi 1500 ))

— q
Cag, (Viq/(liq))l TEWEL) T < Ca, (TLG)

IN

Inng
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Due to (2.1), we have Y1 ad, <y > exp (—cqgim|’) = C. So
v—1

n — q
ng
DY C(Woynlgw, , i< Weik Tgwe, v<va}) | < Cn (9) - (6.7)

Inn
v=2 /(=1

Taking ¢ = 1/6, we have nj /n = 1/ng. It follows from (6.5), (6.6) and (6.7) that
11 K a 1
A<co(taidly (o))<l < olnne 6.8)
n  n? Inng n ng ng
It follows from (6.2), (6.4) and (6.8) that

- 1
E ((ﬁj,k — Bik) ) <=2 (6.9)

Ny

Replacing ¢ instead of v in the previous proof, one can show that (6. 9) holds with o j, =
fo x)P; 1 (x)dx instead of 5, ;, and @; j, defined by (4.1) instead of ﬁj ke
The proof of Proposition 4.1 is complete.

Proof of Proposition 4.2. We have

1Bik = Bil < 1Bjsl + 1Bjxl-
We have
ng
I . <A, = —_
21 ¢J b {)JT’”wj,k(Xi) < } =Tn = H Inny
It follows from (2.2), the Cauchy-Schwarz inequality and fo (x)dx =1 that
1 1
< [ @il < c. / 54 ld
0 0
1 1/2
< C. 2 p(@)d —0, <02
= (/0 ¢],k(x) l‘) lIl TLg
Therefore

Bk — Bl < O\l ln e (6.10)

By (6.10) and Proposition 4.1, we have

ng Inng o
Inng ne '

E ((@',k - ﬂj,k)4) < 01:729[@ ((Bj, — Bik) )
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Proof of Proposition 4.3. Forany i € {1,...,n}, set

Y,
Wik = T);)%,k(Xi)-

By (6.1), we have
1Bk — Bkl

n

1
— > Wi lgwe, i< = E (Wasrllw,i<r)) =B (Wielw, 0sa.)

Il
-

K2

IN

+E (W1 %

3=

(Wi gk Lgw s i<y — E (Wi lgw,  cl<vn))) L, ;4 5m}) -

i=1

Using (6.3), we obtain

E(Wf k) 2 1 [lnng
E (Wil s aloy) S =255 <2y [20 = A

P (|Bj,k — Bikl > H>\n/2>

<z

Let us now present a Bernstein inequality for exponentially strongly mixing process. This

Hence

> (k/2— 1)/\n> )

(6.11)

1 n
o > Wik Tgw, , vt — B (Wi g lw, <))
n =1

is a slightly modified version of [28, Theorem 4.2].

Lemma 6.1 ( [28]). Lety > 0, ¢ > 0, 8 > 1 and (S;);ez be a stationary process such

that, for any m € 7Z, the associated m-th strongly mixing coefficient satisfies
0
am < yeap(—clm[”).

Letn € N*, h : R — R be a measurable function and, for any i € Z, U; = h(S;). We
assume that E(Uy) = 0 and there exists a constant M > 0 satisfying |U1| < M < oo.
Then, for any A > 0, we have

1‘I’L
PlI=) Ui
(e

where u = (1/2)(c/8)Y/(0+1),

u/\ZnO/(B—H)
(E(U7) +>\M/3)) ’

> /\> < 2(1+4e 2y)exp (—2

Set, forany i € {1,...,n},

Ui = Wi Mgw, , i<vay — E (Wijrlgw, o<y} -
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Then Uy i, ..., Uy, i are identically distributed, depend on the stationary strongly mix-
ing process (X;,Y;);cz which satisfies (2.1), E(Uy ;x) = 0,
U3kl < WLkl gw s i<y + B (W50 Tgwa s <y03) < 20
and, by (6.3),
E(U 1) =V (Wiinlgw, ;<)) < EWE5) < p2.
It follows from Lemma 6.1 that

1 n
P<
n

i=1

Z Uik

< 2(1+4e?y)exp <—2(

> (k)2 — 1))\n>

u(k/2 —1)2X2ny >
R Toa s weyzys R

Inng ng Inng
AnYn = o [ = A=t
ng Inny ng

Combining (6.11) and (6.12), for any x > 2+ 16/(3u) +41/(1/u)(16/9u2 + 2), we have

(W;k—ﬁgﬂ > KA /2)

We have

2 —1)21
< 2(144e %y exp< u(x/ )" Inne >

2(1+2(k/2-1)/3)
w(r/2—1)2

= 2(1 +de 2y)n, TTERTIT 7 < 2(1 + 4e™? )F'

(4

This ends the proof of Proposition 4.3.

Proof of Theorem 5.1. We expand the function f on B as

27—1

Z Qr, k¢7'k Z Z ],kw], T € [0, 1],
=T k=0

where )
/ J(x)pr p( ﬂj,k:/o J (@) (x)dw
We have, for any z € [0, 1],
fla) - f(a)
27T -1 j1 291
= (Qrk — arg)dr k(T —|—Z Z (ﬂjkﬂ{\ﬁ PR Bj, k) Y k(T)
k=0 j=7 k=0

- Z Z kajk
Jj=Jj1+1 k=0
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Since B is an orthonormal basis of .2([0, 1]), we can write

1
R(f,f)=E (/ (fz) - f(@)%) —R+S+T, (6.13)
0
where
271 j1 27—1 R
R= Z E((@rg —orp)’), S= Z Z E ((ﬁm Leg, cimmna} ~ IBj,k)2)
k=0 Jj=7 k=0
and .
0o 27 -1
T= > > G
j=j1+1 k=0

Letus bound R, T and S.

Upper bound for R. Using Proposition 4.1 and 2s/(2s + 1) < 1, we obtain

RSCQTlnn.g < C(lnng
Uz Uz

) 2s/(2s+1)
. (6.14)

Upper bound for T. Forr > 1 and p > 2, we have B, (M) C Bj _(M). Since
2s5/(2s + 1) < 2s, we have

0o ) ) Inn 2s Inn 2s/(2s+1)
r<c Y 27¥ <o <Ong* <O (9> <C (‘)) :
Jj=j1+1 ne e

Forr > 1and p € [1,2), we have B; (M) C B;;/2_1/1’(M). Since s > 1/p, we have
s+1/2—1/p>s/(2s+1). So

T o< ¢ 27U < peE/2-1/

Jj=j1+1
2(s+1/2—-1 2s/(2s+1
< Cn;2(5+1/271/p) <c <lnng> (s+1/2=1/p) <C (lnng) /(2s+ ).
Ny Uz
Hence, forr > 1, {p > 2and s > 0} or {p € [1,2) and s > 1/p}, we have
1 2s/(2s+1)
T<C (W) : (6.15)
ng
Upper bound for S. We have
S =51+ 85+ 853+ Sy, (6.16)

where ‘
ji 29-1

Sy = Z Z E ((Ej,k — 5;-,1@)211{@“2,%}H{\ﬂj,k|<mn/2}) ,

j=7 k=0
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j1 27-1

S2= 3 D2 B ((Birk = 6500 W5, e} Wi almner)
j=1 k=0
j1 29-1
2
SS = Z Z E <6‘7’vkﬂ{|§j,k|<ﬂkn}H{‘Bj,klZZ’i)\n})
j=7 k=0
and ‘
J1 27-1
2
SEDIDIEA (1 FENENE IR
j=1 k=0

Let us investigate the bounds of S, Sa, S3 and Sj.
Upper bounds for S and S3. We have

(1Bl < 1A, 18] = 2600} € (1B = Bl > w22}

{181l 2 1ho, 18100 < w02} € {1Bii = Bl > Ao /2 ]

and

{|3j,k| < KAns By >

w b € {185kl < 200 — Bial

So A
j1 29-1

maX(Sl’ SS) S CZ Z E ((gjk - Bj’k)2H{lgj,k*ﬁj,k‘>ﬁ)\n/2}) ’

j=7 k=0

It follows from the Cauchy-Schwarz inequality, Propositions 4.2 and 4.3 that
) 2
E ((ﬁj,k - ﬁj,k) ]I{|§jykfgj)k|>,€)\n/2}>
—~ A\ 12 ~ 1/2
< (BE(Bin=80") " (B(1Bix = Bisl > x2a/2))
1\"? 1
Ny Ty

Since 2s/(2s + 1) < 1, we have

IN

Inng

1 2s/(2s+1)
max(S1, 85) < C— Z2J<C 2J1<O<C( )

] =T

Ng

Upper bound for S5. Using again Proposition 4.1, we obtain

~ Inng
E((Bx—Bi0)?) <O
Hence

Jj1 291

lnng
Sy < Ci D> Ws, swrn 2y

j=7 k=0

6.17)
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Let j- be the integer defined by

1/(2s+1) 1/(2s+1)
L no <o < (10 . (6.18)
2 \Inny In ng
‘We have
Sy < 891 + 2.2,
where )
lnng 72 21
a1 =C= == Do Wpygisrrn/2)
j=7 k=0
and ‘
lnn9 J1 27 -1
522—07 Z Z W 8, 11> mnn 2}
Jj=j2+1 k=0
‘We have
2s/(2s+1)
S2l<ch1”922f<01n"92n<0<1n ) .
Ng Mo

J=T

Forr > 1and p > 2, since B, (M) C B3 (M), we have

lnng 1 291 ) oo 2/-1 , .y
B Y 3 Tl 3l o Yo
j=j2+1 k=0 j=j2+1 k=0
2s/(2s41)
< C(lnng) '
ng

Forr > 1,p € [1,2) and s > 1/p, using W16, c15mrn /2y < ClBiklP /ML, By (M) C
By T2 7P (M) and (25 +1)(2 — p)/2 + (s + 1/2 — 1/p)p = 25, we have

1 J 1 (2—p)/2 oo
Inng 2 <lnng> Z

—j(s+1/2—1/p)
S s Ol S S <o 3 v
=ja+1 k=0 j=j2+1
(2—p)/2 2s/(2s+1)
< C Inng 9—J2(s+1/2=1/p)p < (0 Inng .
- Ny - Ny
So, forr > 1,{p >2and s > 0} or {p € [1,2) and s > 1/p}, we have
1 2s/(2s+1)
SQ<C(H” ) : (6.19)
ng
Upper bound for S;. We have
Jj1 291

S4 < Z Z 6J kII{WJ kl<28An}-

j=7 k=0
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Let j- be the integer (6.18). Then

Sy < Sy1+ Sapo,

where
jo 291 j1 29-1
Sia=3 > Balysui<annats  S12= D Y Biallig iczon)-
j=7 k=0 Jj=j2+1 k=0
We have
J2 - In g J2 ‘ Inng . Inng 2s/(2s+1)
SMgC;W/\”CnQ;ZJSC’mthC( o ) :

For 7 > 1and p > 2, since By, (M) C BS (M), we have

oo 29-1 Inng 2s/(2s+1)
Sio < 2 <097 < )
s Y Y ot co (B

j=j2+1 k=0

Forr > 1,p € [1,2) and s > 1/p, using 5,72,/c11{|[3j.k|<2m>\n} < CXZP|B kP, B (M) C
B;f;m_l/p(M) and (2s+ 1)(2 —p)/2+ (s + 1/2 — 1/p)p = 2s, we have

i 29-1 Inng (2—-p)/2 5 29-1
Sa2 oNTP Y Z|ﬁj,k|pzc< ) DD 1Bl

S -
j=ja+1 k=0 1o j=7a+1 k=0
(2-p)/2 o0 (2—-p)/2
< C (hl "0> S a2 < ¢ <1n ”9> o—ia(s+1/2-1/p)p
- neg e - Ng
Jj=j2+1
2s/(25+1)
< (ln ng> .
ng
So, forr > 1,{p>2and s > 0} or {p € [1,2) and s > 1/p}, we have
1 2s/(2s+1)
Sy <C (W) (6.20)
ne
It follows from (6.16), (6.17), (6.19) and (6.20) that
1 2s/(2s+1)
s<cC (n”") . 6.21)
g

Combining (6.13), (6.14), (6.15) and (6.21), we have, forr > 1, {p > 2 and s > 0} or
{p € [1,2)and s > 1/p},

Inng

N 2s/(2s+1)
R(f,f) <C ( ) |

ng

The proof of Theorem 5.1 is complete.
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